
195

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.21

Design Quality Metrics on the Package Maintainability and Reliability of Open

Source Software

Madhwaraj Kango Gopal1*

Vignan’s Foundation for Science, Technology & Research University, Vadlamudi, Guntur District, India

* Corresponding author’s Email: madhwarajkg@gmail.com

Abstract: Software metrics play an important role in the planning and control of software development. The quality

of the software is the degree to which a finished software product proves to be efficient to its specification. Recently,

Object-Oriented (OO) methodology has emerged as a major approach for the software development in both scientific

and business applications. As the necessity for productive software is increasing, the OO design technique for

constructing software is proving to be a powerful method for developing efficient software systems. Generally, the

software used by the organizations and the individuals is the one that is owned by the organization which develops it.

But open source software is the one which is available free for the user and can be altered based on their needs. In

such kind of the software, the maintainability and reliability play a major role regarding the quality of the software

developed. In this paper, we have empirically analyzed the various design metrics of different versions of software

using JDepend tool and their effect on maintainability is tested. Further, the reliability of the software is measured

using Rayleigh’s model. The relationships between maintainability and reliability is found out by checking how

these metrics influence the quality of software.

Keywords: Quality metrics, Package maintenance, Open source software, Object-oriented methodology.

1. Introduction

The objective of software engineering is to

improve the methods and devices required to

develop high-quality applications to make them

steady and maintainable. Developers and managers

employ numerous metrics in order to evaluate and

develop the quality of an application during the

growth process [1]. Different business and technical

intentions such as shorter development cycles, lower

development costs, improved product quality, and

access to source code, more and more software

developers and companies are basing their software

products on open source elements [2]. During

software advancement, Structural organization of

software has the main authority on the locality of

changes. One of the significant kinds of such

changes is those distressed with extending and

altering the executed functionality [3]. Object

Oriented Design metrics are supportive in

recognizing defective design at an early stage of

software improvement. The steadiness of the

software device is a necessary characteristic that

includes much of the competence and presentation

of it [4]. Object-oriented technology is built upon a

sound engineering foundation, whose components

are jointly called the object model. As a result, the

object model is constructive for understanding

problems, communicating with application experts

and modeling complex enterprises into a software

plan. This technology moreover assists to sponsor

software reusability, maintainability, dependability

and performance [5].

Open Source Software has been described as the

software whose license shall not limit any party

from selling or giving away the software as an

element of a collective software distribution having

programs from numerous dissimilar sources [6]. The

word “open source” often refers to software

development practice that relies on the involvements

of geographically separated developers via the

Internet [7]. Maintainability refers to the level of

attempt necessary to develop a software unit over

time so as to accurate imperfections and to manage

196

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.21

with novel necessities or alters in its environment [8,

9]. With the contribution of several individuals and

organizations, Open source software is improved. In

order to attain high-quality software and evade

faults, an organization that employs and customizes

Open source software must cautiously administer

the development process [10].

In addition, maintaining software regularly

means evolving software, and adapting existing

code is a huge part of new software engineering [11].

The mechanism to promote the software is called

open source which is related to the complete access

of the software. For making high-quality

applications, well-known objectives of software

engineering are to improve and employ methods and

devices. The requests that have high quality and

modularity are more constant and maintainable [12,

13].The maintainability of a software system can

considerably impact software costs. This implies

that it is significant to be able to predict a software

system’s maintainability so to successfully cope

costs [14]. As open source software has significant

economic impact and is ever more applied in

mission-critical actual world applications, several

organizations would like to contain at hand object

measures considering the quality of the development

process and the consequent product [15].

For the maintainability of the software, different

techniques have been applied. A few of the

techniques are Standardized Code Quality

Benchmarking for Improving Software where

maintainability employs a standardized

measurement procedure based on the ISO/IEC 9126

definition of maintainability and source code metrics

[16], Prediction of Reusability of Object Oriented

Software Systems by means of Clustering Approach

where hybrid K-Means and Decision tree strategy is

applied to forecast the reusability value of object-

oriented software components based on the metric

values [17], Aspect-Oriented Reengineering of an

Object-oriented Library in a Short Iteration Agile

Process where an appropriate strategy for

introducing aspect-oriented refactoring into a re-

engineering process [18], Unified Design Quality

Metric Tool for Object-Oriented approach together

with other principles where the idea of merging

design metric devices as a package along with other

plan principles like abstractness and steadiness are

executed [19], Ontologies and Review on

Maintainability Models for Object-Oriented

Software System where the software maintainability

model with object oriented system and ontologies

which offer a knowledge base domain for data

structure employed in object-oriented software

system is carried out [20].

