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Abstract:  Designing a control structure for the Ball on Beam offer important results and 

conclusions at the level of experience of design and implementation. However, the 

comparison between the two algorithms implement on the same process control, highlight 

the advantages or disadvantages of their level of functioning. The process Ball on Beam 

presented, although at first seems just a "toy", but, because it is a process unstable, 

nonlinear, underactuated, can provide a basis for implementing and testing real-time 

control of many principles. 
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1. MATHEMATICAL 

MODEL OF THE PROCESS 

"BALL ON BEAM" 
   

Design of process control algorithms 

start from equation (1) taken from [1]. The 

physical parameters of the system are: m - 

Mass of the ball, BI - The moment of inertia 

in rotation of the ball from the center's own, 

AI - The moment of inertia of the beam to 

the fulcrum O,  

0l - The distance between the ball position, 

and fixed pivot, L - Length of beam, B - 

Attached to the engine flywheel arm length, 

aR - The resistance of the rotor winding, R - 

Rolling radius of the ball resting on the 

beam. We note: 
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2. IMPLEMENTATION OF 

CONTROL SYSTEM, USING 

LQR METHOD (Linear Quadratic 

Regulator) 

 
Starting from the state equation of 

(1), linearized around a stationary operating 

point for the "Ball on Beam", the state 

feedback structure is shown in Fig.1. 

Thus, we seek a command of the form:  

 Txxxxkkkktu 43214321 ][)(   

 

           We consider the linearized system 

and quadratic objective function [2], [3]: 

 dttuRtutxQtxJ

ft

TT

 
0

)()()()(
2

1
     (2)                              

where 0,  QQQ T  si 0,  RRR T  

  

 

 
 

Using Matlab-Simulink programming environment, obtain the command for two 

variants of the weights in the matrix Q, shown in Table 1: 

 

Table 1. Design results for different weights of the variable lx 4  

The parameters of control algorithm for 

system response shown in Fig.2 (Version 1) 

The parameters of control algorithm for 

system response shown in Fig.3 (Version 2) 

Q = 20     0     0     0 

     0     1     0     0 

     0     0    10     0 

     0     0     0     5 

R =   1 

Q =   20     0     0     0 

       0     1     0     0 

       0     0    10     0 

       0     0     0     50 

R =   0.10000000000000 

k1 =           1.701898817593371   

   k2 =         22.090825754154228   

      k3 =         -5.521746679549753   

         k4 =          3.284724152681749 

k1 =       9.410742579569869 

   k2 =     65.022363083483668 

      k3 =     -26.182837532749915 

         k4 =       23.259302052164692 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A,B,C,D 

U(t)=-kx(t) 
l(t) 

Fig.1. The state feedback structure 
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Using the parameters obtained in Table 1, 

the responses simulated in Matlab-Simulink 

is represented comparative in Fig.2 and 

Fig.3. It can be seen that, the state variables, 

rotational speed beam, beam angular 

position, speed ball, are stabilized to "0" 

after a period of time, when it reaches a 

point of equilibrium. However, the "Version  

2", which has a higher weight "= 50" in the 

matrix Q for the position of the ball, 

evidently stabilize faster and more accurate 

of the ball position along the rod, than 

"version 1" which has a smaller share "= 5". 

 

 

 

3. IMPLEMENTATION OF 

CONTROL SYSTEM, USING 

MPC METHOD (Model Predictive 

Control) 
 

Predictive control algorithms have a 

considerable development in recent years 

from the research community but also in 

the industrial environment. Many 

companies that provide hardware and 

software solutions, in the field of 

automation systems such as Honeywell, 

Matlab, and so on, have included 

substantial library of advanced algorithms, 

including algorithms that are also based on 

Model Predictive Control type - MCP 

(Model [Based] Predictive Control). 

A weakness of this type of control 

algorithms is that implementation requires 

complex mathematical treatments that are 

not very popular at practicing engineers. 

Current development of microprocessor 

systems allowed predictive control 

algorithms to be implemented successfully 

and fast processes.  

The majority MPC algorithms have three 

elements to be processed to obtain the final 

command: Operational methodology [4], [5] 

for most of the predictive control algorithms 

is illustrated in Fig.4.  

