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Abstract: Spatial data mining is a rapidly growing field for analysing the data related to space and time. Nowadays 

most of the applications are based on these factors, so numerous data mining algorithms are developed for spatial 

characterization and to analyse the spatial trends. The spatial trend analysis determines the change in pattern of some 

non-spatial attributes on neighbourhood objects. In this paper, we identify spatio-temporal mobility pattern on the 

dynamics of Epidemic disease (H1N1) that plays a significant role in analysing the outbreak of an infectious disease. 

Modelling the transmission among the human population with respect to time and space leads to improved 

understanding of transmission mechanisms. A compartmental model is designed to characterize the disease 

dynamics of a random variable extracted from binomial and multinomial distribution. ArcGIS tool is used to 

visualize the mobility distribution of the infected host spatially and yields an output of frequent mobility locations 

with respect to different time slices. The results thus obtained would help the district administrative authorities to 

take strategic decisions and prevent the spread of the disease. 
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1. Introduction 

              Spatio-temporal field in Data Mining has 

gained high popularity in geographic data sciences 

because of the pervasiveness of a wide range of 

location based or ecological gadgets that record 

position, time or/and natural properties of an item or 

set of objects in real time. So, different approach is 

required to deal with knowledge discovery and the 

challenges in information analysis for different 

kinds of spatio-temporal data. Adapting more about 

individuals mobility is an essential task for 

administrative leaders and urban organizers. 

Mobility information describes the properties of 

objects in various locations over time and in 

addition movements of individuals between the 

locations. The investigation of mobility data is a 

difficult task to understand the spatio-temporal 

changes due to its different spatial location. For each 

object in each time period, there is more number of 

measurements associated with them, which is not 

feasible to analyze every measurement in a complex 

time series. Thus the series of time are analyzed in 

terms of time slices that represent unique temporal 

features within which discovery of pattern analysis 

can be focused. Tracking the spatial change over the 

time intervals is a challenging and difficult task. The 

main motivation of this paper is to identify the 

change and dynamics in spatial-temporal pattern 

analysis over the mobility of objects in Health 

Analytics. 

           2009, H1N1 (swine flu) is a new influenza 

virus similar to regular seasonal influenza virus that 

spreads from person-to-person through contact of an 

infected individual or transportation. Transportation 

via air traffic has largely contributed to this rapid 

spread across the globe. The rapidity of the spread 

depends on the nature of the growing population and 

the mobility of the infected agent [1]. Though the 

practice of using concrete data and evidence to 

support medical decisions has existed for centuries 
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[2], the first outbreak of swine flu was discovered 

only four months after the first outbreak in India. 

The country’s first swine flu death, that of a 14-

year-old school girl on August 3, 2009 followed by 

many more patients succumbing to the disease in the 

span of just over a week set off a panic attack that 

was spreading faster than the outbreak itself which 

is now re-emerging in the state.  

            A total of 3,315 lives have been lost and 

27,236 had been infected due to H1N1 in India. In 

2010, the deaths went up to 1,763 while the number 

of cases remained around 20,000. In 2011 and 2012, 

603 and 5,044 persons, respectively, were diagnosed 

positive for the disease and total 480 deaths were 

reported. Since January this year, there have been 

more than 494 cases of Swine Flu and 95 deaths all 

over the country. Rajasthan tops the list with 54 

deaths followed by Gujarat (six), Maharashtra and 

Delhi (four each). The World Health Organization 

(WHO) has reported that in the post-pandemic 

period, India had experienced outbreaks during the 

period August to October, 2010; May to July 2011; 

March and October 2012 and also in January-

February 2016 (Fact sheet of H1N1,WHO [3]). 

          In a globalized world, infectious diseases such 

as SARS, swine flu or seasonal influenza can be 

spread over the entire planet by travellers. To enable 

a more effective response to this hazard, researchers 

are trying to predict the transmission paths and 

speed of such epidemics. Mathematical models were 

developed to identify the individual mobility 

patterns. Human beings are the most complex 

unknown system to predict epidemics and their 

transmission. The spread of disease entirely depends 

on how the infected individual travels. Generally, in 

traditional models the human mobility patterns [4] 

were idealised because it was difficult to refine them 

mathematically. Earlier epidemic models bypassed 

this problem by applying the simplified assumption 

that an infection spreads according to the principles 

of diffusion. Literature studies have proved that it is 

difficult to reflect all aspects of human mobility in 

the whole huge population. It simplifies the problem 

by assuming that each person visit every possible 

location or it ignores the members of a population, 

as individuals are considered to reach unique source 

and destination. This results in an individual 

mobility network which consists of the limited 

number of destinations that the person will travel to. 

In our proposed model, the mobility pattern on 

locations is identified rather than mobility pattern on 

individual in the population. Any type of epidemic 

disease can be classified into various stages namely 

susceptible (who are not infected), Infected (who are 

infected with the disease), Recovered and Death 

compartments. The dynamics of the disease can be 

determined by number of people who transit from 

one compartment to other compartment. The 

transition of human alone is not sufficient to 

evaluate the dynamics of disease spread. 

