
48

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.06

Reliable and Efficient Distribution of Multicast Session Key for Deduplicated

Data in Cloud Computing

Parth Shah1* Amit Ganatra1

1Charotar University of Science and Technology, Changa, India

* Corresponding author’s Email: parthshah.ce@charusat.ac.in

Abstract: Data deduplication is one of the fascinating features of any cloud computing storage service which is

generally realized as Cross User Data Deduplication (CUDD). Although it provides optimization which is challenging

to achieve due to security concerns. A User always concerns about privacy and confidentiality of the data from honest

but curious insiders. Encryption introduces new challenge like key distribution among the group of clients who share

the same file and also raises constraints of forward and backward secrecy of the data when any user upload or delete

the data. Efficient and secure key distribution along with data integrity verification are the biggest challenges in CUDD.

In this work, we have proposed the solution of efficient key management in CUDD along with the data integrity

verification. We have provided the solution multicast key distribution using error correcting codes that maintain users'

access rights, which is more efficient and reliable.

Keywords: Data deduplication, Rekeying, MDS code; Data integrity, (K, Ѳ) uncheatability, Server unforgeability.

1. Introduction

Data deduplication becomes a most important

requirement of cloud computing storage applications.

It optimizes storages as well as network bandwidth.

Deduplication can be categorized as the target-based

deduplication handled by the target storage server,

while the client remains uninformed of any

deduplication that occurs at the server side. This

strategy optimizes storage consumption but does not

save communication bandwidth. Apart of it, in

source-based deduplication, before transmitting data

to the server duplication will be checked at the client.

Once the duplicates have been found then actual data

is not sent. The method improves utilization of

storage as well as communication bandwidth.

Providing solution of data deduplication is not

that much trivial as it seems. To prevent from

unauthorized access clients may encrypt the data

using symmetric key encryption algorithms. The

algorithm should be efficient in term of execution and

should not be dependent on the size of the file. As

mentioned earlier, If the data is encrypted then, to

provide data deduplication solution is challenging

because it complexes the key sharing and the content

matching. So key must be shared among the clients

having the identical file to provide the confidentiality

and data deduplication. Considering this, efficient

key distribution algorithm must be used which should

take care of key distribution management. Content

matching can be solved using some of the Provable

Data Possession techniques as given in [1] or some

hashing technique.

In cloud computing storage application,

deduplication can be implemented as group of users

such that clients having identical data will form the

multicast group. To provide the confidentiality,

group will share session key among all the clients

within the group. The key will be initially generated

by Key Management Centre (KMC) and first client

who have put the data initially. The group

memberships change because client may upload new

file or delete older file, the KMC releases an

independent session key from all the old session keys

and retract older key. The rekeying procedure assure

the newly joined individuals can't recover the

49

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.06

previous sessions, and previous individuals who have

left the group can't interact with the present session.

Rekeying operation has asymmetric complexity. At

the point when new client joins, the KMC can without

much of a stretch, multicast the newly created

encrypted session key with the current session and

unicast it. Thus, computation and communication

cost will be very low in case of join. However, the

existing session key should not be used, when

member leaves to distribute the newly created session

key confidentially, since the leaving member knows

it. Hence in the case of member leave, the rekeying

operation should be focused critically.

Data possession [1-5] is also fundamental

concern for clients while using such kind of service.

Digital signatures and message authentication codes

(MACs), applied to whole file, allow a client in

possession of file F to verify that it has not been

tempered by anyone at server. To verify the integrity

of file, most of the methods that exist today use some

kind of redundancy. As the integrity verification

requires either semantic or syntactic analysis of the

information the actual data. Various solutions have

been proposed to provide integrity verification of the

file. Most of the solutions provides probabilistic

solutions which are based on variations of

Homomorphic Verifiable Tags (HVT).

