
166

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.18

Test Case Generation for Real-Time System Software

Using Specification Diagram

Mani Padmanabhan1* Prasanna Mani2

1 ,2 School of Information Technology and Engineering,
Vellore Institute of Technology, Vellore, Tamil Nadu, India

* Corresponding author’s Email: mani.p@vit.ac.in

Abstract: Software testing of the real-time system (RTS) software based on specification diagram has a necessary

sequence of parallel events for generation of test cases. In the model-based test case generation for RTS both

automated and manual is limited in techniques as some situations inadvertently forget the simulation events. Many

meta-heuristic techniques have solved the problem in RTS test cases generation. However, the technique seems to

have much more focus on the optimum solution. This paper presents a methodology based on timed input-output

event of specification diagram that supports a wide range of possible test cases for RTS application software. The

proposed method applies for automated test case generation tool aims at validating the executable code and covers

the systems behaviours in an optimized manner. The methodology is tested with three different RTS software such

as client-server based real-time transaction, embedded based real-time sequence and sensor based real –time events.

This proposed approach, based on the executable test cases, dynamically increases the productivity of the real-time

systems.

Keywords: Software engineering, Software testing, Real-time systems, Software quality, Test case generation.

1. Introduction

 Effective testing of the real-time system (RTS)

is necessary to produce reliable systems. RTS

controls an environment by receiving data,

processing them and returning the result within

specified time. RTS software behaviour is based on

timing constraints [1]. RTS specification design has

the combination of event components and process

description in a diagrammatic way to understand the

stimulus process. Testing the application software

of RTS is a complex process because RTS programs

are quite near to hardware device. The event

sequence depends on the logical gates and

processors. If the testing is poorly implemented,

this results in a low-quality software and money

wastage. Most often, a tester is given a set of tasks

with the job of verifying the event that can be

performed using the software [2]. Due to the

application of conventional method of using a

process based on timing priority, the testing of RTS

is adversely affected. The multithreaded sequence

between the systems component remains

unidentified in the process of testing, which

provides a safe hiding place to the bugs inside the

application. Thereby, such bugs manage to trigger

the specific path in the application. Test cases are

described as triplets (Fi, D, Fo): the actual process

of input (Fi), the changes made based on the input

(D) and the actual output (F0) to be produced.

Automated test case generation can reduce the bugs

that arise in the combination of concurrency and

RTS failures. However, the presence of many bugs

during the real- time process also leads to customer

dissatisfaction [3]. The Information Technology

companies have acknowledged that testing

methodologies have to be improved as much as

possible so as to bring accuracy in RTS. The formal

wide ranges of test case generation research fields

have addressed various aspects of the process. Many

167

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.18

of these approaches focus on functional correctives,

rather than the non-functional coverage.

Software testing is to be performed at different

levels during the software development life cycle.

During the verification tests, many runtime

problems may be found, such as unexpected

exceptions and incorrect or abnormal program

behaviours. Since the testing team and the

development team are independent of each other,

problems found during the verification tests are

generally passed on to the development team

through textual descriptions as the problem

description and log information, a tedious and

inefficient process, cannot be directly used by the

testing team. It is very difficult to reproduce the

runtime problem. In order to strengthen the

organization, RTS test cases are generated based on

the software design, whereby, RTS failures can be

reduced [7]. There is no systematic activity when

the automation should start and end. The RTS

automated testing activities can do their

development simultaneously with RTS software

development. The early development of test cases

may reduce more bugs in product [7]. The delivery

of the automated test suite should be done before the

test execution phase so that the deliverables from the

automation effort can be utilized for the current

release of the RTS application.

RTS are generally used in the safety-critical area.

This simulation transaction implies that there is a

need for sequence verification methods for the

removal of the bugs, failing which could lead to

system failure. Software testing is a process to

verify the software effectively by executing the

possible test cases. The behaviour of RTS is time-

sensitive; Therefore, RTS must verify the events

before deployment [8].