 

a. The prediction model 

b. The cost function. 

c. Getting the control law 

 

 

 
 

 

 

 

Fig.4. Operational methodology MPC 
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Fig.3. Simulated response of the system  

Ball on Beam in "Version 2" 

 

Fig.2. Simulated response of the system  

Ball on Beam in "Version 1" 
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Thus,. is obtained a command that will 

minimize a quadratic cost function, 

consisting of the difference between the 

predicted output and a trajectory prediction 

system.  As will be seen below, it provides 

an analytical solution (without constraints), 

which can be applied to open-loop unstable 

processes that contain poles approach of 

instability, processes characterized by non 

minimum phase models, processes 

characterized by unknown or variable dead 

time, processes with structural or 

parametric uncertainties. It incorporates the 

concept of control horizon, taking into 

account a certain weight of control in cost 

function. Depending on the choice of these 

weights available will get a variety of 

control objectives. The most processes can 

be described numerically by CARMA 

models (Controller Auto-Regresive Moving 

Average): 


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(3) 

For simplicity, the polynomial 1)( 1 zC  

where 11  z ,  )(tu  and )(ty  are the 

sequences of input and output; )(te  is 

perturbation signal; d  is the delay time of 

the process, considered as the number of 

sampling periods; )( 1zA , )( 1zB , )( 1zC  

are written using the polynomial delay 

operator 1z . MPC generalized predictive 

control algorithms, derived from finding a 

sequence the control that minimizes the 

cost function multistage form: 
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where )|(ˆ tjty   is output as the prediction 

process to step j calculated after current 

time t. So we obtain output the simulated 

The values 1N , 2N  are the beginning and 

end of the period that constitutes the horizon 

cost function. The value uN  is the number 

of steps for the control horizon. The values 

)( j , )( j  are sequence weighting cost 

function. The signal )( jtw   is the 

reference trajectory. which is desired to 

realize in the future. This trajectory can be 

expressed as: 

)()1(

)1()(

ktr

ktwktw








                   (5) 

where Nk ,1  and   is a weighting 

parameter between 0 and 1. Predictive 

control objectives consist in calculating a 

sequence of future control )(tu , )1( tu ,.... 

so that the output at the time of next t+j, 

)( jty   of the process, simulated by the 

process equations, to approach the reference 

trajectory )( jtw  . This is achieved by 

minimizing the cost function in equation (4). 

In order to optimize the cost function will 

use the optimal prediction (simulated) output 

sequence )( jty   for 1Nj   and 2Nj  . 

We start from the trivial Division with Rest 

Theorem: 

object that is divided = object that divides * 

Quotient the division + Rest 

In this context we consider object that is 

divided =1 and object that divides 

= )( 1 zA . Thus we get: 

)(1 1 zA * Quotient + Rest 

We consider the following diophantine 

equation, obtained by dividing the 

polynomial 1 polynomial )( 1 zA : 

)()(*)(1 111   zFzzEzA j

j

j   (6) 

This equation will be solved, and 

polynomials Quotient the division )( 1zE j  

and Rest )( 1zFj  are uniquely defined, with 

grades )1( j  respectively an . These are 

obtained by successive division of the 

polynomial 1 and the polynomial )( 1 zA  

until the rest can be factored as 

)( 1  zFz j

j
, and the remaining quotient is 

)( 1zE j . 
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process equations on a time horizon of j 

steps of sampling before (in the future) 

from the moment t. 

After processing we have: 
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In (7), if the degree of the polynomial 

)( 1zE j  is )1( j  intuitively it can be said 

that the terms )( jte   are all in the future 

and thus, the best prediction of the term 

)( jty   is: 
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Returning to the notation relative to the 

current time we have: 
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where )()()( 111   zBzEzG jj  

It can be shown that the polynomials 

recursion for )( 1zE j , )( 1zFj  can be 

processed by software. Next we consider 

)( 1zE j  and )( 1zFj  are polynomials 

quotient and the rest of the successive 

division )( 1 zA  until the rest of the 

division can be factored as: )( 1  zFz j

j . 

These polynomials can be expressed 

as:
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We assume that the same procedure is used 

for obtaining polynomials quotient and the 

rest for (j+1) successive polynomial 

division for 1 to polynomial )( 1 zA  until 

the rest of the division can be factored as: 

)( 1

1

)1( 
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  zFz j

j
, with the following 

expression: 
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 The rest of the division will change 

accordingly as )( 1

1

)1( 



  zFz j

j , and the 

quotient is the quotient from the previous 

step to which was added another term of the 

current division. Thus we have: 
j

jjjj zezEzE 
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11

1 )()(           (15) 

Using an observation of the division of 

polynomials we have: 

0,,1 jjj fe                           (16) 

The coefficients of the polynomial )( 1

1



 zFj  

pot fi exprimaţi sub forma: 

 10,1,,1
~

  ijijij afff ; 1,...,0  ani  

We return to the equation (12) 
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where )()()( 111   zBzEzG jj  

We have, for (j+1), taking into account the 

relationship (15) and (16):  
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Given the notation 

)()()( 111   zBzEzG jj , we have: 

)()()( 1

0,

11

1



  zBzfzGzG j

jjj  

Such terms are obtained: 

ijiijijj bfgg   0,,,1 ;   bni ,...,0  

Solving the problem of generalized 

predictive control is reduced to finding a 

sequence of control signals )(tu , 

)1( tu ,......, )( Ntu   ce vor fi obţinute prin 

optimizarea funcţiei cost din relaţia (4). If 

we consider that the system has a dead time 

expressed in a number of d sampling period, 

system output will be influenced by input 

signal )(tu  after a number of (d+1)  

sampling period. The value 1N , 2N  şi uN  

that define prediction horizon can be defined 

as: 11  dN , NdN 2 , NNu  . 
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Output prediction horizon is influenced by 

the process dead time. If  )1(1  dN  then 

the terms of the cost function will depend 

only on the previous control signals (in the 

past). On the other hand, if )1(1  dN , 

then do not take into account the first point 

of reference trajectory sequence. 

