
147

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.16

A QoS Aware Cloud Service Composition Algorithm for Geo-Distributed Multi

Cloud Domain

S. Bharath Bhushan1* Pradeep Reddy CH2

1 VIT University, Vellore, India
2 VIT University, Vellore, India

* Corresponding author’s Email: bharath.bhushan4@gmail.com

Abstract: Publishing the cloud services on the internet has proven to be effective for cloud providers over the

internet. To meet user requirements, services should be combined through service composition from multiple cloud

domains. In this paper, we proposed an algorithm which composes best QoS aware services with minimal number of

cloud combinations which is an NP-hard optimization problem. The proposed algorithm will select a cloud with

more number of service files and then we applied PROMETHEE a multi criteria decision making method that selects

the best service based on QoS criteria (i.e. Response time, Throughput, Availability, Successability, Price) from

optimal cloud combinations. Our experimental results show that the algorithm provides better QoS services with

minimal number of clouds by assessing previous benchmarks.

Keywords: Service Composition; Cloud Computing; Multi-cloud Domain; Multi Criteria Decision Making; Quality

of Service.

1. Introduction

Cloud computing is a leading platform for

providing elastic web services, which helps for the

seamless composition of enterprise applications to

create new value added services [1]. Today, users

and enterprises are increasingly using the cloud to

access software resources in the form of web

services [2]. As web services are self-contained,

loosely coupled processes deployed over standard

middleware platforms that can be described,

published, discovered and invoked over a network.

The different service providers will publish a

large number of similar services with different

quality of service in various clouds [3]. QoS

parameters can be used to select the best service

among similar services and will make a QoS aware

service composition [4], which is an MCDM (multi

criteria decision making) problem. The traditional

service composition methods compose services from

single cloud, which won’t always meet user

requirements. There is a need to compose the

services from multiple clouds [5,6] by taking

advantage of different QoS levels.

The proposed QoS aware service composition is

based on PROMETHEE [7] (Preference Ranking

Organization METHod for Enrichment Evaluation)

which is MCDM solution. All the web services in a

composition sequence are now QoS aware services.

The main objective is to find the best service

composition [8] by taking QoS parameters into

consideration with minimal number of clouds. As

the services that are communicating from multiple

clouds are expensive and time consuming.

1.1 PROMETHEE

PROMETHEE is a special type of MCDM tool,

developed by Brans in 1982 [9]. The method

compares pairs of alternatives for each criterion, and

it should specify the importance of criteria through

weights. The preference difference between a pair of

alternatives for each criterion is specified by

preference function, which specifies numerical

difference ranges from 0 to1. When the preference

function value is zero means there is no difference

between a pair of alternatives. If the value is one,

then the alternative is strictly outranking the other

148

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.16

alternative. The difference of the preference is

directly proportional to preference function’s value.

There are various MCDM approaches which

have been used for QoS aware service selection. In

this paper, we propose a heuristic optimization

algorithm based on PROMETHEE method.

PROMETHEE is chosen over other MCDM

methods, as there is no need to define utility

functions for each criterion. The PROMETHEE

supports six basic types of preference functions

which will be defined on QoS criteria. Another

advantage is that it doesn’t have fixed weighting

scheme, and thus allows the inclusion of any good

method. Finally, PROMETHEE is a user friendly

and has been successfully applied to solve real time

problems.

1.2 Related Work

Service selection from a minimal number of

clouds has been an important issue for service

composition. This is because any improper selection

of the service can affect the overall QoS of a

composite service and leads to user dissatisfaction

and number of clouds leads to expensive and time

consuming. Researchers have adopted different

approaches to compose the best services from a

minimal number of clouds.

Qi Lianyang et al. proposed a cross platform

QoS aware service composition, in which the absent

services which are outside the cloud platform will be

invoked. The proposed local optimization and

enumeration [10] method got an optimal candidate

service set with more computation time and

financial charges. An agent based multi cloud

service composition was proposed by Gutierrez-

Gareia Jo et al. [11]. It deals with different types of

cloud services like one time virtualized services,

infrastructure as a service, homogeneous services

and heterogeneous services that are configured in

the multi cloud environment. The proposed method

fails to achieve optimal cloud combinations.

Microsoft has put forward to the challenges

associated with multiple cloud services [12].