Figure.1 Automation in STLC

In the survey, software development respondents

were asked to describe their current status of test

automation. The majority of the practitioners did not

automate their testing process. The similar result

was reported by J. Jee et al. [8]. The percentage of

automation process in the software testing lifecycle

is shown in Figure 1.

This paper attempts to describe the flexible

framework for producing possible test cases

automatically for RTS. Test case generation from

design specification of RTS has the added advantage

of allowing test cases to be available early in the

development cycle [3]. Software specification

diagrams are suitable source of information for test

case generation. In this research work, software

design based test case generation process is

proposed to reduce the testing effort and to improve

the quality of the software. The main goal of this

framework is to develop a possible test case

automatically to reduce the bugs and avoid

redundant test cases during RTS application testing.

This proposed approach will be explained with three

real-time applications and the results will be

compared with the existing approaches. Background

section discusses the related methodology for the

test case generation. The proposed workflow for the

framework and algorithm to convert the input

specification to event flow graph [EFG] during the

automated test case generation are described in

proposed framework section. The experimental

results for three different RTS such as automated

water pumping system with activity diagram, Robot

elevators lift with client-server technique, Tours

reserving system based on embedded system

software are compared in experimental section. The

final section concludes with a discussion of future

work.

168

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.18

2. Related Work

The development of software products follows a

process where the development team is responsible

for the development and test of the product and the

testing group looks into the verification of products.

This section presents the activities associated with

test case generation for RTS. The methodologies to

be followed in the approach are discussed in relation

to existing approach. A wide range of studies on

automated test case generation classified the RTS

test case generation with real-time systems. Andrade

WL et al., [1] presented an approach generating test

cases for RTS based on a symbolic model. In this

approach, test case generation strategy is an ability

to handle data and time when compared to other

approaches. The symbolic model addresses the

issues such as nondeterminism and parallel

composition although it has not directly addressed.

Table 1 describes the related test case generation

methodology based on tree and graph model.

E. Jee et al., [8] present their approach for

Functional Block Diagram (FBD) to test suite. They

have proposed a test tool for generating automated

test stubs based on testable sequence diagram from

behaviour specification. M. Chen et al., [6] have

described novel test condition based test case

generation for collaboration diagram. They have

used a traditional data flow criteria and also have

proposed a criterion for dynamic testing for message

sequence path. Fujiwara et al., [9] have given the

formal description of web application behaviours

and data constraints with Eclipse Modelling

Framework (EMF) class diagrams and Object

Constraint Language (OCL) notation. Enoiu EP et

al., [10] has used the UPPALL timed automata and

timing clock for generation of test cases, where the

symbolic model is used to represent a parallel

sequence but symbolic data is not handled. The

entire action in an event-recording automaton is

associated with a clock. In order to take the timing

aspect of the real-time system, the author extends

the necessary test theory. The generated test cases

are not based on the region graph.

The above-mentioned research works used

automatic and manual methods to generate the test

cases. And it is evident that the number of

simulation path and components increases in the

whole process, thereby leaving a space for more

failures in RTS testing. Detection of all event flow

in RTS is a major problem. The proposed research

work differs from the below-mentioned research on

the following grounds: the proposed framework will

observe the event flow components from

specification diagrams; then, the event flow will be

converted to the Event flow Graph (EFG) with

timing priority; and finally, the event flows are

transferred to the stack stimulus to generate the

possible test cases for the RTS specification.

However, the approach tackles the challenges of test

case generation of RTS with undetermined input

specifications. The detailed framework components

and algorithms are to be explained in the following

subsection.

