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Abstract: To improve wide angle, bottom-interacting situation with complex boundaries in ocean acoustic wave 

propagation, in this paper the finite element method is used to discretize the continuous depth system of equations. 

Coupled linear Galerkin finite element method in association with parabolic equation model is applied for depth 

discretization of underwater wave equation. This discretization leads to equivalent system of ordinary differential 

equations (ODEs) that are applied over complex shapes covered by variable nature of surface and bottom boundaries. 

These ODEs are estimated by Crank-Nicolson approach. Simulation results show the capability of the proposed 

method in comparison with the physically behavior of underwater sound propagation and some numerical results of 

standard software. The obtained results demonstrate good agreement and efficiency of the proposed method. 

Keywords: Finite element method, parabolic equation, underwater wave equation, shallow water, ordinary 

differential equations. 

 

 

1. Introduction 

Parabolic equation model as a powerful 

approach in engineering problems is used widely for 

the study of sound wave propagation in ocean 

acoustics [1]. By assuming that energy propagates 

nearly horizontally at speed close to shear or 

compressional speeds, a parabolic equation (PE) 

model is derived by factoring the hyperbolic 

underwater wave operator into product of incoming 

and outgoing operators and assuming that the 

outgoing component of pressure field dominates the 

incoming component [2]. The main reason of 

popularity of PE based methods is due to marching 

nature of parabolic equation numerical algorithms 

and their considerably improvement in 

computational cost and time [3]. 

By spreading modern acoustics projects, 

scientists in mathematics and engineering have been 

forced to use advanced approaches for simulating 

complex nature of physically environments. These 

attempts have been led to several numerical 

techniques in computational underwater acoustics 

[4]. Among different numerical techniques only split 

step Fourier algorithm, implicit finite difference and 

finite element techniques have gained widespread 

use. Methods based on finite difference and finite 

element approaches are used for wide angle, bottom-

interacting situation environments. While, for long 

range, narrow angle propagation with negligible 

bottom interaction, split step based techniques 

efficiently are used [5]. The strong speed and 

density contrasts encountered at the water-bottom 

interface adversely affect the efficiency of the above 

mentioned computational techniques that for 

maintaining the efficiency of these algorithms, it 

requires to use excessively fine grid for range and 

depth segments [6]. Today, finite element method 

(FEM) has become the most popular and reliable 

method for solving complex physical environments. 

It can easily handle discontinuity of geometrical 

shapes as well as material discontinuity [7]. In this 

paper, we use standard PE model as representing 

sound wave equation. Then, by using capability of 

Galerkin finite element method based on linear 

shape function, we discretize the continues 

governing equation on each element. By using some 
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linearization the boundary conditions are imposed to 

element matrices by variability of density and 

refraction coefficient on each element. After 

assembling these element matrices, final governing 

ODE of equations is solved by Crank-Nicolson 

approach. Furthermore, this coupling algorithm, 

finite element parabolic equation (FEPE) method 

can be applied at very wide angle propagation and 

very hard bottom interaction that our considered test 

problem consist severe contrast in bottom layer. 

This paper is organized as follows: In first 

section, we give brief overview about PE algorithm. 

Section 2, derives the FEPE method and finally in 

section 4, numerical implementation of proposed 

method for some standard test problems 

corresponding shallow and water, are presented. 

2. Parabolic Approximation 

In this section, we derive the parabolic equation 

model for range independent medium bounded 

above by a free surface at z=0 with a sound profile 

that supports large range propagation (for 𝑟 → ∞). 

We consider two dimension pressure field 𝑝(𝑧, 𝑟) 
where, z is depth and the range r is the horizontal 

distance from a source that located at  (𝑧𝑠,0) . By 

working in frequency domain, the factor 𝑒−𝑖𝜔𝑡  is 

removed, where, 𝜔 is the circular frequency and t is 

time. For harmonic source in r>0, the pressure field 

satisfies at the following far-field equation, 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑝

𝜕𝑟
) + 𝜌

𝜕

𝜕𝑧
(𝜌−1

𝜕𝑝

𝜕𝑧
) + 𝑘0

2𝑛2𝑝 = 0 (1) 

 