Klein Adrian et al. proposed a network aware

service composition for cloud [13]. The proposed

method is successful in differentiating the QoS of a

service and QoS of a network. The method handles

both QoS criteria independently and achieves near

optimal solution with low latency. The number of

candidate services is more by which it attains more

time to obtain solution. The proposed method is

based on linear discriminant analysis, by which the

candidate services are reduced drastically but still it

suffers from number of cloud combinations and

computation time [14]. Kevin kolfer et al. [16]

proposed a customer driven service composition in a

cloud environment. The proposed heuristic approach

is based on historical information of service

composition and which define happiness measure to

meet user preferences. This method consumes more

execution time to generate a service composition

sequence. Qiang yu et al. [1] proposed an ant colony

based web service composition algorithm in a cloud

environment. The algorithm finds the optimal clouds

and it consumes less computation time than COM2.

Zou G et al. [6] proposed three different cloud

combination algorithms, which are all clouds, base

cloud and smart cloud. All clouds algorithm finds a

composition sequence with a minimal execution

time, but it fails to minimize the number of clouds.

The base cloud algorithm obtains an optimal cloud

combination with extensive execution time. The

smart cloud finds a sub optimal cloud combination

at a reduced cost with a significant execution time.

So, the above three algorithms suffer from either

execution time or minimal number of clouds. Heba

kurdi et al [5,17], proposed a novel combinatorial

optimization algorithm for cloud service

composition with minimal number of clouds. But

they failed to compose best services from the

optimal cloud combination. OWLS-Xplan is a web

service dataset and a service composition planner

[18,19] applied for emergency medical assistance.

The OWLS-Xplan converts the services into an

equivalent domain description which are specified in

the PDDL 2.1 (planning domain description

language) and invoke an efficient AI planner Xplan

to generate a service composition plan which meets

user preferences. The proposed QSC_MCD and all

benchmark algorithms are based on web service

dataset provided in the OWL-S Xplan package.

The service selection based on the QoS problem

can be solved by methods such as Multi-Criteria

Decision Making (MCDM), fuzzy logic and linear

programming. In literature [20,21] they adopted

certain hybrid methods to solve a QoS aware service

selection. Most of the researchers adopt MCDM

methods to solve QoS based service selection. For

instance, AHP [22,23], ANP [24], and

PROMETHEE [15,25] were applied for service

selection. The two types of service selection models

which are widely adopted are evaluation-based and

predication-based service selection models. Almost

all the MCDM methods are evaluation-based service

selection models which are accurate and provide in-

depth estimates of service quality, but the evaluation

process is complex. In [26,27] they proposed

integrated PROMETHEE and GAIA to solve

machine selection problem. An analytical hierarchy

149

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.16

process is used to find priority weights for the

selected criteria and results are visualized using

GAIA.

In this work, we propose a heuristic optimization

algorithm which is QSC_MCD (QoS aware service

composition in multiple cloud domain) that can

compose best QoS aware services with minimal

number of cloud combinations. The PROME-THEE

method is used to select the best service from

similar services. To fulfil the user service request

with minimal number of clouds, cloud with

maximum number of services will be selected first

and then it will repeat until it meet the user’s

requirement.

The paper is organized as follows: In Section.2

illustrates a multi criteria QoS based cloud service

composition. The system design and heuristic

optimization algorithm is presented in Section.3.

Evaluation is presented in Section.4. The

effectiveness and efficiency of a heuristic

optimization algorithm are demonstrated by an

experiment in section.5. The final conclusion and

future work are discussed in Section. 6.

2. Multi Criteria QoS Based Cloud Service

Composition Method

In order to solve our MCDM problem, we

applied PROMETHEE method. As similar services

are deployed across several clouds with different

QoS values, we have to select a QoS aware service.

Figure.1 Basic parameters in PROMETHEE method

(alternative Si and criteria Ci).

Here, the alternatives are services which are

deployed in different clouds; these are compared

pairwise based on QoS criteria. The best services

will obtain by evaluating service alternatives (Si),

Cj=5 criteria have been used in Figure.1.The criteria

are represented with Cj and they include: response

time (C1), throughput (C2), availability (C3),

sucessability (C4) and price (C5).

In this section, we presented PROMETHEE

based QoS aware cloud service composition in

detail as follows.

Step:1 Representation of cloud services

A multiple cloud domain (MCD) is a set of

clouds, i.e. MCD= {C1, C2,…,Cn}. A set of service

files, i.e. F= {F1, F2,….,Fn} are associated with

each cloud, where each service file contains a set of

services i.e. s= {S1, S2,….,Sn}. But similar services

which are in different clouds have different QoS

value.