Table 1. Test case generation from specification diagram

Author(s) /Year
Input Specification

Model
Root Model Intermediate model Coverage criteria

Wu Y-C et al., (2014),

[3]

Functional block

Diagram

Tree model Invocation sequence

tree (IST)

Full predicate, round

trip path

S. Kansomkeat et al.,

(2010), [14]

Activity

Diagram

Tree model Condition

classification trees

Transition, activity

Abou Trab MS et

al.,(2013) [2]

Activity

Diagram

Graph model Activity graph Activity path

A. Nayak et al., (2010),

[16]

Sequence Diagram Graph model Structured control

graph

self path

S. K. Swain et al.,

(2010),[5]

Sequence and state

diagram

Hybrid State activity diagram sequence node, edge,

path

Wang H et al., (2016),

[17]

State

Diagram

Heuristic Scenario tree and

colored petri-net

Sequential and

concurrency

3. Proposed methodology

Real-time systems are related with our

environment using time constrained events. In case

the accuracy of the RTS is not guaranteed, it can

lead to devastating consequences due to the

functional misbehaviour or nonconformity in the

specific time constraints. A timed event model for

conformance test case of RTS is to be addressed in

terms of both data and time symbolically using

timed input-output event transaction system

[TIOETS]. The TIOETS identifies the data event

for symbolic analysis of timed aspects. Based on the

169

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.18

TIOETS, a framework named timed input-output

event test case generator [TIOETG] is presented in

this paper. The framework contains three primary

components.

3.1 Event flow graph

A tool for generating a structural model of the

specification into a graph is carried out through an

Event flow graph (EFG). The primary purpose of

the Event flows graph converter is to determine

structural information from the given inputs

notwithstanding graph representing relationships

between events in the specification diagram using an

algorithm and human inputs. This input data is

converting into an EFG. The detailed workflow of

TIOETG is shown in Figure 2.

Phase1: Event flow graph converter; Phase 2: Timing event flow graph converter; Phase 3: Test case generator.

Figure.2 Test case generator framework (TIOETG)

The methodology uses a formal procedure for

deriving Event Flow Graph from inputs. The

following list shows a procedure for converting the

input to EFG.

1. The Event flow to be traced from the

specification diagram [12].

2. Event trace procedure in specification

diagram must be started which may or

may not come to end.

3. From the starting state, define a sequence

of event/condition with timing constraint.

4. Highlight the visited node and arrows.

5. Repeat steps 3 and 4 until all states have

been visited.

Figure.3 RTS automated water system (activity diagram)

170

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.18

The above Figure 3 activity diagram describes

the automated water pumping system with several

components consisting of water level sensor, GSM

modem, PLC, and database. Sensor nodes perform

the specific task, sensing and transmitting data to the

end device via an inverter. Tank water level and

bore water level are displayed in PC with the help of

the program written in C sharp language, SMS is

sent to owner’s mobile. The data is saved and stored

in a database which is used to build water pumping

through a long-term monitoring and analysis.

Consider this activity diagram for the conversion of

the event flow graph by using proposed approach.

3.2 Timing event flow graph

The proposed framework TIOETG user

interface receives the design specification. To find a

possible interaction and components of the

specification in hardware- software partitioning, the

event flow graph G (N, E) is to be produced so as to

minimize the complexity for automated test case

generation. Moreover, in the timing event flow

graph structure the relationship between the node

and edge provides the flexibility for test case

generation.

Algorithm 1: Convert the EFG to tree structure.

Pre Contains transaction time of each node

Post Allocated timing tree or error return

Return TEFG generated or null

 /* Initialization */

1. for every graph G (N,E) do

2. G (N) = 1 /*set 1..n from initial

state . . to end state of the

graph */

3. end for;

4. if (root node = = 0) //Initial stage value

5. TEFG= = null;

6. Begin

7. EFG [t]; // t is the transaction time

8. If the sub node is empty then

9. Number of node = =1;

10. Else

11. Sub node [t] = = EFG (N); /* Identify

the . transaction time

*/

12. If (E(LN1) < E(RN1)

13. TEFG [n-1] = = E(LN1);

14. Else

15. TEFG [n-1] = = E(RN1);

16. End if;

17. End if;

18. End.

The construction of TEFG is based on the

specification input and timing sequence of the

event. While extracting the specification, the

properties and timing aspects of the event plays

a vital role in organizing specification in order

of priority. The algorithm 1 provides support for

processing the input specification as a timed

event flow graph (TEG) which is used for

generating the test case directly.
The activity diagram for smart water system has

converted as an EFG with self-loop of each node.