The main aim of the proposed methodology is to

estimate the quality of the open source software.

Here, we estimate maintainability and reliability

using Adaptive Genetic algorithm which helps to

calculate the metrics very accurately.

The remaining document is arranged as follows.

Various researches performed in relation to our

suggested work are presented in Section II. The

design approach and the suggested technique are

described in Section III and Section IV. The result

and conversation of our suggested method are

demonstrated in Section V and lastly, section VI

closes our suggested method for software

maintainability and dependability check for open

source software.

2. Related Work

In the field of OO open source software

maintenance, a handful of researches have been

made. OO Design Quality Metrics is a general

technique applied for software maintenance. A few

of the modern researches are stated beneath.

A technique with data mining clustering to hold

the assessment of software systems maintainability

has been offered by Antonellis et al. [21]. As a

contribution to their study, they used software

measurement information removed from Java source

code. Initially, they suggested a two-steps clustering

process which assists the evaluation of a system's

maintainability and next an in-cluster study in order

to revise the growth of every cluster as the system's

versions pass by. The procedure was assessed on

Apache Geronimo, a J2EE 1.4 open source

Application Server. The assessment engages

examining numerous editions of this software

system in order to evaluate its evolution and

maintainability over time.

A multivariate linear model ‘Maintainability

Estimation Model for Object-Oriented software in

Design phase has been progressed by S. W. A. Rizvi

and R. A. Khan [22], which calculates

approximately the maintainability of class drawings

in terms of their understandability and modifiability.

As in order to count class drawing’s

understandability and modifiability further

developed two new multivariate models.

Security idea in the field of electronic messages

has been suggested by M. Zurini [23]. Dissimilar

kinds of spam filters are distinguished along with

the attitudes of email study. Inside the open source

distribution, the idea of Bayesian spam filter was

discussed. The maintainability feature was

underlined in terms of spam filtering. The impact of

197

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.21

maintainability of the high quality software was the

major cause for the cost variation. For creating

measurement metrics and assessing the

maintainability of the software product, the main

tasks of Bayesian CS open source spam filter were

examined. A procedural model was explained for

increasing the quality of the maintainability

procedure of an open source Bayesian spam filter.

A software maintainability model with object

oriented system has been suggested by S. K. Dubey

et al. [24], in which a large number of

maintainability model and a dissimilar subset

associated to maintainability in the object-oriented

system were explained. Therefore, the technique

spotlights on the dissimilar variable, methods and

datasets are applied and the study employed by

different techniques.

A hierarchal quality model has been suggested

by R. Shatnawi and W. Li [25] where the

consequence of software refactoring on software

quality was learned. They offered details of their

findings as heuristics that can assist software

developers to make further informed conclusions

about what refactorings to execute in consider to

develop a particular quality issue. On two open-

source systems, they authenticate the suggested

heuristics in an empirical setting. They discovered

that the greater part of refactoring heuristics does

develop quality, yet some heuristics do not have an

optimistic impact on all software quality factors.

Besides, they found that the impact study of

refactorings separates software measures into two

classes: high and low impacted measures. These

classes assist in the endeavor to know the best

measures that could be applied to recognize

refactoring candidates.

Shaik et al. [26] have suggested an Assessment

of the present state of the art in Metrics and Object-

Oriented Software System Quality was made.

Moreover, it encloses short evocative taxonomy of

the Object-Oriented Design and Metrics.

Emanuel et al. [27] have offered the initial

quantitative software metrics to calculate modularity

level of Java-based OSS Projects named Modularity

Index. By examining modularity attributes such as

size, complexity, cohesion, and coupling of Java-

based OSS Projects, this software metrics was

created. These OSS Projects are chosen as they had

been downloaded more than 100K times and

deemed to contain the necessary modularity attribute

to be thriving. The software metrics associated to

modularity in class, package and system level of

these projects were removed and examined. The

resemblances found are next examined to verify the

class quality, package quality, and then united with

system architecture measure to create the

Modularity Index.