Step:2 Selection of quality parameters

In order to select the best service from similar

services in different clouds, the proposed model uses

QoS criteria. So, according to significance and

measurement of the service quality parameters, five

attributes are chosen to assess the QoS metrics of a

service as defined in section. 2.

Step:3 Determination of quality weights

In our experiments, we assume that all five

quality parameters have equal importance, i.e. equal

weightage for all five quality parameters.

Step:4 Define the constraints of quality factors and

decide preference function

A constraint evaluates a service quality

parameter to a preference function or by the extreme

points (Minimum & Maximum).

To satisfy a user, service quality factor can

either be minimized or maximized and to determine

deviations based on pairwise comparisons by

evaluating alternative services on each criterion by

following equation. Where gj(a) and gj(b) are

criteria weights of alternatives a and b.

)()(),(bgagbad jjj  (1)

Then apply a preference function on all

alternatives for each criterion by doing

)],([),(badFbap jjj  j=1,2,….k (2)

Where, the preference for alternative ‘a’ with

regard to alternative ‘b’ on each criterion is denoted

by pj (a,b), as a function of dj (a,b) and Fj is a

preference function.

To quantify various service quality factors,

PROMETHEE provides six basic types of

preference functions which are usual criterion, quasi

criterion, criterion with linear preference, level

criterion, criterion with linear preference and

indifference and gauss criterion which quantifies the

degree of preference with a value ranging from 0 to

1. Table 1 shows the service quality parameters

along with their preference functions.

C1 C2 C3 C4 C5

QoS Aware Service Selection

S1 S1 S1 S1

150

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.16

Table1. QoS parameters and its preference functions

S.NO Parameters Unit Preference

Function

1 Response Time ms Quasi criterion

2 Throughput ms Quasi criterion

3 Availability % Gaussian criterion

4 Successability % Gaussian criterion

5 Price $ Level criterion

For each criterion, the value of an indifference

threshold ‘q’, the value of a strict preference

threshold ‘p’, and the value ‘s’ is an intermediate

value between p and q has to be fixed. These values

are the upper and lower bounds of a criteria value.

Step:5 Determination of preference index

The global preference index π(a,b) indicates the

preference of service ‘a’ equate with service ‘b’ by

taking service quality parameters into consideration.

The preference index is defined by

 j

k

j

j wbapbaAba),(),(,
1




  (3)

Where π(a,b) is weighted sum p(a,b) for each

criterion and wj is weight associated with jth criterion

Step:6 Determination of outranking flows

In order to rank cloud service candidates from

best to worst one, the outgoing and incoming flow

for each alternative is defined as follows

 







Ax

xa
n

a),(
1

1
)( (4)

 







Ax

ax
n

a),(
1

1
)( (5)

The outranking flow φ+(a) indicates the degree

at which service ‘a’ is preferred than other

alternative services, x is an alternative service. The

incoming flow φ-(a) indicates the degree at which

other alternative services are preferred over service

‘a’. Based on the outgoing and incoming flow, the

net flow φ(a) is defined by equation 6, which

represents the overall preference of service ‘a’

comparing with other similar cloud services.

)()()(aaa    (6)

So, services are ranked from best to the worst

one by calculating net flow. If)(ia =)(ja , than

the alternative ai is indifferent to aj. If)(ia >

)(ja , than the alternative ai is preferential to aj.

3. System Design

To solve the cloud service composition problem

with minimal number of clouds, architecture is

developed and is elucidated in Figure. 2. This figure

shows that the five main components are user

interface, multi cloud domain, cloud combiner,

service composer and PROMETHEE.

1. A user sends a service composition request

through a user interface and which displays the

resultant service composition sequence.

2. A multi cloud domain (MCD) is a set of clouds,

i.e., MCD= {C1, C2,…,Cn}. A set of service

files from different service providers, i.e., F=

{F1, F2,…,Fn} is associated with each cloud,

where each service file contains a set of

services i.e., S= {S1, S2,…,Sn}.

3. Cloud combiner process service composition

request, based on that it will generate suitable

cloud combinations with minimal number of

clouds. The cloud combiner list is given as

input to the composer list to select best

composition sequence.

4. Service composer will find better services from

cloud combinations received from cloud

combiner. If similar services are presented

more than once in a received cloud

combinations from cloud combiner, then it will

send to PROMETHEE in order to select best

among them.

5. PROMETHEE is MCDM method, which

receives a request from the service composer to

decide best service from alternative services.