Figure 4(A) shows the EFG for automated water

system activity diagram for RTS smart water system.

The EFG has to be converted to TEFG based on the

timing priority. Figure 4(B) shows the TEFG based

on the proposed algorithm 1

3.3 Test case generator

The presented framework converts the tree

structure to stack stimulus for generating the unique

test case. A stack is a linear list, all the operations to

be done with restricted to one end called the stack

top. For reallocating the stack or reversing the stack

attributes to be performed using LIFO operation

[12,13]. The stack attributes represent event

information for specification diagram. Table 2

shows the EFT for activity diagram of automated

water system. The number of stacks will be decided

based on the linking dependence in ELT. The stack

stimulus conversion of TEFG contains following

steps:

 Develop the Event flow Table (EFT).

 Deriving the Event linking table with

stack ID.

 Convert Event flow stack.

Table 2. Event flow table with timing priority

Stack Event Timing

E3 Sensor 0.5Sec

E1 Device 0.7Sec

E6 Engine 1.2Sec

E2 Status 2 sec

E10 SMS 2.4 Sec

E1 Device 2.4Sec

E5 Engine ON 3Sec

E8 Alarm 3.3Sec

E7 Alarm ON 3.5Sec

E9 Send SMS 4Sec

E4 Check status 4.5Sce

171

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.18

Figure.4 (a) EFG with the self-loop event, (b) Event flow tree

Based on the proposed methodology, the event

flow table is developed from activity diagram. In

order to minimize the flow table, boundary testing is

carried out as illustrated in Event linking table i.e.

Table 3. It also identifies the limit to test the data

for generation of the test case. In the ELT, each

stack is created based on a transaction between the

events; and stack based stimulus path is used for

avoiding duplicate and null values.

Test case generator is the next tool in the

TIOETG framework. The tool automatically

generates test cases based on the stack top. The

TEFG with priority sequence to be the input but,

before reaching the test case generation tool, the

EFG is converted to stack based on the number of

dependencies in the graph.

Table 3. Event linking table with stack ID

ID Stimulus path

ET4 E2E5E9E7E4E11

ET4 E5E6E7E8E4E11

ET5 E5E6E7E8E11

ET6 E5E6E7E8E9E11

ET7 E5E6E7E9E10E4E11

ET8 E2E5E9E7E8E10E1E2E3E4

E11

Table 4. Generated test case for RTS
Stack

Top

Test Scenario Test case

ID

Precondition(Fi) Input(D) Output(F0) Post Condition

E2 Check Status Test Case1 Check Water level Range(0-50) Level(<50) Engine start

E5 Engine ON Test Case2 Engine power Control Engine on Send message

E9 Send SMS Test Case3 Send message On message User Arm start

E7 Alarm ON Test Case4 Arm signal Input trigger Sound Check status

E4 Check status Test Case5 Check water level Range (0-50) Level(>=49) Engine stop

E11 Engine OFF Test Case6 Engine power Control Off Waiting signal

Starting from stack top, each stimulus value will

produce the precondition, input value, output value

and post condition. Table 4 shows the generated test

case for the smart water system. The detailed

explanation of test case generation for RTS along

with a comparison of results is further elaborated in

the experiment section. The TIOETG is

demonstrated with three different specifications

diagram such as sequence diagram for robot

elevators lift, collaboration diagram for tours

reserving and activity diagram for automated water

pumping. The nature of generated test cases using

proposed approach is highly suitable for RTS

software. Figure 5 shows the user interface for

TIOETG which has been implemented using

VB.NET. The detailed comparison of test case

generation for different RTS along with the

influence of TIOETG is further elaborated in the

next section.

172

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.18

Figure.5 The interface of TOETG test case generator

4. Experiments and Results

The experiments were performed to determine

whether the TIOETG improves the quality of RTS

application and generate the possible test cases. This

paper compares the performance of TIOETG with

three different RTS specifications. Thereby, one of

the experiments is to be compared with the existing

approach that attempts to determine the possible test

cases and coverage criteria.