Additionally, it requires analysis of mobility pattern 

in various locations and time is required to take a 

good decision for the administrators. 

        The main contributions of this paper are as 

follows, 

(i) A compartmental model (SLITR) is designed to 

capture the various disease transition state in the 

epidemic disease.  

(ii) The rate of change of individual in various 

compartments during the transition of disease is 

defined using differential equations   

(iii) The dynamics of mobility on the epidemic 

model with respect spatial (location) and temporal 

(time) aspect is determined based on distributive 

approach using multinomial distribution. 

(iv) The distributive approach is implemented using 

Matlab and simulated using Quantum GIS software. 

(v) The proposed compartmental model (SLITR) is 

compared with other epidemic model (SIR, SEIR) 

and proves that the result of the proposed model is 

closer to the real dataset. 

(vi) The significant contribution from this spatio-

temporal analysis can be used by the district 

administrative officers to control the spread or to 

make decision on prevention strategies like 

vaccination 

         The paper is organised as follows, Section 2 

discuss about the related work, Modelling the 

compartmental model is given in Section 3, 

Implementation and results are discussed in Section 

4 and finally Section 5 concludes the work. 

 

2. Related work 
 

Recently, mining patterns in spatio-temporal 

data [5] has been a popular area of research in the 

field of data mining. The change of pattern [6][7] in 

data with respect to space and time is considered to 

be interesting part of spatio-temporal data 

mining.W.O.  Kermack (1927) laid the foundation 

[8] for modeling the spread of epidemics. The very 

first mathematical model [9][10] is SIR model 

where the closed population is subdivided into 

Susceptibles, Infectives and Recovered individuals. 

Each infective is infectious for a certain period of 

time. The infected individual gets contact with the 

susceptibles who will then become infective. After a 

certain period, the individual is removed, by 

immunization or by death. The above model is 
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proved by certain assumptions [11] like a total 

population is kept constant, recovered individuals 

are not infected again, age and population structure 

is not considered.  

Recent methods of ubiquitous computing have 

generated large amounts of human behavioural data. 

The social and human dynamics are key elements 

for the effective modelling of virus spreading. 

Traditional epidemiologic models do not capture 

individual information and hence have a complex 

nature in the ability of disease spreading process. To 

overcome this limitation, agent based approaches 

are used widely to model spread of epidemic disease. 

In agent based modelling (ABM) individual human 

behaviour [12][13] and its inherent fuzziness are 

simulated by representing every person as a 

software agent. In ABM model each agent is 

characterized with a variety of variables that are 

related to spread of disease such as social 

characteristics, socio-economic status, health status, 

etc. Even in these approaches the mobility pattern of 

human or spatio-temporal aspect is not discussed. 

SIR model is based on Agent Based Modeling 

(ABM) [14] to model the infectious individual 

interactions based on space, time, age and 

population structure. The ability to model the spread 

of disease is a critical issue for governments and 

health organizations. As the behaviour of agent 

depends on the census or survey data they fail to 

model the spatio temporal dynamics of human 

behaviour. 

    The next compartmental model designed 

specifically for sexually transmitted disease is SIS 

model where the susceptible individuals become 

infected and they become susceptible again. A 

slightly varied model SEIR [15], includes 

Susceptible individuals who are Exposed to the 

environment and become Infectious and then enter 

into the Recovered compartment. The SEIAHR [16] 

model categorizes the infected individual as 

symptomatic and asymptomatic infectious 

individual. The symptomatic individual either go for 

recovered or treated compartment whereas the 

asymptomatic individual transit to the recovered 

compartment. The combination of SEIRD and 

SEIAHR model is designed as SELMAHRD. In all 

the models discussed vaccination rate is taken into 

account but in SVEIR [17] model it refers to the 

possible states of Susceptible, Vaccination, Exposed, 

Infected and Recovered where the vaccinated people 

directly enter into recovered compartment 

            The compartmental models do not focus on 

mobility of the individual [18]. In general the 

deterministic models fail to consider the spatial 

aspects of spread of an epidemic, individual contact 

process and the individual behaviour. Global 

epidemic and mobility computational model [19] 

uses human mobility patterns at a global scale. The 

spatial spread of epidemic disease is modelled using 

the SEIR where the treated and death compartment 

is not analysed. The proposed compartmental model, 

analyse the mobility pattern of human population 

with disease dynamics in all the compartments with 

respect to time. Different levels of population and 

human mobility patterns are the most important 

factors for spread of disease [20][21]. The 

bidirectional movement of an individual mobility 

network [22][23]  between home and other locations 

is analyzed for the spread of disease. The mobility 

of the human can be based on the status of the 

number of infected individuals in that location [24]. 