Based on QoS metrics with corresponding

preference function, quality weights the

PROMETHEE method will select the best

service within a minimal number of cloud

combinations.

The service composer will check for a required

service in received cloud from a cloud combiner. If

it finds a similar service that is already in service

composer, then PROMETHEE will select a service

whose aggregate QoS value is maximum. Suppose if

the service is alone from that cloud, then service

composer will remove the cloud from the cloud

combiner. The proposed method will compose the

best services from a selected cloud combination set,

it will neglect some better services from other

clouds which are not part of the selected cloud

combination set.

The complete proposed algorithm for QoS

Aware Service Composition in Multi Cloud Domain

(QSC_MCD) is illustrated in below Algorithm.

151

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.16

Figure 2. Architecture for proposed QSC_MCD

method.

After initialization, in the line 1 the algorithm

accepts user’s service composition request. As per

our assumption the clouds are sorted based on the

number of service files in each cloud. As shown by

lines 3-5, it will select first cloud that contains a

large number of service files, and then process each

and every file in that particular cloud. Then the

services that match with the user request in line-7

will be added to composer list ‘P’ in line-17, and

add that cloud to combiner list ‘B’ in line-21. Then

algorithm in line-22 determines whether the user

request is fulfilled or not. If it is fulfilled means, it

generates a composition sequence; otherwise the

next cloud is checked until user request is fulfilled.

The algorithm will terminate, if it fails to meet user

requests after processing all clouds. In line-8 it will

execute PROMETHEE method, it checks whether

the selected services are already present in composer

list or not. If similar services are their means, line 9-

16 will determine the best services from alternative

services based on QoS parameters, then it will

update the composer list with better QoS service, as

demonstrated by lines 17-18.

 Algorithm: A QoS Aware Service Composition

Algorithm in Multi Cloud Domain

Input: User service request and multi cloud domain

information.

Output: QoS aware service composition if available,

otherwise the algorithm terminates.

Assumption: Clouds are sorted in decreasing order,

based on a number of services.
// Initialize:

B // B is the combiner list of clouds
p // P is the composer list of services

N N is number of clouds in MCD
K K is the number of service files in Cn
R R is user request

xpty ,,, 1 are temp variables
1. Get the user request R
2. Select the cloud Cn from sorted clouds
3. for (i=1; i≤n; i++)
4. {
5. for (j=1; j≤k; j++)
6. {
7. if p1= ((Cij ∩ R)! == ∅) then
8. Exec PROMETHEE
9. if ys= ((p1 ∩ t)! == ∅)
10. for (l=1; l≤s; l++)
11. {
12. if (ci.yl > X. yl) then
13. p= p- X. yl
14. else
15. p1= p1- ci.yl
16. }
17. P= P ∪ P1
18. t= p;
19. }
20. x= ci
21. B=B+Ci
22. if (P==R) then
23. Generate composition sequence
24. else
25. goto step.3
26. }
27. else
28. All clouds in the MCD have been checked
29. Exit

The working of the algorithm is illustrated by an

example, suppose that an MCD contains four

clouds: MCD1= {C1, C2, C3, C4}. Table 2 and

Table 3 illustrate the cloud service files and the

services in each file. If the user service request is R=

{S1, S5, S9, S11, S14, S15, S18}, then the

algorithm selects the first cloud in sorted list i.e., C4.

Then it checks all service files in the cloud C4 to

fulfil the user request R. The cloud C4 service files

are {F1, F2, F3, F5} which checks (F1∩R), (F2∩

R), (F3∩R), (F5∩R), then the resultant service list

is {S1, S5, S9, S11, S14, S15} which will be added

to composer list and C4 to combiner list. Still the

composer list is not equal to R, and then it will

152

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.16

select the next cloud from the sorted list i.e., C1.

The cloud C1 service files will be processed and the

resulting service list is {S1, S5, S9, S11, S14, S15}.

As similar services are already there in the composer

list, in order to find better services, invoke

PROMETHEE to rank services from best to worst.

From the results, the services S5, S9, S11 of cloud

C1 have best QoS value when compared with cloud

C4 services. So, update the composer list with best

QoS services and add C4 to combiner list, i.e. B=

{C1, C4}. Now select C2 or C3 randomly which

contains the same number of service files. Suppose

that we select C2, the resulting list after processing

C2 service files are {S18}. Therefore, S18 will be

added to the composer list, i.e., {S1, S5, S9, S11,

S14, S15, S18} and C2 will be added to the

combiner list i.e. B= {C4, C2, C1}. The composer

list equals to R, so the algorithm terminates by

generating the composition sequence with best QoS

through a minimal number of clouds.