In this work, we have proposed efficient and

secure deduplication along with efficient multicast

key distribution, which can be implemented in remote

storage. We have used the solution provided by [1-2]

for data integrity verification, [6] for deduplication

and [7] for efficient and reliable multicast key

distribution. We have provided solution related to

data possession for the verification of the integrity of

the file, data deduplication and multicast session keys

distribution by a central KMC, as those have much

less communication complexity which is a very

anticipated property in most of the applications [8-

13]. The communication complexity is computed by

the quantity of bits, which should be communicated

between client and server, like hash of the documents

for duplication checking, tag values to check the

integrity and session keys, though the capacity

intricacy is computed by the quantity of bits required

by the servers and group members to store hash of the

file, tags of the blocks and session key. Another also

imperative yet normally under saw, if not disregarded,

component is the calculation complexity, which is

observed by the number of operations, the server,

KMC and group members required to compute and to

disseminate and extricate session keys. Hence our

solution includes data integrity, data deduplication

along with efficient key management in case of user

join and leave. Proposed solution focuses on constant

verification time and low rekeying overhead.

The paper is organized as follows. Section 2,

describes some existing schemes related to proposed

work. In section 3, notations are given which are used

in proposed solution. Section 4 gives the detailed

proposed scheme. Finally, implementation details are

given with the performance analysis in section 5

followed by the conclusion.

2. Related Work

An initial solution of secure data deduplication

has been proposed by Storer et al [14]. To permit

deduplication over common chunks they utilize

convergent encryption to perform encryption. In

Convergent encryption, the hash of the chunk is used

to generate a key. Client encrypting a specified chunk

utilizes key generated as a hash value of chunk. So

chunk will be encrypted to the same cipher text

regardless to who encrypt them. However, there is a

substantial disadvantage of utilizing the hash of the

key is susceptible to poison attack. Also, targeted

collision attacks may be possible due to unverified

chunk signatures.

[15] Exhibits information about the contents of

files reveals by side channel attack in deduplication.

Deduplication can be utilized as a covert channel in

which pernicious programming can interact with its

control Centre. They have proposed basic

components that empower cross-client deduplication

while significantly diminishing the danger of

information leakage.

The Merkle-tree-based proof of retrievability

protocol has been adopted by Halevi et al. [16]. They

have used error correcting erasure code which

encodes a file and applies the MHT (Merkel Hash

Tree) proof over the file. Another solution uses any

pairwise independent hash family which is the

generic framework. The third solution is an efficient

hash family and applies standard Merkel Hash Tree

proof over the hash function. It has some drawbacks:

(1) the verification accept that document F is tested

from a specific kind of distribution (2) the proof uses

SHA256 salted as a random function.

Qingji Zheng [1] offers the efficient solution

deduplication and demonstrate its security based on

the assumption of the Computational Diffie-Hellman

(CDH). They analysed and compared the

performance of the POSD scheme with existing

schemes, which suggest the scheme is as efficient as

those schemes. The main advantage of the scheme is

that it introduce minor communication overhead.

In this scheme, a client can fully control its key

50

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.06

Table 1. Comparison of various deduplication techniques

Scheme [14] [1] [2] [6] [15] [17]
Proposed

Scheme

Probabilistic (P)/Deterministic (D) D P P D D D P

File Level (F)/Block Level (B) B F F F F F F

Support For PDP/POR NO YES YES NO NO NO YES

Data Confidentiality YES NO NO YES YES YES YES

Server Unforgeability NO NO YES NO YES YES YES

(K, Θ) Cheatability NO NO YES NO YES YES YES

Rekeying NO NO NO NO NO NO YES

generation. Also, they have not considered data

confidentiality issues.

Youngjoo Shin [2] shows that (k, θ) -

uncheatability and server unforgeability are not

considered in POSD. They modify the scheme such

that the server generates the random value which

blended with the keys generated by clients-created.

The change is minimized so that their solution

maintains the effectiveness while giving more strong

security. This scheme doesn’t consider the case of

encrypted data.

Jia Xu [6] provides improved and comprehensive

convergent encryption method (similar to hash-as-a-

proof) utilized for security concern. They provide the

solution of data confidentiality in bounded leakage

model in cloud storage. The scheme has two

advantages: (1) it is applicable to any distribution of

files, rather than a specific type of distribution; and

(2) it uses AES encryption which is considered

semantic secure. Additionally, they also aim to

protect data privacy against honest-but-curious server.

DupLESS [17] provides an easily-deployed and

more secure solution for deduplication with

confidentiality. To resists Brute-force attacks and

supports Deduplication it uses AES128 cipher and

SHA256 algorithms which provide secure outsourced

storage. Compared to convergent encryption it gives

more security. It has been optimized for low latency

which leads to the extra file size but can be reduced

as files get larger. Analysis of existing solutions

based on the functionality provided is given in Table

1.