The spatio-temporal pattern for global epidemic is 

based on the commuting flows within the local and 

global population [25][26]. Segolene et al., [27] 

divides the commuting network from residence to 

work or school and uses road network to find the 

local spread of disease. Two groups are compared 

using Jaccard index, where the two districts that are 

paired in each network is derived. As a result the 

spatial spread of the disease was driven more by 

school commuting than by work commuting. 

Depending on the age category and commuting 

network different patterns of spread are involved in 

transmission. But this study fails to analyse the 

temporal aspects which is one of the key feature in 

epidemic dynamics. Planning for a pandemic (e.g., 

H1N1, influenza, etc) is a public health priority of 

any government. Traditional epidemiological 

approaches are purely based differential equations 

that divide the population into various subgroups 

based on the nature and characteristics of the disease. 

Although they are extremely successful in guiding 

and making decision in health policies, these models 

fail to capture the complexity in human mobility   

         The proposed study models the transmission of 

disease with epidemic dynamics derived from 

mobility network with respect to various time slices. 

The study area includes the densely populated 

locations like schools, colleges, work place and 

specifically hospitals. This paper focuses on a new 

deterministic model for the spread of H1N1 in India 

one of the densely populated countries in the world. 

This model considers the mobility of the individual 

which perhaps, is one of the major strengths to 

determine the infection rate. Densely populated 

locations are chosen and the spatial mobility of 

infected individuals over space and time is 

considered to analyse the disease dynamics. Given 

the importance of spatial spread of human infectious 

diseases, this study demonstrates the crucial role 
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played by human mobility in the spread of epidemic 

disease. A compartmental model with Susceptible, 

Latent, Infectious and Treatment and Recovered 

compartments is designed taking into account the 

immunity of the individual.  To characterize the 

disease dynamics a random variable extracted from 

binomial and multinomial distribution is used.  In 

order to populate the disease spread model, based on 

the mobility of the individual road network data of 

the state is used.  Points of origin are selected based 

on the hospitals recognized for treating H1N1 that is 

in and around the state of Tamil Nadu, India .A 

transport rate factor is derived to estimate the 

mobility of the individual from one location to 

another based on the number of public transport 

plying. This transport rate is then integrated with the 

distribution function to determine the location which 

has the maximum mobility rate. ArcGIS tool is used 

to visualize the mobility distribution of the infected 

host. The following section describes the model and 

the method of analysis.  

 

3. Modelling of compartmental model 
 
              Epidemics can be modelled mathematically 

inorder to study the severity and prevention 

mechanism for spread of disease. A transmission 

disease model (SLITR) that is proposed for H1N1 

consists of various compartments (Figure 1) such as 

Susceptible, Latent, Infectious, Treatment and 

Recovered to compute the number of people in a 

population at any time. Initial population is 

considered in the susceptible compartment. The only 

way the people can leave the susceptible group is to 

become infected. The people who are infected go to 

latent and enter into infected compartment when 

they become infectious. Based on the mobility and 

symptoms, they are categorized into four 

compartments. People with symptoms are treated 

and people without symptoms are not treated. Based 

on the immunity the treated or non-treated people 

enter into recovered and death compartment.  

 

Representation of Symbols 

 

𝑆𝑖                Susceptible Individual at location j 

𝐿𝑗     Latent Individual at location j  

𝐼𝑗
𝑛𝑡   Symptomatic people who do not travel 

𝐼𝑗
𝑡
    Symptomatic people who travel 

𝐼𝑗
𝑎𝑡

     Asymptomatic people who travel 

𝐼𝑗
𝑎𝑛𝑡

        Asymptomatic people who do not travel 

𝑇𝑗
ℎ
           People who are treated 

𝑇𝑗
𝑛ℎ

          People who recover with low Immunity 

𝑅𝐻𝐼          People who recover with high Immunity 

𝐷             People who go to death compartment 

  

3.1 Geographical Dataset 

 

           The geographical dataset chosen is for Tamil 

Nadu one of the largest and seventh populous states 

in India that has the highest number of H1N1 

infection according to data (Table 1) provided by 

Government of Tamil Nadu, India. It has a 

population of 72,138,958 (2011 census) and covers 

an area of 130,058 km sq. It has a total of 32 

districts which are divided into 10 city corporations, 

125 municipalities, 529 town panchayats and 12,524 

village panchayats. In the literature, international air 

travel has proved to be a good prediction for the 

worldwide spread of SARS and influenza A/H1N1 

2009, but it was shown that intervention on the 

global air traffic would be of limited efficacy. At a 

more local scale, air travel is less relevant and other 

types of movement must be taken into account. 

Commuting, i.e. daily movements from residence to 

work, school, college and hospitals has been widely 

used to describe spatial mobility in models, using 

exhaustive datasets or gravity models. Since the 

spread of disease occurs due to the mobility of the 

infected individual, we consider road transportation 

to be the commuting network. 