From the existing methods, stability is the major

factor that determines the software maintenance.

The complexity is made low by using the weighted

methods per class procedure. The existing methods

fail to maintain the stability. Our proposed method

optimally calculates the quality of the software in

terms of reliability and maintainability.

3. Design Strategy

3.1 Open Source Software

The Open Source Software is commonly a Free

Software as it offers the usage necessary and

moreover it differs from normal software which is

generally preventive in its usage and can never be

adapted more without the consent of the developer.

The maintainability of the software along with

dependability, constancy, complexity and reusability

has been the main problem when software is

improved and this plays the key role in the

functioning and a long lifetime of the enhanced

software [28].

3.2 Object Oriented Concept

Further, generally, the object-oriented technique

is applied for improving the open source software

and thus the above quality metrics of the software

have to be regarded as major information in the

object-oriented idea. As of the significance in

thriving improvement of software, Object-oriented

metrics plays a key role in software quality metrics.

The maintainability and dependability are intimately

associated with each other. The maintainability of

the software formulates it further dependable. The

dependability of the software will rise whenever the

maintainability of the software is effectual or raised.

So we can declare that maintainability and

dependability are directly comparative to each other.

4. Proposed Method to Find the

Maintainability and Reliability of the

Software

4.1 Software Maintainability

Maintainability of the software is the manner by

which software can be adapted and it is regarded to

be the major software quality feature.

198

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.21

Figure.1 Software Quality Metrics Extraction Process

High steadiness and enhanced reliance are the

main features that are regarded as while planning the

software packages. Those software packages are

regarded to be the improved maintainable software.

The reliance of software can be calculated by

identifying the different design quality metrics of

software which more calculates approximately the

maintainability of that software. The three main

design quality metrics that are necessary for

measuring the maintainability of the software are

The Abstractness, Instability, and efferent coupling.

These quality metrics from open software are to be

removed to calculate the maintainability of the

software. In our suggested technique, with the assist

of the JDepend device, the above said design quality

metrics are removed since the JDepend device

permit as to automatically measure the quality of the

software in terms of maintainability and

dependability. The extortion process of the quality

metrics is demonstrated in figure 1. As shown in the

figure 1 the open source software are taken as a jar

file. In our proposed method we have taken three

versions of the MySQL open source software.

MySQL-3.0.15, MySQL-5.0.7, and MySQL-5.1.8

are the three versions that we have chosen for our

experiment. For these versions, the jar files are taken

and it is applied to the JDepend tool which is used

for extracting the various quality metrics of the

software. The various quality metrics like

abstractness, instability and efferent coupling are

extracted for each version of the MySQL software

and these metrics are grouped into Dependable and

Non-dependable packages based on their values

extracted. The packages with abstractness (A=0) and

instability (I=1) is called non-dependable packages

and packages with an efferent coupling (Ce=0) and

instability (I=0) are grouped under the dependable

packages. The dependable and the Non-Dependable

packages in any software are responsible for

improving or reducing the maintainability of the

software. Only by measuring the count of the

Dependable and the Non-Dependable packages in

software, the maintainability of the software can be

measured. Hence after grouping the packages into

Dependable and Non-dependable packages, the

count of these packages are analyzed for different

versions of open source software and verified with

some criteria in order to find the best maintainable

software. The different criteria to be satisfied by the

software are that

 For a different version of software, the non-

dependable package count should be

reduced.

 More dependable package must be present

and it should be increasing from one version

to other.

 Finally, for every version, the dependent

package must be dominant over the non-

dependent package.

The software that totally suits the above all

criteria are regarded to be extremely maintainable.

Thus for any open source software, these issues are

to be the major deliberation and only that software is

to be regarded to be extremely maintainable with

improved quality. We further include the

optimization of this dependable package in order to

get better results. For optimization of packages, we

have utilized a Genetic algorithm which is one of

the best optimization algorithms.

4.1.1. Optimization of packages using Adaptive

Genetic Algorithm

In the Genetic algorithm, initially, chromosomes

are generated in which genes are the indices of the

software packages. These genes are generated

without any repetition within the chromosome and

the values of the genes depend on the number of

packages in the open source software. Then the

chromosomes are subjected to the genetic operators,

crossover, and mutation, and hence the new

chromosomes are generated. Then the fitness is

determined for the newly generated chromosomes.