4. Evaluation

A novel QSC_MCD algorithm is evaluated in

contrast to four benchmark algorithms; they are All

cloud combination algorithm, the base cloud

combination algorithm, the smart cloud combination

algorithm and combinatorial optimization algorithm

for cloud service composition (COM2). The

proposed and all benchmark algorithms are based on

web service dataset provided in the OWLS Xplan

package.

OWLS-Xplan first converts the domain ontology

and service description in OWL and OWLS to

equivalent planning domain description language

(PDDL) problem and domain description, which are

used by the AI planner Xplan and PROMETHEE

method to generate QoS aware service composition

sequence. In our example the MCD consist of four

clouds {C1, C2, C3, C4}, each cloud consists a set

of service files {F1, F2,…,Fn}, which in turn

contains a set of services {S1, S2,….,Sn}. For

example, one of the service dataset in OWLS-Xplan

is Health-Scallops [17,18] which is emergency

medical assistance planning tasks, here we assume

{F1, F2, F3, F4, F5} corresponds to {“EMA

Services”, “Medical Flight Company Service”,

“Non-Medical Flight Company Service”, “Medical

Transport Company Services”, “Non-Medical

Transport Company Services”} and each service file

contains number of services.

Table 2. MCD settings for assessment.
MCD C1 C2 C3 C4

MCD1 F1,F2,F3 F4,F5 F3,F4 F1,F2,F3,F5

MCD2 F1,F2 F3 F2,F5 F1,F4,F5

MCD3 F1,F3,F5 F5 F1,F2 F3,F4

MCD4 F2,F3,F5 F3,F4 F1,F2,F3 F4,F5

MCD5 F1,F2 F2,F3 F3 F1,F4,F5

Table 3. The cloud services in each file.

Service File Services

F1 S1,S6

F2 S9,S10,S11

F3 S3,S5,S8,S12,S14,S15,S16,S17

F4 S2,S4,S18

F5 S19,S7,S13

The MCE settings and list of services in each

file are illustrated in Table 2 and Table 3. The

service composition request R= {S1,S5,S9,S11,

S14,S15,S18} was assumed for all experiments.

All experiments were implemented using an HP

Pavilion dv6 laptop with 2.10 GHz Intel core is a

processor and 2 GB RAM. The performance factors

are number of combined clouds, number of services

examined and aggregate QoS value for a composed

service.

5. Experimental Results

The proposed algorithm undergone a series of

experiments to test the effectiveness and its

performance, the experimental results are shown in

Table 4 and Table 5. Table 4 gives the cloud

combinations (CC) and the number of services

processed (SP) in order to generate a composition

sequence by different algorithms. Table 5 gives the

composition sequence and its aggregate QoS value

for COM2 and QSC_MCD algorithms.

Comparing the QSC_MCD algorithm with all

four algorithms discussed above, the proposed

algorithm is effective when compared to existing

algorithms with respect to the number of services

processed |N|. The QSC_MCD algorithm obtains

better results across all multi cloud domains in terms

of number of clouds processed.

Let there be a service 5 present in cloud 1, cloud

3 and cloud 5 with different QoS values, to select

the best service the PROMETHEE is applied to

obtain the service ranking as shown in Table 6 along

with positive preference flow, negative preference

flow and net flow. The proposed QSC_MCD selects

services from cloud 1 based on the high PHI value

of service5. The remaining models do not consider

the QoS value while selecting the service. The

service 5 from cloud 3 is neglected by both methods,

153

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.16

Table 4. Experimental results for the MCD settings.

Table 5. Performance of the COM2 and QSC_MCD algorithms.

Table 6. Preference flow of service 5 in MCD 1.

because the cloud 3 is not in the optimal cloud

combination set.

Figure.3 shows the results of QoS values of

COM2 and QSC_MCD algorithm. We observe that

QSC_MCD algorithm can find composite services

with better QoS value compared with COM2. All

most in all multi cloud domains it generates better

QoS except in MCD5. Figure.4 presents the number

of services processed by all five algorithms. The

proposed algorithm achieved the best results across

multi cloud domains. All Clouds are close to the

QSC_MCD algorithm, but it incurs high

communication cost and financial charges between

clouds. At its best, it processed 19 services with two

clouds in MCD5 and it maintains the same

aggregate QoS value. The proposed QSC_MCD

achieved a significant improvement in composition

time by processing a minimum number of services

than other benchmarks.