4.1 Client –server based RTS

The robot is designed to help in lifting the car

from one place so as to place it on a truck. An RTS

application will be designed to receive information

about the object that is to be lifted. The object can

either be a car or a block of metal. If it is a car, the

robot arm will automatically activate a gripper. If

the object is a black of metal other than the car, the

robot arm activates a motor that controls an iron

rope [15].

Figure.6 Robot elevators lift (object sequence)

173

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.18

Figure.7 EFG for robot elevators lift

 UML sequence diagram among the objects in a

client –server based RTS is shown in Figure. 6.

According to the proposed framework, SLT

developed for robot elevator lift. Figure 7 shows

EFG. Finally, a generated test case for robot elevator

lift is shown in Table 5.

4.2 Embedded system based RTS

Figure.8 Tours reserving system

(collaboration diagram)

Figure.8 shows a software system for a travel

agency provides reservation facilities for the people

who wish to go on tours by accessing a built-in

network at the agency. The application software

keeps information on tours. The user can access the

system to make a reservation and cancel a

reservation. Any complaints or suggestions that the

client may have could be sent by e-mail to the

agency or stored in a complaint database.

Employees could add, delete and update the

information on the customers and the tours. For

security purposes, the employee should be provided

a login ID and password. This system is the

combination of input control, an S3C210 processor

with embedded platform, communication network

and output smart mobile [15]. The below Figure 9

shows the percentage of test cases based on node,

event, and self-loop using the proposed approach.

4.3 Comparative Results

The proposed framework provides the possible

test cases with triplet value (Fi, D, Fo).The

presented technique actives 99% statement coverage

and 98% of functional coverage by implementing

the embedded based smart home RTS [12]. The

performance of our proposed approach compared

with the existing approach based on intermediate

model of graph and tree. The results show that stack

based approach have better performance than the

previous approach. Figure.10 shows the comparative

results of existing and proposed test case generation

approach for smart home system.

Identification of stimulus process requires more

efforts and time in case if it is manual and also there

is more possibility of not getting the desired results.

Therefore, the proposed TIOETG framework

provides the possible test cases and coverage criteria

such as all paths, all nodes, and all transaction for

RTS. In summary, it has been noticing the following

about TIOETG framework with practices of three

RTS. TIOETG framework provides the possible test

cases based on the selection flow graph. Integration

of event flows in the stack is suitable for large

systems. Test analyses ensure the event coverage.

The tool components such as graph converter, test

case generator and algorithm for TEFG converter

can be customized and easily extended with

specification diagram.

174

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.18

Table 5. Generated test cases for RTS

Stack Top Test Scenario Test case ID Precondition(Fi) Input(D) Output(F0) Post Condition

E1 Object details Test Case1 Analyze data Select tool Move Arm Fixes base

E2 Robot Arm Test Case2 Power Control Engine on Send message

E3 Arm Extension Test Case3 Send message On message User Arm start

E4 Object Test Case4 Arm signal Input trigger Sound Check status

E6 Check status Test Case5 Check object Move Move left Arm stop

E11 Send signal Test Case6 Arm power Control Off Waiting signal

E5 Initial stage Test Case7 Stop signal Initial stage Analyze data Select tool

Figure.9 Generated test cases using TIOETG framework

Figure.10 Performance of TIOETG

5. Conclusion

The presented framework with the event flow

graph converter tool for the generation of test cases

yields efficient test cases for real - time systems. If

the testers do not fully understand this event flows

then the problem is compounded in RTS testing. To

address these challenges, the proposed approach

converts the EFG with timing sequence. The timing

event flow graphs are to be formed based on the

timing of node and sub-node. The presented

175

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.18

algorithm converts the EFG to TEFG based on the

tree traversal. The methods for test case generation

are based on the stack operation. So, it prevents

duplicate and null values with 99% of path coverage.