Where, 𝑘0 = 2𝜋𝑓/𝑐0 is the reference wave number, 

the notations 𝑐(𝑧), 𝜌(𝑧)  denote local sound speed, 

density [8]. By assuming the acoustic sound wave 

propagates along principle direction, the sound field 

can be separated as a slowly varying envelope and a 

fast oscillating phase term 

𝜓(𝑧, 𝑟) = √𝑘0𝑟 𝑝(𝑧, 𝑟)𝑒
−𝑖𝑘0𝑟   (2) 

where, this envelope function , 𝜓, varies slowly with 

r. Substituting the above form into the equation (1) 

the wave equation for  𝑘0𝑟 ≫ 1 , is split into two 

terms that governs the evolution of the forward and 

the backward sound wave of Ψ. By neglecting 

backward sound waves, the one-way equation can 

be obtained as follows, 

𝜕𝜓

𝜕𝑟
= 𝑖𝑘0(𝑄 − 1)𝜓             (3) 

Where,  

𝑄 = √1 + 𝑋     (4) 

 and  𝑋 = 𝑘0
−2(𝜌𝜕𝑧(𝑝

−1𝜕𝑧)) + (𝑛
2(𝑧) − 1). (5) 

At the discontinuity interface, Γ𝑑 , between two 

media having different density, the 𝜓  satisfies the 

following continuity condition, 

1

𝜌+
𝜕𝜓+

𝜕𝑛
=

1

𝜌−
𝜕𝜓−

𝜕𝑛
, 𝜓𝑧

+ = 𝜓𝑧
+   (6) 

Where, the superscript "+" (or "-") indicates that its 

associated quantities are on the "+" (or "-") side of 

 Γ𝑑. We will not describe here the more details about 

underwater acoustic wave propagation models and 

refer readers to [9].  

To solve equation (3), the square root operator 𝑄 

needs to be approximated. The standard 

approximation based on Taylor expansion is as: 

√1 + 𝑋 ≅ 1 +
1

2
X,    (7)  

This yields the standard parabolic equation (SPE) 

which has been shown to be valid only for 

propagation angle 15 − 25° of horizontal. 

For one term only from the Pade series, the square 

root operator can be written as wide angle parabolic 

equation (WAPE) of Claerbout: 

√1 + 𝑋 ≅
𝑎0+𝑎1𝑋

𝑏0+𝑏1𝑋
    (8) 

Where, 𝑎0 = 1, 𝑎1 =
3

4
, 𝑏0 = 0 and 𝑏1 =

1

4
 . 

Any numerical method based on PE requires the 

acoustic field over depth at the initial depth 𝑟0that 

we use Gaussian starter as the following source 

function [10], 

𝜓(0, 𝑟) = √𝑘0exp (−
𝑘0
2

2
(𝑧 − 𝑧𝑠)

2        (9) 

 

3. Galerkin Finite Element Method 
 

The FEM is one of more powerful methods that 

have been gain widespread use in many branches of 

engineering problems. It is based on subdividing a 

complex shape into simple shapes which are much 

more mathematically manageable [11]. In this paper, 
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this subdividing is done over depth interval 

[0, 𝑧𝑚𝑎𝑥]  with 𝑁𝑧  linear elements 0 = 𝑧0 < ⋯ <

𝑧𝑁𝑧 = 𝑧𝑚𝑎𝑥 . The nodes are denoted by 𝑧𝑖, 𝑖 =

0,… ,𝑁𝑧. Each linear element  𝑖  consists the domain 

[𝑧𝑖−1, 𝑧𝑖]  that is denoted by Ω𝑖 , 𝑖 = 1,… ,𝑁𝑧 . The 

discrete equation for FEM is obtained from 

interplant functions to 𝜓  on each element Ωe  for 

governing equation (3) in terms of shape functions 

that is restriction of basis functions to each element 

as: 

𝜓𝑒(𝑧, 𝑟) = ∑ 𝑢𝑗
𝑒(𝑟)2

𝑗=1 𝜙𝑗(𝑧)          (10) 

Where for an arbitrary range r, the function values  

𝑢𝑒 are unknown parameters. The functions 𝜙𝑗  are 

defined as: 
 

𝜙𝑗(𝑧) =

{
 

 
𝑧−𝑧𝑗−1

ℎ𝑗
,    𝑧 ∈ Ω𝑗−1

𝑧𝑗−𝑧

ℎ𝑗+1
,    𝑧 ∈ Ω𝑗

0           𝑒𝑙𝑠𝑒

                  (11) 

Where, ℎ𝑗 = 𝑧𝑗 − 𝑧𝑗−1  is the length of linear 

element  Ωj . These test functions satisfy the 

following properties. 

1. Each test functions 𝜙𝑗(𝑧) ∈ 𝐻0
1(Ωj). 

2. Each test functions 𝜙𝑗(𝑧) is piecewise over 

each element. 

3. The 𝜙𝑗(𝑧𝑖) = 𝛿𝑖𝑗 , where, 𝛿𝑖𝑗 is Kronecker 

delta. 