The proposed method outperforms other existing

techniques in terms of number of clouds and in

achieving better aggregate QoS value. The number

of clouds is reduced by evaluating clouds with

respect to their service files. The PROMETHEE is

adopted to evaluate the service QoS by which the

proposed method attains better aggregate QoS value.

The number of clouds involved in generating a

composition sequence in the multi cloud domain is

illustrated in Figure. 5. The QSC_MCD algorithm is

successful in maintaining the same number of

clouds as COM2. Both Base cloud and Smart cloud

performed well with a maximum margin of one

cloud, which falls behind in the number of services

processed.

Figure.6 is a PROMETHEE diamond, where

the vertical dimension corresponds to the phi net

flow and each cone represents a service. In MCD2,

the proposed QSC_MCD selects S9, S11 services

from cloud 1 which are better services than services

in cloud 3. In MCD3, the QSC_MCD selects S1,

S14, S15 services from C3, C4 which are clearly

preferred to all other similar services as shown in

Figure.7. Suppose, if services are intersecting each

other indicating that those services are incomparable.

The GAIA plane is a descriptive tool which

helps to display the graphical position of alternatives

corresponding to various criteria. The GAIA web is

a spider web display for service S5 in C1 and C4 of

MCD1as reflected in Figure.8 and Figure.9. The

service S5 from C1 is a green dotted circle which

implies the positive multi criteria net flow score.

The service S5 in C4 is a red dotted circle indicating

Algorithm

MCD

All Clouds Base Cloud Smart Cloud COM2 QSC_MCD

CC SP CC SP CC SP CC SP CC SP

MCD1 C1 C3 C4 46 C1 C2 65 C1 C3 70 C4 C2 35 C4 C2 C1 35

MCD2 C1 C2 C3 C4 27 C1 C2 C4 148 C1 C2 C4 48 C4 C2 C3 45 C4 C1 C2 27

MCD3 C1 C3 C4 32 C3 C4 128 C3 C4 48 C1 C4 C3 50 C1 C4 C3 29

MCD4 C1 C2 C3 C4 44 C2 C3 68 C2 C3 140 C1 C3 C2 49 C1 C3 C4 38

MCD5 C1 C2 C3 C4 32 C2 C4 112 C1 C2 C4 56 C2 C4 30 C2 C4 19

MCD COM2 QSC_MCD

Composition Sequence QoS Composition Sequence QoS

MCD1 S1c4+S9c4+S11c4+S5c4+S14c4+S15c4+S18c2 0.5185 S18c2+S1c4+S9c1+S11c1+S5c1+S14c4+S15c4 0.5885

MCD2 S1c4+S18c4+S5c2+S14c2+S15c2+S9c3+S11c3 4.2026 S1c4+S18c4+S5c2+S14c2+S15c2+S9c1+S11c1 5.0719

MCD3 S1c1+S5c1+S14c1+S15c1+S9c3+S11c3+S18c4 2.7725 S1c3+S9c3+S11c3+S5c1+S14c4+S15c4+S18c4 3.609

MCD4 S9c1+S11c1+S5c1+S14c1+S15c1+S1c3+S18c2 0.3615 S9c1+S11c3+S5c3+S14c3+S15c3+S1c3+S18c4 0.4039

MCD5 S1c4+S18c4+S9c2+S11c2+S5c2+S14c2+S15c2 1.5724 S1c4+S18c4+S9c2+S11c2+S5c2+S14c2+S15c2 1.5724

Cloud Services PHI+ PHI- PHI Rank

S5-C1 0,5554 0,0199 0,5354 1

S5-C3 0,1699 0,3947 -0,2248 2

S5-C4 0,1593 0,4699 -0,3107 3

154

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.16

negative multi criteria net flow score. So, the

proposed QSC_MCD prefers S5 from C1 than C4.

The conflicts between QoS criteria and the

service alternatives are shown in Figure.10. In this

GAIA plane the QoS criteria are denoted by axis

and the alternate services by points. The criteria

throughput, response time and successability are

oriented in the same direction because of similar

preferences between those criteria, while the other

QoS criteria are conflicted by pointing in the

opposite direction. We can even notice the

dominated QoS criteria of each service alternative

by observing the quarter in which they lie. Suppose

S5-C1 is good with defined criteria, so it is ranked

as one. Whereas S5-C3 and S5-C4 is far away from

all axis, leading to the last rank.

