
12

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.02

An Evolutionary Multi-Objective Approach for Resource Scheduling in Mobile

Cloud Computing

Dasari Nagaraju1 Vankadara Saritha1*

1VIT University, Vellore, Tamilnadu, India

* Corresponding author’s Email: vsaritha@vit.ac.in

Abstract: Mobile cloud computing (MCC) is one of the evolving fields in recent years. The complexity of MCC

made researchers to concentrate on efficient application development. In MCC, resource scheduling is treated as one

of the major issues. Genetic Algorithms (GAs) are efficient search techniques to find the optimal solution for the

scheduling problem. GAs has the ability to optimize the resource scheduling in both homogeneous and

heterogeneous environments. This paper presents the multi objective genetic algorithm for MCC (MOGAMCC)

environment. To implement the MOGAMCC, the cloudsim toolkit was extended with the MOGA and its task

scheduling approach determines the optimal scheduling policy. A single point crossover model is employed for the

generation of new population. Mutation process is carried by randomly changing the bit positions in the

chromosomes. The experimental results show that the proposed model finds the optimal trade-off between the

defined objectives and which ultimately reduces the makespan.

Keywords: Directed acyclic graph, Genetic algorithm, Mobile cloud computing, Resource scheduling.

1. Introduction

 In recent years, mobile cloud computing (MCC)

has gained popularity from both academic and

industry. The MCC is reducing the complexity of

applications and increasing the performance of the

mobile devices. With the advanced development in

the capabilities of the mobile devices such as

network capacity, CPU power and sensors, mobile

devices are becoming more and more popular and

they are access to the internet from anywhere and

anytime. The overall internet users in India have

exceeded 375 million, accounted for 30% net users

[1]. This will create a lot of opportunities for the

growth of mobile applications such as navigation,

speech recognition, online gaming and online

streaming. But, the limitation of mobile devices like

limited battery power, computation speed and

memory restricting the application developers to

execute the complex applications.

To overcome these limitations, MCC is

introduced to offload the computational task to the

cloud. The cloud offering service providers are

iCloud and Amazon EC2. Cloud is capable of

providing any type of services to the end users.

Cloud was supported by virtual machine technology,

and it is helpful to provide services extensively and

elastically. K. Kumar et al. proposed an effective

approach to the task offloading in MCC. This

approach concentrated on the process of reducing

the energy utilization of mobile devices, which

investigates the offloading of jobs to improve the

efficiency of the battery in mobile devices [2]. Z. Li

et al. introduced a method for computational

offloading to reduce the power for mobile devices.

The mobile devices offload the applications to

remote server for computation [3-4]. However, the

application partitioning for offloading is a problem

and consider it as an NP-Complete [5]. Shumao et al.

[6] proposed a mechanism for effective offloading

scheme using middleware platform that can provide

job offloading to the mobile devices. For instance,

fuzzy control based inference engine for offloading

was proposed by X. Gu et al. The main theme of the

algorithm is to reduce the networking cost between

the wireless devices and remote servers [7]. The

algorithm partitions the application and uploads to

the nearby remote servers for execution [20].

13

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.02

However, these algorithms are failed to explain the

role of response time in the offloading process for

both mobile devices and remote servers where an

appropriate explanation about the time constraint is

needed in both wireless and remote environment

[21]. The MCC is implemented in various fields

such as disaster recovery, image processing and

natural language processing [8]. The mobile devices

can be used by users in different ways. Allocation of

the cloud services to the mobile devices may vary

based on the application and it will result in under or

over utilization. Therefore, the allocation of the

resources to the mobile users must be in dynamic

nature.

In this paper, the proposed model addresses the

resource constraint issue in mobile cloud computing.

The mobile devices are not rich in resources;

therefore proper allocation of cloud resources to the

mobile devices is necessary to achieve the

throughput of the application. In this context, the

multi objective resource scheduling mechanism is

proposed. The novelty of the proposed algorithm is

it considers four major objective functions for task

scheduling. The proposed evolutionary algorithm

had major advantage in reducing the data transfer

time, minimizing the queue length and increasing

the resource utilization while comparing with the

existing algorithms.

The rest of the paper is organized as follows.