 
3.2 Immunity Analysis 

 

           Immune system of human comprises of 

proteins, tissues and organs that work together to 

protect our body. Immune cells are made up of 

white blood cells or leukocytes. There are two types 

of leukocytes [28] namely B cells and T cells. The B 

cells produce antibodies and the T cells determine 

the immunity level of the person. The immunity 

level of the individual can be determined using age, 

vaccination and T cells factors. The normal value of 

T cells range between 500-1500 cells/mm. The T 

cell count for a H1N1 vaccinated person [29] must 

be greater than 200 cells/mm. The age factor is 

broadly categorized into three types namely 

category-1 whose age value between 1 and 25, 

category-2 (26-55) and category-3 (56-80). 

Immunity level of an individual either low or high is 

based on age, vaccination status and T cell count 

and is depicted in Figure 2. 
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                              Figure. 1 Compartmental model 

 

 

 

 

 

 

           

 

 

 

 

 

                                                  Figure. 2 Decision tree for Immunity 
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Table 1. A Report on Influenza A (H1N1) of various 

districts 

 

Sno State name Number of infected 

individual 

1 Andra Pradesh  41 

2 Kerala  25 

3 Maharastra   2 

4 Karnataka  6 

5 Pune   2 

6 Jharkhand  5 

7 U.P  1 

8 Pondicherry 1 

9 Manipur  1 

10 Meghalaya 1 

11 Jharkhand  5 

12 Tamil Nadu 297 

13 Others 45 

             Total 432 

 

3.3 Transition between the compartments 
 

            The Susceptible population (𝑆𝑖 ) enter into 

latent compartment ( 𝐿𝑗 ) with the probability of  

𝛽 ∆𝑡   where ∆𝑡  is the time interval. The symbol 

𝜀 denotes a small probability value that selects 

random action independent of the current action 

values. The latent individuals either transit to 

asymptomatic infectious compartment (𝐼𝑗
𝑎 ) with the 

probability of 𝑝𝑎  or they transit to the symptomatic 

infectious ( 𝐼𝑗 ) compartment with the probability 

of  (1 − 𝑝𝑎) . People with symptoms are further 

divided as who travel (𝐼𝑗
𝑡 ) with the probability of 

𝑝𝑡  and those who do not travel ( 𝐼𝑗
𝑛𝑡 ) with the 

probability of  (1 − 𝑝𝑡). People without symptoms 

are also classified as those who travel ( 𝐼𝑗
𝑎𝑡 ) and 

those who do not travel (𝐼𝑗
𝑎𝑛𝑡) with the probability 

of 𝑝𝑡  and (1 − 𝑝𝑡) . The entire symptomatic 

infectious person enters into treated compartment 

(𝑇𝑗
ℎ) with the probability of  𝑝ℎ. The probability at 

which an asymptomatic infectious person transit into 

compartment with no treatment (𝑇𝑗
𝑛ℎ ) is(1 − 𝑝ℎ). 

The probability of the treated individuals moving 

into the recovered compartment with high and low 

immune is µ∆t. Individuals who are not treated 

enters into 𝑅𝐻𝐼  (recovered with high immune). A 

person enters the death compartment (D) 

irrespective of being treated or not treated has a 

probability of 1- µ in the time step ∆t. The transition 

between each compartment is summarized (Table 2) 

as follows 

 
        

 

Table 2. Transition between each compartment 

                                                                                                                                                                                                                                        

 

Transition Rate 

𝑺𝒊 → 𝑳𝒋 𝛽 

𝑳𝒊 → 𝑰𝒋
𝒕 𝜀𝑝𝑡(1 − 𝑝𝑎) 

𝑳𝒊 → 𝑰𝒋
𝒏𝒕 𝜀(1 − 𝑝𝑡)(1 − 𝑝𝑎) 

𝑳𝒊 → 𝑰𝒋
𝒂𝒕 𝜀𝑝𝑡𝑝𝑎  

𝑳𝒊 → 𝑰𝒋
𝒂𝒏𝒕 𝜀(1 − 𝑝𝑡)𝑝𝑎 

𝑰𝒋
𝒕, 𝑰𝒋

𝒏𝒕 → 𝑻𝒋
𝒉 𝜀𝑝ℎ  

𝑰𝒋
𝒂𝒕, 𝑰𝒋

𝒂𝒏𝒕 → 𝑻𝒋
𝒏𝒉 𝜀(1 − 𝑝ℎ) 

𝑻𝒋
𝒉 → 𝑹𝑳𝑰, 𝑹𝑯𝑰 𝜇 

𝑻𝒋
𝒏𝒉 → 𝑹𝑯𝑰 𝜇  

𝑻𝒋
𝒉, 𝑻𝒋

𝒏𝒉 → 𝑫 (1 − 𝜇) 

 

 

SLITR model can be described by the following 

system of differential equations from Equation (1) to 

Equation (11). These equations find the number of 

people in each compartment at time t.  