 În continuare vom considera 

următorul set de predicţii cu valorile lui  j 

în intervalul specificat: 
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Relations (19) can be written in vector form 

as follows: 
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    (20)  

It can be seen that the last two terms in 

equation (20) depend only on the initial 

conditions (past) and can be grouped as a 

free response within f below: 

fUGY                    (21)  

Can be considered if we have zero initial 

conditions, the free response f is zero. If we 

apply a step input to the input unit at time t, 

we have: 

1)(  tu ;  0)1(  tu ; ........;

 0)1(  Ntu   

Thus the expected output sequence is 
TNtytyty )](ˆ,....,)2(ˆ),1(ˆ[   and 

coincides with the first column of the 

matrix G. In this context, the first column 

of the matrix G can be calculated in 

response to the input step of the process, 

when a unit step is applied. Free response 

time can be calculated recursively 

by:
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cu )(0 tyf   şi 0)(  jtu   

for 0j  

The minimum of cost function of equation 

(25) with respect to U command is:    

0
dU

dJ
; 0 TbUH

dU

dJ
  

)()( 1 fWGIGGU TT    

                                         (26)  

The control signal applied as process control 

is the first element of the vector U and is 

expressed as: 

  )()( fWKtu                   (27)  

where K the first column of the matrix 
TT GIGG  1)(  . This shows in an 

explicit manner, which can be seen from 

Fig.5, that if we have errors of prediction, 

which means 0)(  fW , then the 

command does not vary and thus remains 

free evolution process [4], [5]. 

 

 
 

In order to understand fully the operation of 

a predictive control algorithm, presents the 

design further described in detail in [4], [5] 

and implemented at process simulation 

equations Ball on Beam. 

The implementation is done in Matlab 

simulation environment using numerical 

data presented in the paper [1]. 

In Fig.6. system response is presented in 

response Ball on Beam controller presented 

for prediction horizon j=90 and weight 

control into cost function  . Graphs have the 

following meanings:  

- The green graph is the reference trajectory 

of the system  

- Red graph is the response system 

 

 

 

 

Fig.5. Control Law MPC 
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Process 
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u W + 
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Fig.6. The system response to a prediction 

horizont j=90 si 2.0  

 

- Black graph is obtained predictive control  

Also in Fig.6. can be seen as the control 

signal is activated before the exact time of 

the step change prediction horizont. 

In Fig.7. system response is presented in 

response Ball on Beam controller presented 

for prediction horizont j=90 and weight 

control into cost function 8.0 .  

 
Fig.7. The system response to a prediction 

horizont j=90 şi 8.0  

 

It can be seen that the system becomes 

more oscillatory than in the previous case 

and increases response time. 

In Fig.8. system response is presented in 

response Ball on Beam controller presented 

for prediction horizont j=50 and weight 

control into 2.0 . It can be seen that the 

system becomes unstabile. 

 

 

 

 

 

 

 
 

Fig.8. The system response to a prediction 

horizont j=50 şi 2.0  

 

4. COMPARISON BETWEEN 

RESPONSE SYSTEM DESIGNED 

USING LQR AND MPC 

 

Structure simulation program developed into 

Simulink is shown in Fig.9 and running the 

two systems, closed loop designed. 

 
The first system is implemented with 

predictive controller and the second is 

designed as a system with state reaction after 

placing poles LQR method. A first 

comparative result is shown in Fig.10. One 

can see the characteristic reaction system 

after state (left chart) showing error 

stationary position. However, the MPC 

controller command system (right chart) 

shows large jumps in specific order discrete 

systems.  

 

 

 

 

Fig.9. Comparative simulation 

program of the two systems 
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In both variants it can be seen that the state 

variables speed of rotation of the rod - x1, 

angular position rod - x2, speed of travel of  

the ball along the rod - x3, following a 

transitional regime stabilizes at zero when 

the ball has reached its stationary operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig.10. Comparative response of two structures designed 
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5. CONCLUSION 
 

Currently manufacturing firms 

provides an extremely large range of 

hardware configurations, plus a variety of 

software tools.  

The  Ball on Beam process, because it is 

unstable, nonlinear, underactuated,  may 

constitute a basis for real-time 

implementation and testing of various 

advanced control principles.  

Basically, the best use of the Ball on Beam 

system is the practical realization of a 

comparison of the responses obtained by 

implementing different control principles 

that can lead to important conclusions. 
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