4. If |𝑖 − 𝑗| ≥ 2 then 𝜙𝑖(𝑧𝑗) = 0, 

Where, the 𝐻1(𝛺𝑗) is the Sobolev space that is 

defined as, 

𝐻𝛼(Ωj) = {𝜈 ∈ 𝐿2(Ω𝑗):
𝜕𝑖𝜐

𝜕𝑧
∈ 𝐿2(Ω𝑗), |𝑖|

≤ 𝛼} 

(12) 

Where for 𝐻1(𝛺𝑗) , we have the conditions,  

𝜐(𝑧𝑗−1) = 0  and 𝜐(𝑧𝑗) = 0, 

With the following inner product, 

(𝑢, 𝜈) = ∫ 𝑢𝑣𝑑Ω𝑗

Ωj
, 𝑢, 𝑣 ∈ 𝐿2(Ω𝑗) 

 

(13) 

In terms of local coordinate transformation the 

element 𝛺𝑗 = [𝑧𝑗−1, 𝑧𝑗]  is mapped on [0,1] by 

transformation 𝑧 = 𝑧𝑗−1 + 𝜉ℎ where, 0 ≤ 𝜉 ≤ 1 . 

Thus the shape functions (11) are expressed as: 
 

𝜙1(𝜉) = 1 − 𝜉  𝑎𝑛𝑑  𝜙2(𝜉) = 𝜉                         (14) 

After these preliminaries, we want to do the 

following steps: 

1. Formulation of the governing equation (3) 

by variational technique, 

2. Discretization of the continuous 

formulation, 

3. Solving discretized system of equations. 

For formulation step, we apply weak form of 

equation (3) with weight functions W as follows, 

∫ (
𝜕𝜓

𝜕𝑟
− 𝑖𝑘0(𝑄 − 1)𝜓)𝑊𝑑𝑧

𝑧𝑗
𝑧𝑗−1

             (15) 

According to Galerkin method, both the weight 

function and approximate functions are chosen 

linear shape functions (9). Substituting W by 𝜙𝑘(𝑧) 

and 𝜓 by interpolate function 𝜓𝑒 leads to, 

∫
(
𝜕𝜓𝑒

𝜕𝑟
− 𝑖𝑘0(𝑄 − 1)𝜓

𝑒)𝜙𝑘(𝑧)𝑑𝑧 = 0

𝑘 = 1,2

𝑧𝑗

𝑧𝑗−1

 

 

(16) 

By employing interpolation equation (8), it obtains, 

∑
𝜕𝑢𝑗

𝑒

𝜕𝑟
∫ 𝜙𝑗(𝑧)𝜙𝑘(𝑧)𝑑𝑧
𝑧𝑗

𝑧𝑗−1

2

𝑗=1

−
𝑖𝑘0
2
∑𝑢𝑗

𝑒∫ (𝑄
𝑧𝑗

𝑧𝑗−1

2

𝑗=1

− 1)𝜙𝑗(𝑧)𝜙𝑘(𝑧)𝑑𝑧 = 0 

 

(17) 

 

where, k=1,2. Substituting SPE (5) for environment 

depth operator Q, second integral in above equation 

broken to following integrals on each element,  

1

2𝑘0
2 ∫ 𝜌

𝜕

𝜕𝑧

𝑧𝑗
𝑧𝑗−1

(
1

𝜌

𝜕

𝜕𝑧
)𝜙𝑗(𝑧)𝜙𝑘(𝑧)𝑑𝑧,                      (18) 

And 

∫ (𝑛2(𝑧) − 1)𝜙𝑗(𝑧)𝜙𝑘(𝑧)𝑑𝑧
𝑧𝑗
𝑧𝑗−1

                   (19) 

By using equations (18) and (19) and transforming 

all integrals in local coordinates with linearization in 

density and refraction coefficient, we obtain, 
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∑
𝜕𝑢𝑗

𝑒

𝜕𝑟
∫ 𝜙𝑗(𝜉)𝜙𝑘(𝜉)𝑑𝜉
1

0

2

𝑗=1

−
𝑖

2𝑘0ℎ
2∑�̃�𝑒𝑢𝑗

𝑒∫
𝜕𝜙𝑗(𝜉)

𝜕𝜉

𝜕𝜙𝑘(𝜉)

𝜕𝜉

1

0

2

𝑗=1

𝑑𝜉

+ 𝑖𝑘0∑�̃�𝑒𝑢𝑗
𝑒∫ 𝜙𝑗(𝜉)𝜙𝑘(𝜉)𝑑𝜉

1

0

2

𝑗=1

= 0 

 