 
𝑑𝑆

𝑑𝑡
= 𝑁 − 𝛽𝑆                                                         (1)  

 
𝑑𝐿

𝑑𝑡
= 𝛽𝑆 − ((1 − 𝑝𝑡)(1 − 𝑝𝑎) + 𝑝𝑡(1 − 𝑝𝑎) +

          𝑝𝑡𝑝𝑎 + (1 − 𝑝𝑡)𝑝𝑎)𝐿                                   (2) 

 
𝑑𝐼𝑛𝑡

𝑑𝑡
= ((1 − 𝑝𝑡)(1 − 𝑝𝑎))𝐿 − 𝑝ℎ𝐼𝑛𝑡                    (3) 

 
𝑑𝐼𝑡

𝑑𝑡
= (𝑝𝑡(1 − 𝑝𝑎))𝐿 − 𝑝ℎ𝐼𝑡                                  (4) 

 
𝑑𝐼𝑎𝑛𝑡

𝑑𝑡
= 𝑝𝑡𝑝𝑎𝐿 − (1 − 𝑝ℎ)𝐼𝑎𝑛𝑡                              (5) 

 
𝑑𝐼𝑎𝑡

𝑑𝑡
= (1 − 𝑝𝑡)𝑝𝑎𝐿 − (1 − 𝑝ℎ)𝐼𝑎𝑡                        (6) 

 
𝑑𝑇ℎ 

𝑑𝑡
=  𝑝ℎ(𝐼𝑛𝑡 + 𝐼𝑡) − 𝜇𝑇ℎ                                    (7) 

 
𝑑𝑇𝑛ℎ

𝑑𝑡
= (1 − 𝑝ℎ)(𝐼𝑎𝑛𝑡 + 𝐼𝑎𝑡) − 𝑇𝑛ℎ                      (8) 

 
𝑑𝑅𝐿𝐼

𝑑𝑡
= 𝜇𝑇ℎ                                                             (9) 

 
𝑑𝑅𝐻𝐼

𝑑𝑡
= 𝜇(𝑇ℎ + 𝑇𝑛ℎ)                                             (10) 

 
𝑑𝐷

𝑑𝑡
= (1 − 𝜇)(𝑇ℎ + 𝑇𝑛ℎ)                                      (11) 
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3.4 Epidemic disease dynamics 

 
       The proposed compartmental model is designed 

to know the transmission of disease due to mobility 

of the infected individual. Once the mobility and 

disease dynamics are defined, the number of 

individuals in subpopulation j and in each 

compartment follows a stochastic and discrete 

dynamic equation that is given as  

 

𝐶𝑗
[𝑚]

(𝑡 + ∆𝑡) − ∆𝐶𝑗
[𝑚]

(𝑡) = ∆𝐶𝑗
[𝑚]

+ 𝜑𝑗([𝑚])   (12)     

                                                                                                          

where, ∆𝐶𝑗
[𝑚]

 represents the change due to 

compartment transition induced by the disease 

dynamics and transport operator 𝜑𝑗([𝑚]), denotes 

the variations due to the mobility of individuals over 

the road commuting network. The transport operator 

is then integrated with epidemic dynamics with a 

minimum time scale of one day.  The following 

section discuss about the epidemic transition 

( ∆𝐶𝑗
[𝑚]

)  and integration of mobility in epidemics 

using transport operator  𝜑𝑗([𝑚]) .  ∆𝐶𝑗
[𝑚]

can be 

given as a combination of set of operators 

𝐷𝑗([𝑚], [𝑛])   which denotes the number of 

transitions from compartment m to n in ∆𝑡 . This 

transition is simulated as a random variable 

extracted from the multinomial and binomial 

distribution. The ∆𝐶𝑗
[𝑚]

 is given by the sum of 

 

∆𝐶𝑗
[𝑚]

= ∑  {−𝐷𝑗([𝑚], [𝑛] + 𝐷𝑗[𝑛][𝑚])}𝑛           (13) 

 

There are four transitions from latent compartment 

(𝑳𝒋 ) such as transitions to the traveling and non-

traveling symptomatic infectious and transition to 

the travelling and non-travelling asymptomatic 

infectious compartments. The number of transition 

acting on 𝑳𝒋 is given by multinomial distribution 

[30]. 

 

𝐴𝑀𝑢𝑙𝑡𝑖(𝐿𝑗(𝑡), 𝑝𝐿𝑗
→ 𝐼𝑗

𝑡 , 𝑝𝐿𝑗
→ 𝐼𝑗

𝑛𝑡, 𝑝𝐿𝑗
→ 𝐼𝑗

𝑎𝑡, 𝑝𝐿𝑗
→

𝐼𝑗
𝑎𝑛𝑡)                                                                     (14) 

where the transition probabilities, 

𝑝𝐿𝑗
→ 𝐼𝑗

𝑡 = 𝜀𝑝𝑡(1 − 𝑝𝑎)∆𝑡                                                                                                                          

𝑝𝐿𝑗
→ 𝐼𝑗

𝑛𝑡 = 𝜀(1 − 𝑝𝑡)(1 − 𝑝𝑎)∆𝑡 

𝑝𝐿𝑗
→ 𝐼𝑗

𝑎𝑡 = 𝜀𝑝𝑡𝑝𝑎∆𝑡 

𝑝𝐿𝑗
→ 𝐼𝑗

𝑎𝑛𝑡 = 𝜀(1 − 𝑝𝑡)𝑝𝑎∆𝑡 

 