The various steps involved in our proposed GA is

given below

Generation of Chromosomes

Initially, generate rN a number of random

chromosomes and the number of genes in each

chromosome relies on the number of dependable

packages that are present in the software. The

generated genes are












)(
1

,,
)(

3
,

)(
2

,
)(

0
)(i

n
G

i
G

i
G

i
G

i
cG 

(1)

10  rNj , 10  nc

where,

n - A number of dependable packages in the

software.
)(i

cG -
thc The gene of the

thi chromosome.

199

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.21

Fitness Function

Evaluate fitness function (it will give the best

input that will satisfy the best or actual solution).

Higher fitness function means a better solution.

Following are the purpose of the fitness function.

• The fitness function is used for Parent

selection

• Fitness function measures for convergence

The fitness function is a type of objective

function, which is the leading target parameter to the

optimized value. The fitness function is calculated

by using the following formula.

b
FaF

N

b

aTaF
b

N

a

aWaHaF















F

)/2)

0

((F

)/2)

0

((

 (2)

Here the fitness value of each chromosome is

calculated based on the coverage (H) and weight

(W) of the genes.

Selection of Optimal Solution

After the process is repeated Im times, best

chromosomes are selected from the obtained group

of chromosomes. Here, the best chromosomes are

the chromosomes which have maximum fitness. The

obtained best chromosome is used to for the

maintainability calculation process. For selection,

various methods are utilized and in our proposed

method we used Roulette-Wheel Selection.

Roulette-Wheel Selection

The ith string in the population is chosen with a

probability proportional to fi. The probability for

selecting the ith string is





n

i

if

if
ip

1

 (3)

Where n is the population size?

The average fitness of the population is

calculated as

 




n

i

iff

1

 (4)

Here we will check our constraints are satisfied

or not. If constraints are satisfied then we will select

this output and if not then we will use genetic

algorithm operator for obtaining actual output which

is described below,

Crossover and Mutation

Among different types of crossovers, the two-

point crossover is selected with the crossover rate of

Crate. In the two-point crossover, two points are

selected on the parent chromosomes using the eq.

(5) and (6). The genes in between the two points c1

and c2 are interchanged between the parent's

chromosomes and so Nr/2 children chromosomes

are obtained. The crossover points c1 and c2 are

determined as follows

3

)(

1

i
cG

c  (5)

2

)(

12

i
cG

cc  (6)

Figure.2 Proposed Adaptive Genetic Algorithm Flow

Diagram

200

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.21

Now, we have the children chromosomes are

stored separately and their corresponding indices

from Gc
(i) are stored in Gc1

(i). Then, the mutation is

accomplished by replacing Nm number of genes from

every chromosome with new genes. The replaced

genes are the randomly generated genes without any

repetition within the chromosome. Then,

chromosomes which are selected for crossover

operation, and the chromosomes which are obtained

from the mutation are combined, and so the

population pool is filled up with the Nr

chromosomes. Then, the process is repeated

iteratively until it reaches a maximum iteration of I'm.

The final step is the convergence process where it

decides when to stop. Convergence step can be

defined previously at a given threshold or maximum

iteration can be calculated when above steps repeat

the same value.

Formerly the dependency of the software are

found out, its maintainability can be calculated

approximately and improved software can be

structured when a software is planned in such a way

that improved dependency can be happened which

further results in improved maintainability. The

maintainability of the software moreover

manipulates its dependability to a great extent.

4.1.2 Mathematical Modeling for Making

Software Maintainable

In stating the quality of the software, the

maintainability of the software acts the main

responsibility. As a utility of directly or indirectly

calculable features, most maintainability evaluation

models explain maintainability. Evaluating

maintainability is, on the other hand, a disreputably

hard task. Calculating approximately maintainability

in a quantitative method is hard and there is no

generally admitted measure for it. There are, still, a

lot of issues that are agreed upon to influence

maintainability. With statistical calculations, most of

those features can be calculated approximately or

measured. Conversely, the maintainability model we

suggested now is based on the cost of the software

which relates to maintainability a great extent.