Section 2 describes about the related work regarding

the recent trends in the field of optimization in the

mobile cloud. Section 3 explains about the

environment of mobile cloud and the objective

functions of the proposed model. Section 4 frames

the problem formulation for resource scheduling.

Section 5 provides a complete explanation about the

multi-objective genetic algorithm for mobile cloud

computing. Section 6 discuss about the simulation

environment and the results evaluation. Finally,

Section 7 concludes the overall contribution of the

research work.

2. Related Work

There are a number of scheduling approaches to

solve the relatively routine problems in mobile

cloud computing. The major research issue in MCC

is resource scheduling and it has direct impact on

the service cost and response time. Therefore, the

usage of optimization algorithms for reducing the

runtime of the tasks increases the effectiveness of

the solution. In [9], the author proposed modified

heuristic approach for task scheduling in cloud. The

objectives considered for the optimization are

maximization of CPU capacity and effective

utilization of the available resources. The drawback

of the suggested method is energy consumption of

the resources. In [10], Tayal proposed an

optimization approach for optimizing the job

scheduling process, which is called as Fuzzy-GA

based optimization. This model considers the

scheduling decision by computing the cluster of

tasks. But, it will affect the overall completion time

of the tasks. Li et al. [11] proposed ant colony

optimization algorithm for finding the optimal

scheduling results. This method considers the

makespan and mean task completion time as the

objective functions. The introduced method is not

able to address the queue length of the virtual

machines. A multi objective algorithm was proposed

by Jahnke et al. [12] for work flow scheduling in

cloud computing. The algorithm minimizes the total

execution time and cost by employing the pareto

model. The pareto model increases the data transfer

time and it is a major drawback of the model. In [13],

the authors proposed the PSO model for multi

objective resource scheduling. They consider the

optimizations function as the minimization of cost

and task completion time. These proposed strategies

are only concentrated on the cost and makespan of

the tasks, but neglected the resource utilization

factor.

Meanwhile, there are numerous studies has been

supported in the reduction of power consumption

using optimization algorithms. In [14], the authors

proposed an energy aware scheduling mechanism

for tasks in multi core systems. The algorithm uses

the integer programming model for finding the

optimal scheduling of tasks in the multi-cores. They

concentrated only on energy consumption and

neglected the resource utilization issue. In [15],

Wang et al. proposed an energy aware scheduling

model for tasks in cloud. As an initial step, it

calculates the energy consumption of the cloud and

then adjusts the data based on the network states,

and finally an integer bi-level programming model

was developed for task scheduling using data

patterns. The bi-level model will alone be not

sufficient to identify the resource capacity for task

allocation.

3. MCC Environment

3.1 Task Model in Mobile Environment

The mobile environment is where a wireless

device is connected to the cloud in ad hoc manner.

14

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.02

1

2

3 4

5 6

7

W12

W23 W24

W35 W46

W57 W67

W13

W15

W14

 W16

Figure.1 Directed Acyclic Graph for 7 subtasks

Whenever the user submits the job to the mobile

environment, the job is partitioned into subtasks for

parallel execution. The mobile environment has

some limitations i.e., battery power, computation

capacity, etc. The task offloading process is made

used to overcome these limitations. The mobile

environment follows the properties of directed

acyclic graph for task submission. The DAG is

represented as G = {V, E}, where V is the submitted

job contains set of tasks T = {T1, T2… Tx} and E is

the set of connection between any two tasks, Ti and

Tj. E is formulated as {(Ti, Tj, Wij)| i≠j }, where Wij

is the weight of the edge. i.e. data transferred from

Ti to Tj. The example for the workflow of tasks as

DAG is given in Figure.1.

3.2 Cloud Resource Management

In this paper, the proposed model considers

the heterogeneous VMs comprising various

combinations of memory, CPU and bandwidth. The

CPU of the VM decides the completion time of the

task and network bandwidth decides the data

transmission time. The complete organization of

mobile cloud computing is shown in Figure.2. Cloud

is a combination of data centers, each data center is

a combination of servers, each server has different

Virtual machines and each virtual machine is

configured with number of processing units called

as CPUs. The mobile clients submit the tasks to the

cloud for computation purposes and the scheduling

of tasks is done based on the MOGAMCC.