3. Preliminaries

3.1 Notations

Let safe primes p and q are k-bit length where N

= p × q. Let Fi is composed of n symbols in Zq. Let

the identity fid that distinctively categorizes the file.

Let associated with some auxiliary information,

denoted by cryptographic information Tagint which is

used for auditing data integrity.

3.2 Vandermonde Representation for RS

implementation

A widely used class of error control code is

Maximum Distance Separable (MDS) code [16]. Let

the error control code (n, k) and finite field F(g) with

g elements [18-19 15-16] having GF(g)k → GF(g)n.

Let encoding function E(d) = c, where d = d1d2 … dk

where k ≤ n is the actual message block, and code

word block c = c1c2 … cn is, . As per (n, k) MDS code

there exists a decoding function D(.) such that D(ci1ci2

… cik, i1, i2, … ,ik) = d for 1 ≤ ij ≤ n and 1 ≤ j ≤ k, any

k symbols of its code word block are used to recover

the k actual messages. The process is called erasure

decoding.

RS (Reed-Solomon) encoding is an example of

MDS. A group of linear equations is used to solve the

RS encoding and decoding operation thus it can be

used for rekeying purpose. Inverting a coefficient

matrix is one of the steps followed by multiplying

with it to get the values of the unknowns. If

representation has the lower complexity of inverting

the coefficient matrix, then the decoding operation

will be more efficient. The inversion of

Vandermonde matrix is more complex. Therefore, in

general, it is considered Vandermonde-matrix based

RS codes are less effective [7].

Quite contrary, for RS codes having (L, 2) and (L,

3), it is observed that decoding operation is more

efficient compared to other representations in

Vandermonde representation. The reason being is

that the inverse of other matrices for k = 2 and k = 3

is much complex than the inverse Vandermonde-

matrix. The Vandermonde-matrix based RS code is

as follows for k = 3 [19], [20]:

[
1 𝑖 𝑖2

1 𝑗 𝑗2

1 𝑘 𝑘2

] [

𝑑1

𝑑2

𝑑3

]= [

𝑐𝑖

𝑐𝑗
𝑐𝑘

] (1)

51

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.06

Here i, j and k are the identity of members,

assigned by KMC at the time of joining the multicast

group. To construct the RS codes, finite field GF(2m)

is utilized. So the matrix inverse is represented as

[

𝑑1

𝑑2

𝑑3

] =

[

𝑗𝑘

(𝑖⊕j)(𝑖⊕k)

𝑘𝑖

(𝑗⊕i)(𝑗⊕k)

𝑖𝑗

(𝑘⊕i)(𝑘⊕j)

𝑗⊕𝑘

(𝑖⊕j)(𝑖⊕k)

𝑘⊕𝑖

(𝑗⊕i)(𝑗⊕k)

𝑖⊕𝑗

(𝑘⊕i)(𝑘⊕j)

1

(𝑖⊕j)(𝑖⊕k)

1

(𝑗⊕i)(𝑗⊕k)

1

(𝑘⊕i)(𝑘⊕j)]

 [

𝑐𝑖

𝑐𝑗
𝑐𝑘

] (2)

Here d1 is the multicast session key.

4. Overview of proposed scheme

All the solutions studied in section 2 have not

addressed the key management issues for the secure

cross user data deduplication. In the proposed

solution whenever multiple clients have an identical

file which can be deduplicated at the server such that

those clients would be considered as a group (or

session). Here we are considering the current state of

a group as a session. Every time the group

memberships change as a result of join (e.g. new

client having an identical file) or leave (e.g. client no

more want to store that file on the server) of group

members, the KMC releases a fresh group key in case

of leaving, which is independent of the previous keys.

This problem can be considered more precisely as a

rekeying problem.

The KMC sends the group key at the initial join,

encrypted by a key, shared between the KMC and the

group members. So join requires low communication

and computation cost. In the case when old member

leaves, the current group key cannot be used to do

further communication.

We have used erasure decoding of certain

Maximum Distance Separable (MDS) code. We

follow the basic scheme given in [7]. Here again, a

group has n members which will form the multicast

group.