𝐿𝑗(𝑡) represent the number of individual in the latent 

compartment. Binomial distribution is used to 

determine the increase in the population of latent 

compartment 

 

𝐴𝑏𝑖𝑛(𝑆𝑗(𝑡), 𝑝𝑆𝑗
→ 𝐿𝑗                                                  (15)                                                                                                               

                 
where the transition probability is denoted by 

𝑝𝑆𝑗
→ 𝐿𝑗 = 𝛽∆𝑡                                                                                                                                         

For a given force of infection (𝛽), in subpopulation j, 

each individual in the susceptible compartment (𝑆𝑗)  

acquires the infection and enters the latent 

compartment ( 𝐿𝑗)  with the probability of  𝛽∆𝑡  , 

where ∆𝑡  is the time interval. The number of 

individuals moving from latent to infectious 

compartment at time t is generated using probability 

distribution functions is defined as follows.  

 

∆𝐿𝑗(𝑡) = −[𝐷𝑗(𝐿, 𝐼𝑡) + 𝐷𝑗(𝐿, 𝐼𝑛𝑡) + 𝐷𝑗(𝐿, 𝐼𝑎𝑡) +

𝐷𝑗(𝐿, 𝐼𝑎𝑛𝑡)] + 𝐷𝑗(𝑆, 𝐿)                                         (16)   

 

The transition of people from treated ( 𝑇𝑗
ℎ ) to 

recovered and death compartment is determined 

using the multinomial distribution 

                

𝐴𝑀𝑢𝑙𝑡𝑖(𝑇𝑗
ℎ(𝑡), 𝑝

𝑇𝑗
ℎ → 𝑅𝐿𝐼 , 𝑝

𝑇𝑗
ℎ → 𝑅𝐻𝐼 , 𝑝

𝑇𝑗
ℎ → 𝐷)                                                                                 

                   

(17)                                                                      

The incoming population for 𝑇𝑗
ℎ(𝑡) is given by 

 

𝐴𝑏𝑖𝑛(𝑝𝐼𝑗
𝑡 → 𝑇𝑗

ℎ, 𝑝𝐼𝑗
𝑛𝑡 → 𝑇𝑗

ℎ)                              (18) 

So the total transition in treated compartment 𝑇𝑗
ℎ(𝑡) 

is given by, 
 

∆𝑇𝑗
ℎ(𝑡) = −[𝐷𝑗(𝑇ℎ, 𝑅𝐿𝐼) + 𝐷𝑗(𝑇ℎ, 𝑅𝐻𝐼) +

𝐷𝑗(𝑇ℎ, 𝐷)] + [𝐷𝑗(𝐼𝑗
𝑛𝑡, 𝑇ℎ) + 𝐷𝑗(𝐼𝑗

𝑡, 𝑇ℎ)]            (19)                          

               

Similarly the people moving from non-treated 

population ( 𝑇𝑗
𝑛ℎ ) to recovered and death 

compartment is determined by 

 

∆𝑇𝑗
𝑛ℎ(𝑡) = −[𝐷𝑗(𝑇𝑛ℎ, 𝑅𝐻𝐼) + 𝐷𝑗(𝑇ℎ, 𝐷)] +

[𝐷𝑗(𝐼𝑗
𝑎𝑡 , 𝑇𝑛ℎ) + 𝐷𝑗(𝐼𝑗

𝑎𝑛𝑡, 𝑇𝑛ℎ)]                           (20)                    

                            

3.5 Integration of mobility with the epidemic 

model 
 

        Mobility of the individual is considered 

through common road network where 𝛿𝑗𝑘 represents 

the number of buses available between the bus stops 

(j,k). Considering the uncertainty of the number of 

passengers at a particular time a random number (θ) 
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is generated between the interval (-1,1) at time t. We 

assume that on each route (j,k),  the stochastic 

variable for the flux of passengers at time t is given 

by 

 

𝛿𝑗𝑘̃ = ∆𝛿𝑗𝑘[𝛼 + 𝜃(1 − 𝛼)]                          (21)                                                                                                 

                                      

where 𝛼  is the average occupancy rate (70-90%). 

The probability of each individual 𝐶𝑗
[𝑚]

 in 

compartment m traveling from j to k location is   

𝑝𝑗𝑘 =
𝛿𝑗𝑘̃∆𝑡

𝑁𝑗
 where 𝑁𝑗 denotes the number of people 

in subpopulation j. The number of individuals 

traveling (𝜉𝑗𝑘 ) from the subpopulation j on each 

route j → k at time t is defined using multinomial 

distribution. 

 

𝑃({𝜉𝑗𝑘}) =
𝐶𝑗

[𝑚]
!