Maintainability is normally said as a function of

characteristics as given by,

)........3,2,1(naaaaFM  (7)

The major characteristic that is regarded in our

technique is the cost of the software and based on

this our approach is planned.

The suggested model is based on two effortless

statements:

 When making alterations to a software

system with no clearly seeking to develop it,

its maintainability will reduce, or at the very

slightest it will stay unaffected.

 Executing alterations in a software system

with poorer maintainability is costlier.

The cost can relate the maintainability of the

software which relates to the initial statement we

prepared,

)0()()(
)(

 gttgR
dt

tdM
 (8)

In the above eq, the term
dt

tdM)(
signifies the rate

of change of the maintainability with respect to time

and R(t)ϕ(t) signifies the line changed in the

software and g is unvarying which signifies the

maintainability reduction which is caused by

changing the line in the code during maintainability.

The related equation is specified as below

according to the second statement,

)(

)()()(

tM

ttR
z

dt

tdC 


 (9)

In the above eq, z is the cutback constant and

dt

tdC)(
 is the changes in the cost while changing the

code. From the phrase, it is obvious that

maintainability and rate of change of the code are

inversely related which says that as the

maintainability is reduced when the cost invested for

the code change raise and vice versa.

So from the eqn.9 it is obvious that for the

software to be extremely maintainable the cost

invested for the change of the code in the software

must be in a particular amount and so the

maintainability can be made simpler and effectual.

Currently, by relating the eqn.7 and eqn.8 we

enter at a concluding relation which is specified

below,

 )()(
)0()1(

01 tCtC
z

g

tMtM


 

(10)

We relate the maintainability and the cost at

two-time intervals t1and t0 as illustrated in the eqn.10.

The maintainability of the software will be reduced

exponentially with the cost of the software is made

obvious from the above eq, while changing the

codes. This bring to a close that for a software to be

extremely maintainable, the cost must be made

lesser for changing the codes and this factor offers

the result that for software planned with ease of

alteration or changes of the code can stay as

extremely maintainable. Therefore, while planning

software the cost necessary while changing the code

201

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.21

has to be regarded as the main factor so that we can

plan software which is of high maintainability.

The maintainability of the software can be

amplified by knowing the cost necessary for the

future. While planning novel software, the coding

should be prepared with the evaluation of the cost

necessary in the future for repairs of the software.

By discerning this cost value one can make the

software absolutely maintainable. By comparing the

equations described above, a phrase for the

computation of the cost of the software can be

obtained by taking the combination of the means as

specified below,

 

t

ssR
sM

g
t

ssR
g

z
tC

0

)()((
)(

0

)()((ln)( (11)

The eqn.11 can be made simpler as specified

below,



t

ssR
sM

g

g

z
tC

0

)()((
)(

1ln)( (12)

The eqn.12 offers the phrase for computing the

cost for the future in planning the software. As a

result, by calculating the cost necessary for altering

the software in the future we can plan software with

high maintainability so by enhancing the quality of

the software.

4.2 Software Reliability

To a great extend, the quality of the software

depends on its dependability. The more dependable

one software is, the higher is its quality. In a

software product incessant accessibility is necessary

and for this, the dependability plays the main

responsibility. Normally due to the imperfections

that happen during the manufacturing of software,

the dependability of the software is influenced. The

most important reason for the defects in software is

due to the inaccurate execution. Imperfection

compacts with estimating the total number of faults

in the software. The faults are chiefly generated

during the software planning and these faults

confirm to be the major reason for determining the

dependability of software. For software to be very

maintainable, the amount of fault in that software

must be calculated approximately properly and

should be taken away. In order to estimate the

imperfection rate happening in software’s, different

models have been devised. The Rayleigh model is

more appropriate and easier model for locating the

dependability of the software and it belongs to the

family of Weibull allocation. It assists in

recognizing the imperfection rate accessible in the

software by calculating the faults present in software

at certain time cases. The imperfection rate can be

computed by measuring the amount of mistakes and

the time intervals which more assists in locating the

dependability of the software.