Table.1 Definition of terms

Symbol Explanation

D Data transfer time of the tasks

S Represents the starting time of

the task

F Represents the finishing time

of the task

C Represents the chromosome

W(Ti) Amount of data that task Ti is

assigned

Wij Data transfer from task Ti to

task Tj

BW Network bandwidth

CT(Ti) Completion time of task Ti

CC(VMk) Computation capacity of the

virtual machine k

O(VMk
mem) Allocated memory at the time

of initialization of virtual

machine VMk

O(VMk
cpu) Allocated number of CPUs at

the time of initialization of

virtual machine VMk

A(Tj
mem) Assigned memory to the

task Tj

A(Tjcpu) Assigned number of CPUs to

the task Tj

R(VMk
mem) The remaining memory of the

virtual machine VMk

R(VMk
cpu) The remaining number of

CPUs in the virtual machine

VMk

Mobile Client A

Mobile Client B

Mobile Client C

Servers

Servers
Virtual Machines

Virtual Machines

CPUs

CPUs

Data Center 1

Data Center 2

Cloud Environment

Figure.2 Mobile Cloud Computing Environment

3.2.1. Task Completion Time

 The completion time of the task Ti depends on

the allocated virtual machine. The allocated CPU

and the memory decide the computation capacity of

15

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.02

the virtual machine. Let us assume that, no task is

previously assigned to the virtual machine VMk, Ti

is the only task executing on the virtual machine

VMk., then the completion time CT of the task Ti is

given as follows.

1)()()( kii VMCCTWTCT (1)

Where W(Ti) represents the amount of data

assigned to the virtual machine k by the task Ti and

CC(VMk) represents the computation capacity of the

virtual machine VMk.

3.2.2. Data Transfer Time

 The network bandwidth is usually different for

different virtual machines. Therefore, the virtual

machines which having the higher computation

capacity usually have the higher bandwidth. The

data transfer time D in between task Ti and Tj is

given as

1)),((),( pkijji VMVMBWWTTD
 (2)

Where VMk and VMp are the two types of virtual

machines to which tasks Ti and Tj are scheduled,

BW is the allocated bandwidth and Wij represents

the amount of data transferred from task Ti to task Tj.

The Data transfer time is equal to 0, if the tasks Ti

and Tj are executing on the same virtual machine

otherwise the computation is carried by using

equation 2. The objective function for the data

transfer time is formulated as

),(
1 1

1 
 


x

i

j

x

j

i TTDf

 (3)

3.2.3. Length of Task Queue

 To optimize the scheduling of the MCC, the

length of the task Queue is considered as a one of

the objective function. The Queue length of the VM

is increased when the assigned tasks to the VM is

more than its CPUs, so to achieve the optimization

in scheduling, the queue length of the VM has to be

minimized. This will reduce the makespan of the

proposed model. The)(kVMQL controls the length

of the task queue of VMk by calculating the

remaining memory R(VMk
mem) and the remaining

number of CPUs R(VMk
cpu).

)()(

)(
)(

CPU
k

mem
k

i
k

VMRVMR

TW
VMQL




 (4)

Where,

)()()(mem
j

mem
k

mem
k TAVMOVMR  (5)

)()()(cpu
j

cpu

k

cpu

k TAVMOVMR  (6)

 Here, O(VMk
mem) represents the allocated

memory at the time of initialization of virtual

machine VMk, A(Tj
mem) represents the assigned

memory from the virtual machine VMk to the task Tj.

O(VMk
cpu) represents the allocated number of CPUs

at the time of initialization of virtual machine VMk,

A(Tj
cpu) represents the assigned CPUs from the

virtual machine VMk to the task Tj.

 The objective function for the length of the task

queue is given as

 



n

k

kVMQLf
1

2)((7)

3.2.4. Makespan

 The makespan of the proposed system is

calculated based on the finishing time of the task

Tend. The two functions such as start time and finish

time of the scheduled tasks must be calculated. The

starting time of the task Ti will depend on the

finishing time of the predecessor task Tj.