(𝐶𝑗
[𝑚]

−∑ 𝜉𝑗𝑘𝑘 )! ∏ 𝜉𝑗𝑘!𝑘

 ∏ 𝑝𝑗𝑘
𝜉𝑗𝑘 ×𝑘

  
(1 − ∑ 𝑝𝑗𝑘)𝑘

(𝐶𝑗
[𝑚]

−∑ 𝜉𝑗𝑘𝑘 )
                                        (22) 

 

Where 

 

 𝐶𝑗
[𝑚]

  is the  number of individuals  in compartment  

m  at  j  location  

 𝐶𝑗
[𝑚]

− ∑ 𝜉𝑗𝑘𝑘   is the number of individual who do 

not travel 

𝜉𝑗𝑘 is  the number of people who travel from j to k 

 

The multinomial distribution 𝑃({𝜉𝑗𝑘}) gives the 

probability of individual traveling from j to all the 

other possible routes. Now, the transport operator at 

location j in compartment m is defined by, 

 

𝜑𝑗([𝑚]) = ∑ (𝜉𝑘𝑗 (𝐶𝑘
[𝑚]

) − 𝜉𝑗𝑘 (𝐶𝑗
[𝑚]

)𝑘 )           (23) 

 

The value generated from equation (23) is 

substituted in equation (12) to find the number of 

people moving from subpopulation j to k for each 

compartment.                           

                

 

 

 

4. Results and Discussion 

 

          The geographic space considered for the study 

includes Vellore district and Chennai. The data on 

the locations is collected from the National 

Informatics centre (NIC) of Vellore district. Table 3 

below shows the source and destination locations j 

and (𝑘1,2…10) respectively, that are considered for 

determining the mobility of the individuals in the 

infected (m) compartment. One of the densely 

populated location, Christian Medical College 

(CMC) hospital is an authorized H1N1 influenza 

treatment centre and the locations in and around the 

Vellore district is considered as source and 

destination locations.      

           Temporal pattern of a patient in a day is 

sliced in five intervals namely t1(7 am - 9 am), t2(9 

am- 12 pm), t3(12 pm- 3 pm), t4(3 pm-6 pm) and 

t5(6 pm-9 pm). The mobility of an infected 

individual through this time interval from source 

location j to destination locations 𝑘𝑖 and vice versa 

is collected for the month of August, 2012. For each 

time slice, data of symptomatic and asymptomatic 

infected population who travel is collected and 

scaled as 0 to 4 using min-max normalization 

technique. If there is more mobility of infected 

population, it denotes 4 and 0 if there is no mobility 

of infected individual. 

 

Table 3. j represents the source location, 𝑘1,𝑘2 … 𝑘10  

represents destination location 

 

       Location name 

j CMC 

Hospital,Vellore 

𝑘1 Tirupattur 

𝑘2 Vaniyambadi 

𝑘3 Ambur 

𝑘4 Gudiyattam 

𝑘5 Katpadi 

𝑘6 Wallaja 

𝑘7 Arcot 

𝑘8 Arrakonam 

𝑘9 Chennai 

𝑘10 Tiruvallur 
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                                                    Figure. 3 Geographic space with j and k i locations 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 4 represents the mobility of individual at different time slice. Figure. 4(a) denotes the mobility of the infective 

individual at time period (t1), Figure. 4(b) - Mobility of the infective individual at time period (t2), Figure. 4(c) - Mobility 

of the infective individual at time period (t3), Figure. 4(d) - Mobility of the infective individual at time period (t4), Figure. 

4(e) - Mobility of the infective individual at time period (t5) 
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Table 4. Probability distribution for mobility of infected 

individual 

 

Time 

period 

Probability 

value 

Location 

𝑡1 0.12 𝑗 → 𝑘3 

𝑡2 0.75 𝑗 → 𝑘9       

𝑡3 0.52 𝑘3 → 𝑗 

𝑡4 0.32 𝑘4 → 𝑗 

𝑡5 0.10 𝑗 → 𝑘9         

 

 

The numbers of people moving from source to    

destination location at various time slices are 

recorded. When the initial infected population in 

each location is defined, the number of individuals 

in an infected compartment ( ∆𝐶𝑗
[𝑖𝑛𝑓]

)  for each 

subpopulation is calculated using   

 

∆𝐶𝑗
[𝑚]

= ∑ {−𝐷𝑗([𝑚], [𝑛] + 𝐷𝑗[𝑛][𝑚])}𝑛            (24) 

 

            A multinomial distribution analysis is 

performed using MATLAB. For each time slice the 

probability of individuals moving from the source to 

each destination location in the infected 

compartment is determined. Finally the maximum 

probability value at each time slice is taken into 

account. Table 4 shows the routes with high 

probability distribution value. The probability 

distribution for mobility of infected individuals 

seems to be high for the time slices 𝑡2 to 𝑡4   in 

locations 𝑘3, 𝑘4 and  𝑘9.  