Our proposed solution's algorithm is divided into

KEY GENERATION and REKEYING, UPLOAD,

AUDITINT, DEDUP steps as described below:

Let p, q be two sufficiently large primes and G,

GT be cyclic groups of order q. Let g G be a

generator of G and e: G → GT be an admissible

bilinear map. Let F be a data file consisting of n

blocks and each block Fi (1 ≤ i ≤ n) consist of m

symbols in Zq. Let us denote each symbol of Fi as Fij

for 1 ≤ j ≤ m. Let fid be a unique file id, and let H1:

{0, 1}* → G and H2: {0, 1}* → Zq be hash functions.

KEYGEN: Key generation process involves

client and server both for public key and group key

generation. While both are involved in a key

generation there will not be any problem like server

unforgeability and (k, θ)-uncheatability using eq. 4.

We use the construction of a Cross User Data

Deduplication scheme given in [1-2]. The first user

who uploads file F, will create a short secret

encryption key k from security parameters (which is

obtained from the server) as input.

A pair of public key and private key {pkint, skint}

is generated using eq. 3, 4, 5 for integrity verification

and group key using eq. 8, 9, 10, 11, 12 for

confidentiality. A client and storage server initiates

the protocol as follows:

1. The client chooses v1 and v2 randomly from Zp
*

such that generated subgroups by v1 and v2 are the

order of q. Choose randomly sj1 and sj2 from Zq
*

and set

zj = v1
-sj1 v2

-sj2 mod p (3)

for 1 ≤ j ≤ m and send to the server for its

contribution.

2. Upon receiving zj, the server selects σj1 and σj2

uniformly random from Zq
*, and recomputes the

corresponding zj as follows and send zj', σ1 and σ2

to client:

zj' = zj v1
-σ

j1 v2
-σ

j2 mod p (4)

3. The client chooses u and w uniformly at random from

Zq
* and set

zg = gw
 (5)

4. The client initializes PKint = {p, q, u, g, v1, v2,

z1,…,zm, zg, w
-1} and the private key SKint = {(s11,

s12),…, (sm1, sm2), w}.

5. Send PKint to storage server and KMC.

To generate the group key, the KMC utilizes

GF(q) to constructs a non-systematic (L, n) MDS

code and a secure one-way hash function H(.) a

secure one-way hash function having codomain of

GF(q). The domain of H(.) can be an arbitrary to large

enough such that H(.) satisfies a secure one-way

property. The KMC then publically announce both

the one-way hash function H and the MDS code C as

eq. 6.

When new member request to the KMC to join it

sends a pair (ji, si), to form the multicast group for the

first time where ji and si are a positive integer

satisfying ji ≠ jk for all k’s, where k is a member of the

multicast group. Followings are the steps which will

be executed between client and KMC.

1. KMC uniformly chooses an element r and

calculates

cji =h(si + r) (6)

R= r 1/w mod q (7)

2. Using all the cji’s computed in the above step

constructs a code word c (eq. 1) of the (L, n) MDS

code c, set the ji symbol of the code word c to be

cji.

52

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.06

3. KMC Send a pair (ji, si) to the client and Send

d2, ..., dn and R to the client.

Above mentioned procedure will be used for

rekeying purpose also.

Upon receiving above-mentioned values the

client will perform following:

1. Calculates

r = Rw mod q (8)

2. Using a seed key (ji, si) calculates

cji =h(si +r) (9)

3. Decode the first message symbol d1 from the (n-1)

message symbols d2, ..., dn together with its code

word symbol cji.

4. Recover the new session key τ from following

τ = d1 = cji ⊕ d2⊕…⊕ dn (10)

UPLOAD: This module runs by a client C and a

server S. For pre-processing, the client takes a file F

as an input and the secret key skint, which outputs

some auxiliary information Tagint eq. 15-18. This

auxiliary information can be used to assess the

integrity of F. At the end of the execution, server

stores (fid, F, Tagint) received from C. The server may

also keep a hash value (step 4) of the F’s so as to

facilitate the detection of data duplications.

The client will generate a short encoding Cτ using

eq. 12 and perform encryption E over F to generate

long encoding CF using eq. 11. The client will send

(hash(F), Cτ, CF , hash(CF), pkint) to the server, which

will keep hash(F), Cτ, hash(CF), pkint in small and

secure primary storage for the further lookup, and put

CF in the possibly insecure secondary storage. During

the tag generation, client will interact with storage

server, for the file to be outsourced, to perform the

following steps:

1. The encryption algorithm E takes F as an input

file and session key τ and outputs CF using eq. 11,

and Cτ as per eq. 12.