 0)(initialTS (8)

),()()(ijji TTDTFTS 

 (9)

)()()(iii TCTSTF 

 (10)

 Where S(Tinitial) represents the starting time of

the task Tinitial, F(Ti) represents the finishing time of

the task Ti. The objective function for the makespan

is given as

)(3 iTFTimef  (11)

4. Problem Formulation

This section describes about the multi-objective

task scheduling model based on the predefined

objective functions. These objective functions are

used to minimize the data transfer time, length of the

task queue and makespan.

Problem: F= min{f1, f2 and f3}

Subject to xji ,...2,1,  , nk ,...2,1 .

 (12)

16

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.02

5. Multi Objective Genetic Algorithm for

Scheduling in MCC (MOGAMCC)

MOGAMCC is used for efficient resource

scheduling by minimizing the objective functions.

The genetic algorithm has the following steps:

population generation, selection, crossover and

mutation.

As an initial step, N number of population is

selected randomly. Then apply the selection,

crossover and mutation to produce the first

generation child population. Then, for the second

generation population, the first generation child

population is merged with the parent population and

sorted. This process will continue until it reaches to

the stopping criteria

5.1 Chromosome Representation

In genetic algorithm, the chromosome C

represented by a series of tasks and each task is

associated with the virtual machine as shown below.

 C = Ti(VMk) (13)

Where i = 1,2,3…x and k = 1,2,3…n. Figure. 3

show the chromosome representation consisting of 7

tasks and 4 virtual machines.

5.2 Initialization of the Population

The major step in the genetic algorithm is

population initialization, the good initialization leads

to the best solutions in the search space and

otherwise the algorithm leads to the bad solutions.

Here, the proposed meta-optimization model follows

the eq. 1 for calculating the completion time of the

tasks. If the count of the tasks is equal to the number

of VMs, then the VMs are assigned randomly to the

tasks. The newly arrived tasks in the cloud are

assigned to the VMs based on the R(VMk
mem) and

R(VMk
cpu).

Algorithm 1: Population Initialization

T = {T1, T2, . . . Tx}

VM = {VM1, VM2 . . .VMn}

Begin

1. For i = 1 to x do

2. For k = 1 to n do

3. If (i ≤ k) then

4. Compute completion time of task Ti from eq. 1.

5. Select the virtual machine VMk to the task Ti

randomly.

6. Assign the task Ti to VMk

7. Remove the task Ti from the task set T

8. If Ti finishes its execution on VMk then

9. Add VMk to the virtual machine set VM

10. End if

11. End if

12. Otherwise

13. Compute R(VMk
mem) and R(VMk

cpu) of virtual

machine k from eq. 5 and eq. 6

14. If ((R(VMk
mem)=0) or (R(VMk

cpu)=0) then

15. Delete VMk from the virtual machine set VM

16. Otherwise

17. Find the suitable virtual machine VMk which

will finish the Ti earliest.

18. Assign the task Ti to VMk

19. Remove the task Ti from the task set T

20. If Ti finishes its execution on VMk then

21. Add VMk to the virtual machine set VM

22. End if

23. End for

24. End for

End

Algorithm 2 shows the complete procedure of

multi-objective genetic algorithm for MCC. The

calculation of fitness function for the randomly

selected population is done by the evaluation phase

and it is shown in the next section.

Algorithm 2: Multi-Objective Genetic Algorithm for

MCC

Generate initial population using the algorithm 1

Repeat

Calculate the fitness function of the

chromosomes by using eq. 3, eq. 7 and eq. 11.

Generate the offspring production by performing

crossover and mutation.

Replace the parent chromosome with newly

generated child population.

Until convergence criteria must be met

5.3 Evaluation Phase

In the evaluation phase, fitness function decides

the quality of the schedule. In the proposed method,

it is considered three objectives as the fitness

functions such as data transfer time, the length of the

task queue and makespan which is given in eq. 3, 7

and 11. The main goal is to minimize the data

transfer time, task queue and the makespan through

17

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.02

an intelligent scheduling mechanism. After the

evaluation phase the selection phase is initialized.

5.4 Roulette Wheel Selection Method

The roulette wheel selection method finds the

optimal choice based on the winning probability

from the given options [16]. The initial population is

selected by using the algorithm 1 and for the next

generation of the population is selected by r number

of random experiments, i.e. the probability of

selecting the chromosome Cl from the pool P={C1,

C2,…Cm} is dependent on the following eq.14.