The spatio-temporal mobility pattern is derived 

using multinomial distribution model where the 

probability of people moving from one location to 

another location is generated with respect to 

dynamics of disease.  As a result, the location that 

has a frequent mobility of individual in each 

compartment for various time slices is calculated. In 

order to verify the validity of the model it is 

compared with the result of mathematical model. 

The model based on differential equations defines 

the rate of individual present at that particular time 

but it fails to analyze the rate of change based on 

location. The mobility pattern on location is more 

effective when compared on pattern derived from 

human due to its complexity to design the human 

patterns. The locations that have frequent mobility 

are ranked and is more useful for the district 

administrators to make decision on prevention 

strategies. The time slice (t2) is the peak time period 

where there are more number of people moving 

from j location to ki locations in infected 

compartment. 

           To visualize and simulate the mobility 

distribution of the input dataset, we use Quantum 

GIS (1.7.1) software. It is used to overlay road 

network map, source and destination location map, 

college map, hospital map and mobility of infected 

population over geographical space map (considered 

for the study) (Figure 3). The resultant map is then 

analyzed to determine the mobility of the infected 

individuals at different time slices (Figure 4(a) - 

Figure 4(e)). The results clearly depicts that there is 

a high mobility during the time periods 𝑡2 to 𝑡4 

(Figure 4(b), Figure 4(c) and Figure 4(d)) which is 

similar to values derived from multinomial 

distribution. The experiment shows that the mobility 

distribution pattern identified using multinomial 

distribution is effective. 

           However, this analysis shows that differences 

in commuting networks could lead to changes in 

spatial spread. For example, the random distribution 

is not considered for the analysis. If the infected 

individual starts form the source location, but did 

not reach the destination location. Instead of using 

smoothed version based on a gravity model, we used 

the raw commuting data from the census. As our 

data collected was exhaustive, preprocessing of data 

was not necessary. Even though using raw data 

leads to more heterogeneity in commuting links, it 

may also lead to results that are very dependent on 

the reported mobility that captures only a part of 

human mobility. Most of the mobility pattern studies 

have used SIR and SEIR compartmental models 

where these models fails to analyse the treatment 

compartment and also the mobility rate is not 

included in these models. In the proposed SLITR 

model, various compartments are designed and 

distribution of mobility pattern can be derived for 

any compartment. 

             In order to find the effectiveness of the 

proposed SLITR model, transmission rate is 

calculated for all the epidemic models such as SIR, 

SEIR based on two approaches namely differential 

and distributive approach. The transmission rate 

(TR) is the percentage of the possible contacts that 

results in the disease being spread. It calculates the 

number of people who get infected per time period 

by the infectious person. The outbreak of disease is 

identified by reproduction number (R0). If the 

reproduction number is less than 1, then the spread 

of infection will die out where the removal rate is 

greater than the infection rate. If the reproduction 

number is greater than one, then the infection will be 

able to spread in population where the recovery rate 

is greater than the infection rate. To control the 
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spread of disease the infection or transmission rate 

must be minimized. The value generated using 

transport operator from Equation 23 is used as 

mobility rate or contact rate for SLITR model. The 

transmission rate (TR=0.29) calculated in time slice 

t2  (Table 5) is greater than other time slice. In the 

same time slice the TR= 0.16 and TR=0.20 for the 

models SIR and SEIR. As a result the proposed 

model is closer to the real dataset (TR=0.33) that is 

considered for this study and also proves the 

significance of mobility factor for the modelling of 

disease. This inference also shows that the mobility 

is directly proportional to the spread of disease. 

            These insights and findings not only captures 

human mobility relevant for the geographical 

epidemic spread, but they may pave the way for 

modelling important dynamical process in human 

and animal epidemiology. Thus the commuting data 

that is used to describe the population mobility in 

epidemic models is highly correlated with the spread 

of epidemic disease. 

 
   Table 5. Transmission rate of different epidemic models 

  

Time 

slice 

Transmission Rate (TR) 

SIR SEIR SLITR Observed 

Dataset 

t1 0.025 0.042 0.067 0.08 

t2 0.16 0.20 0.29 0.33 

t3 0.108 0.148 0.150 0.192 

t4 0.06 0.075 0.108 0.125 

t5 0.01 0.033 0.05 0.067 

                                                   

5. Conclusion 
      

The paper focuses on identifying the mobility of an 

infected individual to predict the transmission rate 

of H1N1 a pandemic that occurred first in 2009. 

Initially a compartmental model is developed that 

categorizes the individuals who travel and who do 

not travel. Further to this, dynamics of disease is 

predicted using a distributive approach. Travel 

pattern of the infected individual plays a key role in 

predicting the spread of disease over space and time. 

The transmission of the proposed model is 

compared with other epidemic models and is 

observed that SLITR transmission rate is very much 

closer to the actual transmission rate, which is 87% 

accurate whereas SIR and SEIR is 48% and 60% 

respectively over all time slices. This analysis will 

be very much useful for policy decision makers on 

designing prevention and control strategies. Our 

future work considers the social structure and 

characteristics of the infected individuals for 

designing decision support system. 
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