CF = E(F, τ) (11)

Cτ =E(τ, F) (12)

2. For each block of data CFij, where 1 ≤ i ≤ n, the

client selects ri1, ri2 uniformly at random from Zq
*

and computes using eq. 13-16:

xi = v1
ri1 v2

ri2 mod p (13)

𝑦𝑖1 = 𝑟𝑖1 + ∑ 𝐶Fij (sj1 + σj1) 𝑚𝑜𝑑 𝑞
𝑚

𝑗=1
 (14)

𝑦𝑖2 = 𝑟𝑖2 + ∑ 𝐶Fij (sj2 + σj2) 𝑚𝑜𝑑 𝑞
𝑚

𝑗=1
 (15)

ti = (H1(fid || i) • uH2(xi))ω (in G) (16)

3. Sends (fid, CF, Tagint, Cτ, hash(F), hash(CF)) to

the server, where Tagint = (xi, yi1, yi2, ti) for 1 ≤ i

≤ n.

4. The server adds an entry (key = hash(F), value =

(hash(CF), Cτ)) to the database.

AUDITINT: This module is executed between

server S and auditor, who may be the client or third

party auditor. The file fid and the corresponding

client’s pkint are used as an input. The server’s input

includes the auxiliary information Tagint associated

with F. Basically, this procedure is of challenge-

response type, where chal sends by an auditor (step

1-2) and the resp computed by the server eq. 17-20.

If resp is valid as per eq. 21-23 an auditor outputs

success otherwise fail. Formally, we can write it as

1. The verifier chooses c elements set I = {α1,

α2,…, αc} where αi є N , and coefficient set β

= {β1 , β2 ,…, βc}, where βi є Zq
*. The verifier

sends chal = (I, β) as a challenge to the server.
2. Upon receiving chal, the server computes

𝜇𝑗 = ∑ 𝛽𝑖 𝐶𝐹𝑖𝑗 𝑚𝑜𝑑 𝑞
𝑖є𝐼

 (17)

for 1 ≤ j ≤ m, and

𝑌1 = ∑ 𝛽𝑖 𝑦1𝑖 𝑚𝑜𝑑 𝑞
𝑖є𝐼

 (18)

𝑌2 = ∑ 𝛽𝑖 𝑦2𝑖 𝑚𝑜𝑑 𝑞
𝑖є𝐼

 (19)

𝑇 = ∏𝑖є𝐼 𝑡𝑖
𝛽𝑖

(𝑖𝑛 𝐺) (20)

and sends resp=({μj}1 ≤ j ≤ m,{xi}iєI, Y1, Y2 ,T) to the

auditor.

3. The auditor verifies based on received resp

𝑋 = ∏𝑖є𝐼 𝑥𝑖
𝛽𝑖

𝑚𝑜𝑑 𝑝 (21)

𝑊 = ∏𝑖є𝐼𝐻1(𝑓𝑖𝑑 ∥ 𝑖)𝛽𝑖𝑚𝑜𝑑 𝑝 (22)

And verifies

𝑋 = 𝑣1𝑌1𝑣2𝑌2 ∏ 𝑧
𝑗

𝜇𝑗𝑚
𝑗=1 𝑚𝑜𝑑 𝑝 (23)

DEDUP: This module is initiated by the client,

who upload the identical file F. Client computes and

sends hF to the server (step 1). The server verifies hF

which may be available in its database (step 2). Once

server verifies the entry, it send CF as a response to

interact with the client with F as an input. At the end,

the client uses τ, generated from the interaction with

KMC, it encrypts the F and sends it back (step 3).

The server will compare the hash(CF) provided by the

client with the one available in a lookup table.

Followings are the steps to perform deduplication.

1. The client will send hF = hash(F) to the server to

check the existence of a file in the storage system.

2. The server looks for the corresponding metadata

— (hash(CF), Cτ ,PKint) and send CF to the client.