1))(()()( PFitnessCFitnessCsel ll (14)

The roulette wheel consists of slices of

chromosomes which is directly proportional to the

fitness of the chromosome. The selection of a

chromosome is done based on the spin of the wheel.

An example for roulette wheel process is given in

Figure 4. A complete roulette wheel represents all

chromosomes in the population, the size of the

chromosome depends on the fitness function and for

producing N individuals, the wheel has to spin for n

times. For instance, in Figure.4 the chromosome 1

has 30 % of chances for selection and chromosome

4 has 4% of chances. Therefore chromosome 1 is

selected as optimal solution. Finally, the roulette

wheel selection determines which individuals and

how many of them can be kept in the next

generation.

5.5 Crossover Process

In the task scheduling process, the scheduling

mechanism follows the dependencies exist between

the tasks. For instance, task Ti is a successor of task

Tj, then Tj should execute first in the scheduling

process. For an understanding purpose, the proposed

model considers the Figure.1 for task dependencies.

The crossover process follows the procedure of

exchanging the genes between two chromosomes.

The popular method is a single point crossover

between two parent populations. The cross over

rate lies in the range of 0.6 to 0.8. In Figure.5, it is

shown that two chromosomes C1 and C2 are selected

for the generation of new population.

1 2 3 4 5 6 7
3 2 3 4 1 2 1

Tasks
VMs

Figure.3 Chromosome Representations

For producing new child chromosome C3, first

three places are identical to the C1 and the second

part is obtained by reordering of C1 according to

sorting order defined by C2. The same process is

repeated for the generation of C4.

1
2

3

4

5
6

20%

30%

8%

17%

12%

13%

Figure.4 Roulette wheel selection

1 2 3 4 5 6 7
3 2 3 4 1 2 1

Tasks
VMs

1 3 7 5 4 2 6
1 4 2 2 1 3 1

Tasks
VMs

Current Generation

C1

C2

1 2 3 7 5 4 6
3 2 3 2 2 1 1

Tasks
VMs

1 3 7 4 2 5 6
1 4 2 4 2 1 2

Tasks
VMs

Next Generation

C3

C4

Figure.5 Crossover operation in the multi-objective

genetic algorithm

5.6 Mutation Process

Mutation process is identical to the biological

process and it is used to produce the diverse

population of chromosomes for the new generations.

This mutation process is carried by randomly

changing the bit positions in the chromosomes. The

probability of the mutation rate must be low

otherwise it leads to the re-initialisation of the

population. The mutation process (Figure. 6) is

carried in the following way:

18

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.02

Step 1: As an initial step, a random position is

selected for mutation (from Figure. 6, it is

Task 5 in C1).

Step 2: Identify the first parent to the left of the

chosen task (from Figure. 6, it is Task 1 in

C1)

Step 3: Identify the first child to the right of the

chosen task (from Figure. 6, it is Task 6 in

C1)

Step 4: This can define the range of the chosen task

to be shifted by maintaining the sorted order

(from Fig. 6, it is identified as 1 to 6

positions).

Step 5: Choose the random position for a new

location (for example, the position is

selected as 3).

Step 6: Then, Task 5 is relocated to the position 3

(both Task and VM are relocated).

 Matching mutation is performed by selecting

the VM position randomly and modifies the position

of VM by assigning another VM randomly.

1 2 3 4 5 6 7
3 2 3 4 1 2 1

Tasks
VMsC1

1 2 3 4 5 6 7

Task Shift

1 2 5 4 3 6 7
3 2 1 4 3 2 1

Tasks
VMs

1 2 3 4 5 6 7

C5

Figure.6 Mutation operation in multi-objective

genetic algorithm

1 2 3 4 5 6 7
3 2 3 4 1 2 1

Tasks
VMsC1

1 2 3 4 5 6 7

VM shift

1 2 3 4 5 6 7
3 2 1 4 1 2 1

Tasks
VMs

1 2 3 4 5 6 7

C6

Figure.7 Matching Mutation process for multi-

objective genetic algorithm

For instance, in Figure.7 the random position of VM

is chosen as 3 and the VM3 which is replaced with

VM1.