MCD1 MCD2 MCD3 MCD4 MCD5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
g

g
re

g
a

te
 Q

o
S

 o
f
C

o
m

p
o

s
it
e

 S
e

rv
ic

e
s

Multi Cloud Domains

 COM2

 QSCMCD

 Figure 3. The comparison of aggregate QoS of

COM2 and QSC_MCD algorithms.

MCD1 MCD2 MCD3 MCD4 MCD5

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

N
u

m
b

e
r

o
f
S

e
rv

ic
e

s
 P

ro
c
e

s
s
e
d

Multiple Cloud Domains

 AllClouds

 BaseCloud

 SmartCloud

 COM2

 QSCMCD

 Figure 4. The number of processed services in all

the algorithms.

MCD1 MCD2 MCD3 MCD4 MCD5

0

1

2

3

4

5

N
u

m
b

e
r

o
f
C

o
m

b
in

e
d

 C
lo

u
d

s

Multiple Cloud Domains

 AllClouds

 BaseCloud

 SmartCloud

 COM2

 QSCMCD

Figure 5. The number of combined clouds in all the

algorithms.

Figure 6. PROMETHEE Diamond of MCD2.

Figure 7. PROMETHEE Diamond of MCD3.

155

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.16

Figure 8. GAIA web of service5 in Cloud 1

Figure 9. GAIA web of service5 in Cloud 4

Figure 10. GAIA Plane of Service5 with Respect to

QoS Criteria.

The experimental results demonstrate that the

QSC_MCD algorithm found better QoS aware

service composition with optimal cloud

combinations. Hence the QSC_MCD algorithm is

much more efficient.

6. Conclusion

The proposed QSC_MCD algorithm composes

services from multiple cloud domain based on

quality of service parameters with minimal number

of clouds. We adopt PROMETHEE method an

MCDM solution, which selects best service from

similar services within the cloud combination set.

Our experimental results indicate that the proposed

method can efficiently and effectively find the best

services with minimal number of clouds. The

proposed method achieves a better aggregate QoS

value in all five sceneries over COM2. Even it

outperforms the existing methods in terms of

number of clouds and number of services processed

with a good margin leads to reduce in

communication cost and finical charges between

clouds.

In future work, service composition with minimal

number of clouds problem will be solved by bio-

inspired optimization methods.

References

[1] Y. Qiang, L. Chen, and Bin .L, "Ant colony

optimization applied to web service compositions in

cloud computing", Computers & Electrical

Engineering, Vol. 41, pp.18-27, 2015.

[2] J. Amin, E. Sundararajan, and Z. Othman, "Cloud

computing service composition: A systematic

literature review", Expert Systems with Applications,

Vol. 41, No. 8, pp.3809-3824, 2014.

[3] Rajeswari, M., G. Sambasivam, N. Balaji, MS Saleem

Basha, T. Vengattaraman, and P. Dhavachelvan,

"Appraisal and analysis on various web service

composition approaches based on QoS factors",

Journal of King Saud University-Computer and

Information Sciences, Vol. 26, No. 1, pp.143-152,

2014.

[4] Z. Wei, J. Wen, M. Gao, and J. Liu, "A QoS

preference-based algorithm for service composition in

service-oriented network", Optik-International

Journal for Light and Electron Optics, Vol.124, No.

20, pp.4439-4444, 2013.

[5] K. Heba, A. Al-Anazi, C. Campbell, and A. Al Faries,

"A combinatorial optimization algorithm for multiple

cloud service composition", Computers & Electrical

Engineering, Vol.42, pp.107-113, 2015.

[6] Z. Guobing, Y. Chen, Y. Yang, R. Huang, and Y. Xu,

"AI planning and combinatorial optimization for web

service composition in cloud computing", In Proc

156

International Journal of Intelligent Engineering and Systems, Vol.9, No.4, 2016 DOI: 10.22266/ijies2016.1231.16

international conference on cloud computing and

virtualization, pp. 1-8. 2010.

[7] Podvezko, k. Valentinas, and A. Podviezko,

"Dependence of multi‐criteria evaluation result on

choice of preference functions and their parameters",

Technological and Economic Development of

Economy, Vol.16, No. 1, pp.143-158, 2010.

[8] H. Serge, L. Mokdad, and S. Youcef, "Selection of the

Best composite Web Service Based on Quality of

Service", ISSS/BPSC, Vol.10, pp.255-266, 2010.

[9] Vincke, Ph, "Note---A Preference Ranking

Organisation Method", Management Science, Vol.31,

No. 6, pp.647-656, 1985.