The generated test cases cover the post condition

using stack based methods. The experimental work

for three RTS has shown possible test cases. The

generated test cases provide new faults that have not

been detected in the previous approach and cover all

paths for RTS. However, there remains a probability

that a poorly chosen set of events will yield a test

case that does not provide possible coverage. In

future, the methodology could be tried with other

software specification diagrams for covering all the

possible event transaction.

References

[1] W. L. Andrade and P. D. L. Machado,

“Generating Test Cases for Real-Time Systems

Based on Symbolic Models”, IEEE Transactions

on Software Engineering, Vol. 39, No. 9, pp.

1216–1229, 2013.

 [2] M. S. AbouTrab, M. Brockway, S. Counsell,

and R. M. Hierons, “Testing Real-Time

Embedded Systems using Timed Automata

based approaches”, Journal of Systems and

Software, Vol. 86, No. 5, pp. 1209–1223, 2013.

 [3] Y.C. Wu and C.F. Fan, “Automatic test case

generation for structural testing of function

block diagrams”, Information and Software

Technology, Vol. 56, No. 10, pp. 1360–1376,

2014.

[4] P. Mani and M. Prasanna, “A study on functional

specification based test case generation for real-

time systems”, International Journal of

Engineering and Technology, Vol. 8, No. 4, pp.

1801–1806, 2016.

[5] S. K. Swain, D. P. Mohapatra, and R. Mall,

“Test Case Generation Based on State and

Activity Models”, Journal of Object

Technology Vol.9, No.5 pp.1-27, 2010.

[6] M. Chen, P. Mishra, and D. Kalita, “Efficient

test case generation for validation of UML

activity diagrams”, Design Automation for

Embedded Systems, Vol. 14, No. 2, pp. 105–130,

2010.

[7] P. Samuel, R. Mall, and P. Kanth, “Automatic

test case generation from UML communication

diagrams”, Information and Software

Technology, Vol. 49, No. 2, pp. 158–171, 2007.

[8] E. Jee, D. Shin, S. Cha, J.-S. Lee, and D.-H. Bae,

“Automated test case generation for FBD

programs implementing reactor protection

system software: Automated Test Case

Generation For FBD Programs”, Software

Testing, Verification and Reliability, Vol. 24, No.

8, pp. 608–628, 2014.

[9] S. Fujiwara, K. Munakata, Y. Maeda, A.

Katayama, and T. Uehara, “Test data generation

for web application using a UML class diagram

with OCL constraints”, Innovations in Systems

and Software Engineering, Vol. 7, No. 4, pp.

275–282, 2011.

[10] E. P. Enoiu, D. Sundmark, and P. Pettersson,

“Model-Based Test Suite Generation for

Function Block Diagrams Using the UPPAAL

Model Checker”, In 2013 IEEE Sixth

International Conference on Software Testing,

Verification and Validation Workshops, pp.158–

167, 2013.

[11] P. Mani and M. Prasanna, “Automatic test case

generation for programmable logic controller

using function block diagram”, In IEEE

International Conference on Information

Communication and Embedded Systems

(ICICES), pp. 1–4, 2016.

[12] The blog for event trace, available from

November 2016: http://rtstestcase.blogspot.in/

[13] R. F. Gilberg and B. A. Forouzan,“Data

Structures: A Pseudocode Approach with C”,

2nd ed., TATA McGraw Hill Edition, India,

2005.

[14] J. Ghinwal , “UML by Example”, First ed.,

Cambridge universtiy press, UK , 2004.

[15] A. Nayak and D. Samanta, “Automatic Test

Data Synthesis using UML Sequence

Diagrams”, Journal of Object Technology, Vol.

9, No.2, pp.115-144, 2010.

[16] H. Wang, J. Xing, Q. Yang, W. Song, and X.

Zhang, “Generating effective test cases based

on satisfiability modulo theory solvers for

service-oriented workflow applications:

Effective Test Cases For Service-Oriented

Workflow Applications”, Software Testing,

Verification and Reliability, Vol. 26, No. 2, pp.

149–169, 2016.