The Rayleigh defect forecast function is as

specified below,

   tmtKftF ,,

(13)

 where,

 K is the total defect

 to is the maximum peak time

 t is the actual time

At first, the imperfections in the software are to

be distinguished in Rayleigh model. For this, the

software is performed and the run-time faults in the

software are found out. The time of incidence of the

fault is moreover calculated. From this, the peak

time and the time variation in every occurrence of a

mistake are moreover noted and by means of these

measures the Rayleigh function is worked out. For

the dissimilar versions of the software the

imperfections rates are calculated and by means of

these values, the Rayleigh function is located.

Following measuring K and to, the Rayleigh

function can be signified as specified below,

   







 
222/12/1)(tpeaktepeakKtf

(14)

Where,

 peak - maximum time value.

The Rayleigh function can be computed by

means of the eq (14) once the total number

imperfections (K), peak value and actual time t are

founded. The Rayleigh function presents the

imperfection rate of the software. By discerning the

imperfection rate for software its dependability can

be calculated. For improved dependable software

the imperfection rate must be low. Now by the

similar formula, the dependability value for the three

versions of the MySQL software are worked out and

the version with less imperfection rate offers

improved dependability value and the relation with

maintainability of the software version is moreover

verified.

5. Result and Discussion

As mentioned in the above section, various

design quality metrics of the software were

extracted using the JDepend tool and these metrics

are grouped into non-dependent and dependent

packages based on the values of each metrics

extracted using JDepend tool. Table 1 shows the

percentage of non-dependable and dependable

202

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.21

packages for the three versions of the MySQL software.

Table 1. Percentage of Dependable and Non-Dependable Packages

Open

Source

Software

Non

dependent

package(A=0)

and (I=1)

(Np)

Dependent

package

(Ce=0)

and (I=0)

(Dp)

Percentage

of Non-

dependable

package

(Np/Tp)

Percentage

of

dependable

package

(Dp/Tp)

Total

Package

(Tp)

MySQL-

3.0.15

5 12 29.41 70.59 17

MySQL-

5.0.7

6 15 28.57 71.43 21

MySQL-

5.1.8

6 17 26.09 73.91 23

For different versions of the software, the

quality metrics are found out and the non-dependent

and dependent packages count are calculated. The

packages with Abstractness ‘0’ and Instability value

‘1’ are grouped under the Non-dependent package

and its count is calculated and similarly the

packages with Efferent coupling ‘0’ and Instability

value ‘1’ are grouped under the Dependent package

and its count is calculated. The total packages of

software are also measured. The ratio between the

count of the Nondependable package and the total

package is measured which gives percentage value

for Non-dependable package and ratio between the

count of the dependable package and the total

package is measured which gives percentage value

for the Dependable package. The percentage values

are shown in the below table 1.

Fig 2 shows the plot of percentage values of the

three versions of the MySQL software along with a

total number of the packages analyzed for

measuring the maintainability value.

As shown in the fig, the dependable packages of

all the three versions MySQL-3.0.15, MySQL-5.0.7

and MySQL-5.1.8 are dominant when compared to

the non-dependent packages and the values are

increasing along the newer versions which satisfy

the criteria for the software to be highly

maintainable.

The experiment shows that the reliability of the

software is increased as its version is increased and

so the quality of the software also tends to increase

with reliability. The reliability of the software is

then calculated to find its relation with the

maintainability. Table 2 shows the reliability value

for the three version of the MySQL software. As

shown in the table, the higher version of the software

has the improved reliability.

Figure.2 Graphical representation of extracted values

from the table

Table 2. Reliability of the software

Open Source

Software

Reliability

MySQL-3.0.15 3.853

MySQL-5.0.7 4.214

MySQL-5.1.8 4.214

The reliability value for each higher version is

increasing as that of the dependable package

percentage. The graph is plotted for various version

of the MySQL software with its reliability values

and is shown in Fig 3.,

From the Fig 2 and Fig 3, it is clear that as the

dependent package value of the software increases

along the higher versions of the software, the

reliability of the software also improved and

MySQL version 5 has the better reliability value

when compared with its previous version.

203

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.21

Figure.3 Reliability plot for various version of MySQL

software

Figure.4 Relation between maintainability and reliability

As the maintainability of the software is

influenced more by the values of the dependable

package in software which increases through the

higher version, it is concluded that the

maintainability and reliability of the software are

directly proportional to each other. The software

with better maintainability is more reliable and

provides higher quality as software. The relation

between the maintainability and reliability of the

software is given in Fig 4 using the table 1 and 2.