5.7 Analysis of Time Complexity

The time complexity of the initialization phase is

O(x), where x is the number of tasks. The time

complexity of the crossover process is O(x2). The

time complexity in evaluation process for each

chromosome has O(3e), where e is the fitness

function for each chromosome. The mutation

process has the time complexity of O(x). The time

complexity of MOGAMCC is given as O(Q,x),

where Q defines the maximum iterations.

6. Results and Discussion

The simulation of the MOGAMCC is carried by

using the simulator called as cloudsim toolkit [16].

To implement the proposed algorithm, the cloudsim

toolkit is extended with the NSGA-II package [19]

for optimizing the task scheduling. The

DatacenterBroker class having the

bindcloudletToVm() which is responsible for

allocating the tasks to the VMs. The cloud simulator

works with three inputs: cloud settings, workflow

traces and task description. To create the network

between the servers, the network topology is

implemented by using the predefined network

properties of CloudSim. This network topology

creates the random network model which is

analogous to the internet. The details of the job such

as a number of tasks, the number of VMs and the

computation capacity are required to initialize the

simulator. The initialization of the properties of task

and VMs were randomly distributed among the

predefined set of VMs and task parameters. Table 2

and Table 3 show the configuration of cloud for

experimental evaluation. The data transfer time

(DTT), Length of the task queue (QL) and

makespan are the selected objectives for the

MOGAMCC and these objectives are given as the

fitness function for the evaluation of chromosomes

in the MOGAMCC.

6.1 Results Evaluation

The evaluation of the MOGAMCC is carried

with the other existing optimization methods such as

Min-Min [18] and MOSA [17]. The three objective

functions are considered for evaluation of proposed

MOGAMCC i.e. Data Transfer Time, Queue Length

and makespan.

19

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.02

Table.2 VM Configuration Setup

IDs Mem

ory(

KB)

MIP

S

Bandwidt

h

CPUs VMM

name

1-5 512 500 1000 4 Xen

6-10 256 300 10000 1 Xen

11-15 512 500 1000 1 Xen

16-20 512 200 1000 2 Xen

21-25 256 500 10000 1 Xen

Table.3 Task Characteristics

IDs File size

(MB)

Length Required

CPUs

1-50 250 25000 1

51-100 300 45000 1

100-150 300 45000 1

151-200 300 45000 1

201-250 250 25000 1

250-300 250 25000 1

Table.4 Parameters for MOGAMCC

Parameter Value

Maximum iterations 500

Crossover rate 0.8

Mutation rate 0.1

Size of the population 300

Convergence criteria 20 generations

Figure.8 shows the variation of Data Transfer

time for different optimization methods. The min-

min algorithm doesn’t consider any mechanism for

reducing the data transfer time between the tasks,

but the MOSA and MOGAMCC had the efficient

mechanism for minimizing the data transfer time.

The proposed algorithm records 14% improvement

while comparing with the Min-Min and MOSA.

The MOSA has 4% improvement while comparing

with the Min-Min. So, it is observed that the

MOGAMCC performs well in reducing the data

transfer time.

The plots for Queue Length and makespan

obtained from the MOSA, Min-Min and

MOGAMCC are illustrated in the Figure.9 and

Figure.10. The queue length of the MOGAMCC is

calculated by eq. 7. The QL(VMk) controls the length

of the task queue of VMk by calculating the

remaining memory and the number of CPUs. The

QL(VMk) controls the allocation of multiple tasks to

the single VM. In Figure.9, it is identified that the

value of Queue Length of MOGAMCC is reduced

when compared to the Min-Min and MOSA. This is

due to the effective optimization mechanism applied

by the MOGAMCC. The major drawback of Min-

Min algorithm is it has poor load balancing

mechanism while comparing with the proposed

algorithm. The MOGAMCC utilizes the round robin

policy to schedule the task to the available VMs.

Therefore, MOGAMCC had better performance in

terms of Queue length against the MOSA and Min-

Min. Figure.10 illustrates the makespan values of

the tasks submitted. The figure shows that

MOGAMCC clearly outperforms MOSA and Min-

Min in all the random cases. MOSA has better

performance than the Min-Min algorithm. Although

the difference is small, MOGAMCC achieved better

performance against the MOSA in most cases. This

is due to the parallel allocation of tasks to the

available virtual machines. There is no starvation

problem occurs in the MOGAMCC.