53

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.06

Table 2. Time required by the various modules of the system

File Size

(KB)

Tag

Calculation

(in ms)

Response

Generation

(in ms)

Verification

(in ms)

Proposed Existing

[21]

Proposed Existing

[21]

Proposed Existing

[21]

1 5.13 9.29 1.79 5.73 37.19 1.57

11 71.35 120.05 3.99 59.59 35.3 0.94

44 246.61 469.74 8.98 165.4 36.22 1.5

100 419.77 786.74 16.71 321.53 40.11 1.26

425 1719.04 3007.22 62.97 1452.08 33.23 1.98

777 2870.47 5663.69 119.01 2645.33 34.36 2.15

8462 29555.53 48296.02 1301.21 25882.30 32.53 10.5

10113 40898.59 57913.00 1545.28 32304.34 32.82 15.94

51785 191896.97 329224.10 8073.53 163172.62 34.47 117.07

118410 439560.40 727838.39 20632.38 349827.46 39.7 211.18

Figure. 1 Time required to regenerate key

3. The client will decode τ and generated CF. It will

calculate hash(CF) and sends it to the storage

server for the further verification.

4. The server will mark the entry of client as an

owner of the file if hash(CF) matches otherwise

decline the access.

5. Implementation and result analysis

We have evaluated the scheme practicality and

measured the various parameters like time required to

calculate tag, response generation and verification as

shown in table 2. All the experiments are

implemented using Java Cryptographic Extension

(JCE) and tested on Intel i5 processor with 8GB

memory running on windows 10 operating system.

As the use of exponential operation is very less,

hence the verification process takes the constant

amount of time as shown in the Table 2. It also

depicts that tag calculation and response generation

time is quite compared to existing method. This is due

to less use of exponentiation operation used in

existing system. Though the proposed scheme does

not exponentiation operation still provide same level

of security.

Table 2 depict that tag calculation takes

exponential increase as file size increases. As this is

one-time activity by the client so will not affect

furthermore in future. Response generation will be

done at the server side. As it is assumed that server is

highly configured so it will not degrade the overall

performance. Verification would be done at client

side and it is considered that the client is equipped

with very less computation power hence time for

1 2 3 4 5 6 7 8 9

Group size in # of users 3 9 27 54 162 486 1458 4374 13122

Rekeying Time in ms 0.24 0.42 0.59 0.79 0.98 1.2 1.35 1.5 1.7

0

2000

4000

6000

8000

10000

12000

14000

o

f
u

se
rs

 p
e

r
gr

o
u

p

Time required for rekeying in ms

Group size in # of users Rekeying Time in ms

54

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.06

verification should be less or remain constant. Hence

from the table 2, it is observed that verification time

remains constant which is independent of the file size.

We have used Advanced Encryption Standard

(AES) for the encryption of the file. To use AES for

encryption 128 bits key is required hence a finite field

of GF(2128) is the essential requirement for our

solution. Apparently, this field requires 2128 elements

to have an efficient and meaningful implementation.

So it is impossible to have a logarithmic table [16] or

an exponential table of this size. Instead, we choose a

field of GF(216) to construct RS codes and 8 different

iterations. This way, 8 elements in the finite field

would be used to compose a 128-bit key. We have

used tree-based approach to implement rekeying

which is proved to be quite efficient. Figure 1 shows

that time required to rekey based on a different

number of users. As per the graph, it is shown that

increase in keying or rekeying is linear and will give

better performance even the number of users are more.

6. Conclusion and Future work

We have provided the solution of efficient data

deduplication along with the data possession.

Security weakness of like (k-Θ) cheatability and

server unforgeability because of curious server and

outside adversaries in the bounded leakage model is

overcome by involving server to generate public keys.

An MDS codes are utilized to provide the solution of

multicast rekeying. The computation complexity of

key distribution can be reduced Due to MDS codes

this scheme provides balanced and low storage and

computation complexity for multicast group key

distribution. This work further can be extended using

identity-based encryption which requires smaller size

public key.

This work can be further enhanced to support

block-level data deduplication, which may provide

further optimization in terms of storage. Also, data

dynamics can be supported to provide more

flexibility. Public key distribution can be overcome

using Identity-Based encryption.

References

[1] Q. Zheng and S. Xu, "Secure and efficient proof of

storage with deduplication", CODASPY’12: ACM

conference on Data and Application Security and

Privacy, pp. 1-12. 2012.

[2] Y. J. Shin, J. Hur, K. Kim, "Security weakness in the

Proof of Storage with Deduplication", IACR

Cryptology ePrint Archive, pp. 1-11. 2012.

[3] Y. Zha, S. Luo, J. Bian and W. Li, "A novel provable

data possession scheme based on geographic location

attribute," in China Communications, vol. 13, no. 9,

pp. 139-150, Sept. 2016.