From the consequences of our suggested method,

it is obvious that the software must be planned in

such a manner that the count of the reliable

packages of the multiple versions of the software is

to be higher when compared to the Non-dependent

package count so as to offer improved

maintainability and dependability for the software.

Comparative Analysis

In our proposed method we are analyzing the

quality of the software in terms of maintainability

and reliability.

Table 2. Maintainability Comparison with existing

techniques

Actual Maintainability 1

Proposed Method using AGA 0.985

Maintainability calculation

using GA

0.951

Existing Method [29] 0.975

Here the maintainability can be measured using

AGA which is compared with conventional GA.

From the table, we observed that the maintainability

can be measure accurately by using our proposed

method using Adaptive Genetic Algorithm. Our

performance is nearer to the actual maintainability

value. So the correlation will be significant at 0.01

level.

6. Conclusion

In this paper, we have studied the relationships

among different design metrics and their influence

on the maintainability of a software system. Further,

we also studied the relationships between the

dependability and maintainability of software. Using

the quality metrics, three versions of MySQL

software were taken and the maintainability of that

software version is identified. Later, the

dependability of these software versions is

computed by means of the Rayleigh’s method. The

maintainability of a software system would be

improved if all the three criteria are contented and

the imperfection rate of the software is computed to

discover the dependability of the software. The

correlation is verified and it is found that when there

is enhanced maintainability of the software there is

more dependability for that version.

In future work, we will be focusing on

measuring other quality metrics such as portability,

testability etc… which are proposed in the ISO 9126

standard. A quality index can be developed whereby

software companies can be ranked.

Reference

[1] J. A. Dallal, "Mathematical Validation of Object-

Oriented Class Cohesion Metrics", International

Journal Of Computers, Vol. 4, No. 2, 2010.

[2] H. Orsila, J. Geldenhuys, A. Ruokonen and I.

Hammouda, "Update Propagation Practices in Highly

Reusable Open Source Components", In.proc.of 20th

World Computer Congress on Open Source Software,

Milano, Italy, Vol. 275, pp. 159-170, 2008.

[3] A. Olszak, E. Bouwers, B. N. Jrgensen and J. Visser,

"Detection of Seed Methods for Quantification of

Feature Confinement", In proc. of the 50th

International Conference on Objects, Models,

Components, Patterns, 2012.

204

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.21

[4] A. Handa, "Software Quality Analysis by Object

Oriented Approach in Design Phase Using UML",

International Journal of Computer Technology and

Electronics Engineering, Vol. 1, No. 3, 2012.

[5] S. Babu and R. M. S. Parvathi, "Development of

Dynamic Coupling Measurement of Distributed

Object Oriented Software Based on Trace Events",

European Journal of Scientific Research, Vol. 69,

No. 4, pp. 527-540, 2012.

[6] R. E. A. Qutaish and M. I. Muhairat, "The Analytical

Hierarchy Process as a Tool to Select Open Source

Software", In. proc. of the 8th WSEAS Int.

Conference on Software Engineering, Parallel And

Distributed Systems, pp. 39-44, 2009.

[7] N. Mohamed, M. S. A. Seman and R. Hussein, "Open

Source Software in Information Technology

Education", In.proc.of International Conference on

Information Management and Engineering, pp. 99-

102, 2009.

[8]S. Karus and M. Dumasa, "Predicting the

Maintainability of XSL Transformations", Journal

on Science of Computer Programming, Vol. 76, No.

12, 2011.

 [9] T. Goldschmidt, R. Reussner and J. Winzen, "A Case

Study Evaluation of Maintainability and Performance

of Persistency Techniques", In. Proc.of the 30th

international conference on Software engineering

New York, USA, 2008.

[10] Kebler, Steffen, Alpar and Paul, "Do Best Practice

Frameworks Fit Open Source Software

Customization”, In.proc.of 17th European

Conference on Information Systems, pp. 2339-2350,

2009.

[11] R. P. L. Buse and W. R. Weimer, "A Metric for

Software Readability", In.Proc.of the int. symposium

on Software testing and analysis, New York, 2008.