The utilization ratios of resources are plotted in

Figure.11. The plot indicates that the resource

utilization of both MOSA and MOGAMCC are

almost same. The Min-Min algorithm has less

utilization of resources when compared to other

algorithms. This is due to the lack of rescheduling

approach for the available VMs. But, in the

MOGAMCC, the VM which completes the task

execution will again reconsider as an available VM.

Therefore, the resource utilization ratio for the

proposed algorithm had better value against the

Min-Min and MOSA.

Table 5 shows the comparison results of the

MOSA, Min-Min and MOGAMCC tested with 300

tasks and 25 VMs. The proposed three objectives

are implemented with the three algorithms and the

results are shown. The MOGAMCC outperforms the

remaining algorithms in all segments.

50 100 150 200 250 300

40

60

80

100

120

140

160

180

200

D
a
ta

 T
ra

n
s
fe

r
T

im
e
 (

s
e
c
)

Number of Tasks

 MOSA

 Min-Min

 MOGAMCC

Figure.8 Data Transfer Time of the MOSA, Min-Min and

MOGAMCC

20

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.02

50 100 150 200 250 300

20

40

60

80

100

120

T

a
sk

 Q
u
e
u
e
 l

e
n
g
th

 C
o
e
ff

ic
ie

n
t

Number of Tasks

 MOSA

 Min-Min

 MOGAMCC

Figure.9 Task Queue length coefficient of the MOSA,

Min-Min and MOGAMCC

50 100 150 200 250 300

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

M
a
k
e
s
p
a
n
 (

s
e
c
)

Number of Tasks

 MOSA

 Min-MIn

 MOGAMCC

Figure.10 Makespan of the MOSA, Min-Min and

MOGAMCC

50 100 150 200 250 300

30

40

50

60

70

80

90

100

110

120

R
e
so

u
rc

e
 U

ti
li

z
a
ti

o
n
 (

%
)

Number of Tasks

 MOSA

 Min-Min

 MOGAMCC

Figure.11 Resource utilization of MOSA, Min-Min and

MOGAMCC

Table 5: Results Comparison

Optimizatio

n methods

Data

Tran

sfer

Time

(sec)

Queue

length

Makespa

n (sec)

Resource

Utilizatio

n (%)

MOSA 162 116.49 2540.70 97.52

Min-Min 186 122.36 2680.21 91.76

MOGAMCC 146 114.15 2510.32 99.59

7. Conclusion

Even though there are many existing resource

scheduling approaches in the distributing

environment, they have their own complexities in

being directly applied to the MCC. This paper

presents a multi objective genetic algorithm for

resource scheduling in MCC. The proposed model

introduced an encoding approach for finding the

scheduling orders. The crossover and mutation

process are applied for the generation of new

population. The proposed model extended the

functionality of cloudsim toolkit by implementing

the multi objective genetic algorithm for achieving

the better trade-off between the defined objectives.

The extensive experiments are carried out on the

MOGAMCC and the results are proved that this

algorithm had the potentiality to minimize the

objective functions.

 In Future, the MOGAMCC is extended with

fault tolerance mechanism which will be very useful

at the time of VM failures.

References

[1] http://www.internetworldstats.com/asia/in.htm.

Accessed on 24/04/2016.

[2] K. Kumar and Y.H. Lu, “Cloud computing for

mobile users: Can offloading computation save

energy?”, Computer, Vol. 43, No. 4, pp.51-56, 2010.

[3] Z. Li, C. Wang, and R. Xu, “Computation offloading

to save energy on handheld devices: a partition

scheme”, In Proceedings of the 2001 international

conference on Compilers, architecture, and synthesis

for embedded systems, pp. 238-246, 2001.

[4] P. Rong and M. Pedram, “Extending the lifetime of a

network of battery-powered mobile devices by

remote processing: a markovian decision-based

approach”, In Proceedings of the 40th annual Design

Automation Conference, pp. 906-911, 2003, June.

ACM.

[5] D. Nagaraju, and V. Saritha, "A Survey on

Communicational Issues in Mobile Cloud

21

International Journal of Intelligent Engineering and Systems, Vol.10, No.1, 2017 DOI: 10.22266/ijies2017.0228.02

Computing." Walailak Journal of Science and

Technology (WJST), Vol. 14, No. 10, 2016.