[4] Y. Yu, J. Ni, W. Wu and Y. Wang, "Provable Data

Possession Supporting Secure Data Transfer for

Cloud Storage," 2015 10th International Conference

on Broadband and Wireless Computing,

Communication and Applications (BWCCA),

Krakow, 2015, pp. 38-42.

[5] X. Yu and Q. Wen, "MF-PDP: Multi-function

provable data possession scheme in cloud

computing," 2014 IEEE 3rd International

Conference on Cloud Computing and Intelligence

Systems, Shenzhen, 2014, pp. 597-603. doi:

10.1109/CCIS.2014.7175805

[6] J. Xu, Ee-Chien Chang, and J. Zhou, "Weak leakage-

resilient client-side deduplication of encrypted data

in cloud storage", In Proceedings of the 8th ACM

SIGSAC symposium on Information, computer and

communications security, pp. 195-206, ACM, May

2013.

[7] L. Xu and C. Huang, "Computation-Efficient

Multicast Key Distribution," in IEEE Transactions

on Parallel and Distributed Systems, vol. 19, no. 5,

pp. 577-587, May 2008.

[8] D. R. Stinson, “On Some Methods for

Unconditionally Secure Key Distribution and

Broadcast Encryption”, Designs, Codes and

Cryptography, vol. 12, pp. 215-243, 1997.

[9] D. R. Stinson and T. van Trung, “Some New Results

on Key Distribution Patterns and Broadcast

Encryption”, Designs, Codes and Cryptography, vol.

14, pp. 261-279, 1998.

[10] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B.

Plattner, “The VersaKey Framework: Versatile

Group Key Management,” IEEE J. Selected Areas in

Comm., vol. 7, no. 8, pp. 1614-1631, Aug. 1999.

[11] S. Mittra, “Iolus: A Framework for Scalable Secure

Multicasting”, Proc. ACM SIGCOMM ’97, pp. 277-

288, Sept. 1997.

[12] D. M. Wallner, E.J. Harder, and R.C. Agee, “Key

Management for Multicast: Issues and Architectures”,

IETF Internet draft

https://tools.ietf.org/html/rfc2627, Sept. 1998.

[13] C. K. Wong, M. Gouda, and S.S. Lam, “Secure

Group Communications Using Key Graphs,” Proc.

ACM SIGCOMM ’98, Sept. 1998.

[14] M. W. Storer, K. Greenan, Darrell D.E. Long, and

Ethan L. Miller, "Secure data deduplication", In

Proceedings of the 4th ACM international workshop

on Storage, pp. 1–10, 2008.

[15] D. Harnik, B. Pinkas, A. Shulman-Peleg, "Side

channels in cloud services: Deduplication in cloud

storage. Security & Privacy", IEEE 8(6), pp. 40–47,

2010.

[16] H. S., Harnik D., B. Pinkas, Shulman-Peleg A.,

"Proofs of ownership in remote storage systems", In

Proceedings of the 18th ACM conference on

Computer and communications security, pp. 491-500,

Oct 2011.

55

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.06

[17] M. Bellare, S. Keelveedhi, T. Ristenpart, "DupLESS:

Server-Aided Encryption for Deduplicated Storage",

In Proceedings of the 22nd USENIX Security

Symposium, pp. 179-194, USENIX August 2013

[18] F. J. MacWilliams and N. J. A. Sloane, “The theory

of error-correcting codes”. I and II. Bull. Amer. Math.

Soc. 84, no. 6, pp. 1356—1359, 1978.

[19] J. S. Plank, “A Tutorial on Reed-Solomon Coding for

Fault-Tolerance in RAID-Like Systems,” Software:

Practice and Experience, vol. 27, no. 9, pp. 995-1012,

Jan. 1999.

[20] J. S. Plank and L. Xu, "Optimizing Cauchy Reed-

Solomon Codes for Fault-Tolerant Network Storage

Applications," Fifth IEEE International Symposium

on Network Computing and Applications (NCA'06),

Cambridge, MA, pp. 173-180, 2006.

[21] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, “Provable data

possession at untrusted stores”. In Proceedings of the

14th ACM conference on Computer and

communications security (CCS '07). ACM, New

York, NY, USA, 598-609, 2007.