[10] Q. Lianyong, W. Dou, X. Zhang, and J. Chen, "A

QoS-aware composition method supporting cross-

platform service invocation in cloud environment",

Journal of Computer and System Sciences, Vol.78,

No. 5, pp.1316-1329, 2012.

[11] Gutierrez-Garcia, J. Octavio, and KM. Sim, "Agent-

based cloud service composition", Applied

intelligence, Vol.38, No. 3, pp.436-464, 2013.

[12] Microsoft Communications and Media Industries.

Multi-Cloud Service Delivery & End-to-End

Management.Reference architecture.<file:///C:/Use

rs/Kelly/Downloads/Microsoft%20RA%20%20Mult

i-Cloud%20Service% 20Deliv

ery%20and%20E2E %20 Mgmt%20v1_1.pdf>,

2013.

[13] K. Adrian, F. Ishikawa, and S. Honiden, "Towards

network-aware service composition in the cloud." In

Proceedings of the 21st international conference on

World Wide Web, pp.959-968, 2012.

[14] S.Bharath Bhushan and Pradeep Reddy.CH, "A four

level linear discriminant analysis based service

selection in the cloud environment", International

Journal of Technology, Vol.5, pp. 859-870, 2016.

[15] S,Bharath Bhushan and Pradeep Reddy.CH, "A

Network QoS Aware Service Ranking Using Hybrid

AHP-PROMETHEE Method in Multi Cloud

Domain", International Journal of Engineering

Research in Africa, Vol.24, pp. 153-164, 2016.

[16] K. Kevin, H. Irfan ul, and E. Schikuta, "User-centric,

heuristic optimization of service composition in

clouds", In Euro-Par 2010-Parallel Processing,

Springer Berlin Heidelberg, pp. 405-417, 2010.

[17] C. Fabio, S. Ilnicki, L. Jin, V. Krishnamoorthy, and

M.Shan, "Adaptive and dynamic service

composition in eFlow", InAdvanced Information

Systems Engineering,. Springer Berlin Heidelberg,

pp. 13-31, 2000.

[18] K. Matthias, and A. Gerber, "Fast composition

planning of owl-s services and application", In Web

Services, 2006. ECOWS'06. 4th European

Conference on, IEEE, pp. 181-190, 2006.

[19] K. Matthias, A. Gerber, and M. Schmidt, "Semantic

web service composition planning with owls-xplan",

In Proceedings of the AAAI Fall Symposium on

Semantic Web and Agents, Arlington VA, USA,

AAAI Press. 2005.

[20] L. Lei, Y. Wang, and EP. Lim, "Trust-Oriented

Composite Service Selection with QoS Constraints",

J. UCS, Vol16, No. 13, pp.1720-1744, 2010.

[21] L. Chi-Chun, Ding-Yuan. C, Chen-Fang.T, and

Kuo-Ming .C, "Service selection based on fuzzy

TOPSIS method", In Advanced Information

Networking and Applications Workshops (WAINA),

2010 IEEE 24th International Conference on, IEEE,

pp. 367-372, 2010.

[22] Q. Li-Li, and Y. Chen, "QoS ontology based

efficient web services selection", In Management

Science and Engineering, ICMSE 2009.

International Conference on, IEEE, pp. 45-50, 2009.

[23] Z. Meiyun, S. Wang, and B. Wu, "Research on web

services selection model based on AHP", In Service

Operations and Logistics, and Informatics,

IEEE/SOLI 2008. IEEE International Conference on,

Vol. 2, pp. 2763-2768, 2008.

[24] G. Manish, R. Sonar, and S. Mulik, "Web service

selection based on Analytical Network Process

approach", In Asia-Pacific Services Computing

Conference, APSCC'08. IEEE, pp. 1103-1108, 2008.

[25] K. Raed, C. Ding, and Chi-Hung .C, "An enhanced

PROMETHEE model for QoS-based web service

selection", In Services Computing (SCC), IEEE

International Conference on, IEEE, pp. 536-543,

2011.

[26] K. Prasad, and S. Chakraborty, "Application of

PROMETHEE-GAIA method for non-traditional

machining processes selecti-on",Management

Science Letters, Vol. 2, No. 6, pp.2049-2060, 2012.

[27] C. Heejung, and K. Lee, "A Quality-Driven Web

Service Composition Methodology for Ubiquitous

Services", J. Inf. Sci. Eng. Vol.26, No. 6, pp.1957-

1971, 2010.