[6] S. Ou, K. Yang, and J. Zhang, “An effective

offloading middleware for pervasive services on

mobile devices”, Pervasive and Mobile Computing,

Vol. 3, No. 4, pp.362-385, 2007.

[7] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D.

Milojicic, “Adaptive offloading inference for

delivering applications in pervasive computing

environments”, In Pervasive Computing and

Communications, 2003.(PerCom 2003). Proceedings

of the First IEEE International Conference on, pp.

107-114, 2003, March. IEEE.

[8] J. Park, H. Kim, Y.S. Jeong, and E. Lee, “Two‐phase

grouping‐based resource management for big data

processing in mobile cloud computing”,

International Journal of Communication

Systems, Vol. 27, No. 6, pp.839-851, 2014.

[9] B. Song, M. M. Hassan, and E. N. Huh, “A novel

heuristic-based task selection and allocation

framework in dynamic collaborative cloud service

platform”, In Cloud Computing Technology and

Science (CloudCom), 2010 IEEE Second

International Conference on, pp. 360-367, 2010,

November. IEEE.

[10] S. Tayal, “Tasks scheduling optimization for the

cloud computing systems”, Ijaest-International

Journal of Advanced Engineering Sciences and

Technologies, Vol. 1, No. 5, pp.111-115, 2011.

[11] J. F. Li, J. Peng, X. Cao and H. Y. Li, “A task

scheduling algorithm based on improved ant colony

optimization in cloud computing environment”,

Energy Procedia, 13, pp.6833-6840, 2011.

[12] E. Juhnke, T. Dornemann, D. Bock, and B.

Freisleben, “Multi-objective scheduling of BPEL

workflows in geographically distributed clouds”,

In Cloud Computing (CLOUD), 2011 IEEE

International Conference on, pp. 412-419, 2011, July.

[13] L. Guo, S. Zhao, S. Shen, and C. Jiang, “Task

scheduling optimization in cloud computing based on

heuristic algorithm”, Journal of Networks, pp.547-

553, 2012.

[14] W. Y. Shieh, and C. C. Pong, “Energy and transition-

aware runtime task scheduling for multicore

processors”, Journal of Parallel and Distributed

Computing, pp.1225-1238, 2013.

[15] X. Wang, Y. Wang, and Y. Cui, “A new multi-

objective bi-level programming model for energy

and locality aware multi-job scheduling in cloud

computing”, Future Generation Computer

Systems, pp.91-101, 2014.

[16] N. Calheiros Rodrigo, R. Ranjan, A. Beloglazov, C.

AF De Rose, and B. Rajkumar. "CloudSim: a toolkit

for modeling and simulation of cloud computing

environments and evaluation of resource

provisioning algorithms." Software: Practice and

Experience, vol. 41, no. 1, pp. 23-50, 2011.

[17] M. R. Avinaash, G. R. Kumar, K.A. Bhargav, T.S.

Prabhu, and D.I. Reddy, “Simulated annealing

approach to solution of multi-objective optimal

economic dispatch”, In Intelligent Systems and

Control (ISCO), 2013 7th International Conference

on, pp. 127-132, 2013, January. IEEE.

[18] A. V. Karthick, E. Ramaraj, and R. G. Subramanian,

“An efficient multi queue job scheduling for cloud

computing”, In Computing and Communication

Technologies (WCCCT), 2014 World Congress on,

pp. 164-166, 2014, February.

[19] D. Hadka, MOEA Framework A Free Open Source

Java Framework for Multi objective Optimization,

[Online], Available:

http://www.moeaframework.org/.

[20] P. V. Krishna, S. Mishra, D. Naga Raju, V. Saritha

and M.S. Obaidat, "Learning automata based

decision making algorithm for task offloading in

mobile cloud." Computer, Information and

Telecommunication Systems (CITS), 2016

International Conference on. IEEE, 2016.

[21] D. Naga Raju, and V. Saritha. "Architecture for Fault

Tolerance in Mobile Cloud Computing using Disease

Resistance Approach." International Journal of

Communication Networks and Information Security

(IJCNIS), Vol. 8, No.2, 2016.