 [12] A. Haider and A. Koronios, "Issues of Open Source

Software Uptake in Australian Government

Agencies", Journal in Communications of the IBIMA,

Vol. 6, No. 10, pp. 62-66, 2008.

[13] J. A. Dallal, "Software Similarity-Based Functional

Cohesion Metric”, Journal of IET Software, Vol. 3,

No. 1, pp. 46-57, 2009.

[14] M. Riaz, E. Mendes and E. Tempero, "A Systematic

Review of Software Maintainability Prediction and

Metrics”, In .proc.of Third Int. Symposium on

Empirical Software Engineering and Measurement,

2009.

[15] D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas,

P. J. Adams, I. Samoladas and I. Stamelos, "

Evaluating the Quality of Open Source Software",

Electronic Notes in Theoretical Computer Science,

Vol. 233, pp. 5-28, 2009.

[16] R. Baggen, K. Schill and J. Visser, "Standardized

Code Quality Benchmarking for Improving Software

Maintainability", In.proc.of the 4th International

Workshop on Software Quality and Maintainability ,

Madrid, Spain, 2010.

[17]A Shri, P. S. Sandhu, V. Gupta and S. Anand, "

Prediction of Reusability of Object Oriented

Software Systems using Clustering Approach",

World Academy of Science, Engineering and

Technology, Vol. 67, pp. 853-856, 2010.

[18] A. Riordan, "Aspect-Oriented Reengineering of an

Object-oriented Library in a Short Iteration Agile

Process", Informatica, Vol. 35, pp. 499-511, 2011.

[19] U. S. Poornima, "Unified Design Quality Metric

Tool for Object-Oriented Approach including other

Principles", International Journal of Computer

Applications, Vol. 26, No. 7, pp. 0975-8887, 2011.

[20] A. Sharma, S. K. Dubey and A. Rana, "Ontologies

and Review on Maintainability Models for Object

Oriented Software System", VSRD International

journal of Computer Science and Information

Technology, Vol. 2, No. 1, pp. 23-32, 2012.

[21] P. Antonellis, D. Antoniou, Y. Kanellopoulos, C.

Makris, E. Theodoridis, C. Tjortjis and N. Tsirakis, "

Clustering for Monitoring Software Systems

Maintainability Evolution", Journal of Electronic

Notes in Theoretical Computer Science (ENTCS) ,

Vol. 233, 2009.

[22] S. W. A. Rizvi and R. A. Khan, "Maintainability

Estimation Model for Object-Oriented Software in

Design Phase (MEMOOD)", Journal Of Computing,

Vol. 2, No. 4, pp. 26-32, 2010.

[23] M. Zurini, "Improving Email Host Security using

Maintainability of Open Source Bayesian Spam

Filters", Open Source Science Journal, Vol. 2, No. 3,

2010.

 [24] S. K. Dubey, A. Sharma, and A. Rana, "Analysis of

Maintainability Models for Object Oriented System",

Int. Journal on Computer Science and Engg., Vol. 3,

No. 12, pp. 3837-3844, 2011.

[25] R. Shatnawi and W. Li, "An Empirical Assessment

of Refactoring Impact on Software Quality Using a

Hierarchical Quality Model", International Journal

of Software Engineering and Its Applications, Vol. 5,

No. 4, 2011.

[26] A. Shaik, C. R. K. Reddy and A. Damodaram,

"Object Oriented Software Metrics and Quality

Assessment: Current State of the Art", International

Journal of Computer Applications, Vol. 37, No. 11,

pp.0975-8887, 2012.

[27] A. W. R. Emanuel, R. Wardoyo and J. E. Istiyanto,

"Modularity Index Metrics for Java-Based Open

Source Software Projects", Int. Journal of Advanced

Computer Science and Applications, Vol. 2, No. 11,

2011.

[28] K.G. Madhwaraj and Chitra Babu, “An Empirical

Investigation of the Influence of Object Oriented

Design Quality Metrics on the Package

Maintainability of Open Source Software”, Journal

of Computer Science and Engineering, Vol. 9, No. 2,

pp. 30-37, 2011

[29] S. W. A. Rizvi and R. A. Khan, “Maintainability

Estimation Model for ObjectOriented Software in

Design Phase (MEMOOD)”, Journal of Computing,

Vol. 2, No. 4, 2010.