(20) 

Where, for the values of density 𝜌1, 𝜌2  and 

refraction coefficients 𝑛1 ,  𝑛2  in the end points of 

each element, we have, 

�̃�𝑒 =
2𝜌1

𝜌1+𝜌2
 .    and  �̃�𝑒 =

(�̃�1
2−1)+(�̃�2

2−1)

4
.              (21) 

In matrix representation, 

𝐴𝑒
𝜕𝑢𝑒

𝜕𝑟
+ [𝜇𝐵𝑒 + 𝜈𝐶𝑒]𝑢𝑒 = 0                        (22) 

where,  𝜇 =
𝑖

2𝑘0ℎ
2 , 𝜐 =

−𝑖𝑘0

ℎ
  and 

𝐴𝑗𝑘
𝑒 = ∫ 𝜙𝑗(𝜉)𝜙𝑘(𝜉)𝑑𝜉

1

0
=

1

6ℎ
(
2 1
1 2

)              (23) 

𝐵𝑗𝑘
𝑒 = �̃� ∫

𝜕𝜙𝑗(𝜉)

𝜕𝜉

𝜕𝜙𝑘(𝜉)

𝜕𝜉
𝑑𝜉

1

0
= �̃� (

1 −1
−1 1

)        (24) 

𝐶𝑗𝑘
𝑒 = �̃� ∫ 𝜙𝑗(𝜉)𝜙𝑘(𝜉)𝑑𝜉

1

0
=

�̃�

6ℎ
(
2 1
1 2

)             (25) 

 

To obtain the system of equations including all 

nodes, these element matrices must be assembled 

that its resulting system has the following form,  

 

𝐴
𝜕𝑢

𝜕𝑟
+ [𝜇𝐵 + 𝜈𝐶]𝑢 = 0                          (26) 

By applying Crank-Nicolson approach and 

substituting 𝑢 =
𝑢𝑛+𝑢𝑛+1

2
 and 𝑢𝑟 =

𝑢𝑛−𝑢𝑛+1

Δ𝑟
  into 

equation (17), the 𝑁𝑧 × 𝑁𝑧 tridiagonal matrix system 

obtained, 

[𝐴 +
∆𝑟

2
(𝜇𝐵 + 𝜐𝐶)] 𝑢𝑛+1

= [𝐴 −
∆𝑟

2
(𝜇𝐵 + 𝜐𝐶)] 𝑢𝑛 

(27) 

 

Where, Δ𝑟 is the range step. By doing all of above 

steps Galerkin finite element parabolic equation 

method is derived. 

 
4. Numerical Results 

 
In this section, the FEPE technique is applied for 

solving six test problems. First problem, as shown in 

figure 1, just shows comparison of transmission loss 

(TL) curve for different receiver depths. However, 

simulation result in figure 2 shows the impact of 

multilayer media in FEPE. For the third example 

shown in figure 3, obtained results are compared 

with standard UMPE model [11]. The third example 

also represents a brief comparison of method with 

standard KRAKEN normal mode technique [12]. In 

all implementations, for maintaining reflection of 

bottom interface, we use an artificial absorbing layer. 

Second test problem includes environment with final 

depth 800m sloping wedge with penetrable lossy 

bottom. The initial water depth is 500 m decreasing 

linearly with slopes upward at approximately 1.7°. 

The final range of simulation is 4 km. In water layer 

sound velocity and density are 𝑐𝑤 = 1500 m/s and 

𝜌𝑤 = 1 g/cm
3. Source with frequency 25 Hz locates 

at depth 100 m (figure 3). In elastic lossy sediment, 

speed, density and attenuation are 𝑐𝑏𝑜𝑡 = 1700 m/s, 
𝜌𝑏𝑜𝑡 = 1.5  g/cm

3 and 𝛼𝑏𝑜𝑡 = 0.5 dB km⁄ , 

respectively.  

The depth and range segments are chosen 500 and 

500. Figure 4, shows TL in the receiver depth of 

30m. The range of simulation for all plots of this 

example is 5km. This example involves other case 

for comparison of impact of thickness of bottom 

layer on water column propagation.  

 

 

Figure. 1 The comparison of TL curves for two different 

receiver depths. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-65

-60

-55

-50

-45

-40

-35

-30

-25

Range (m)

T
L
 (

d
B

 r
e
 1

 m
)

 

 

reciever depth: 30 (m)

reciever depth: 80 (m)



160 

International Journal of Intelligent Engineering and Systems, Vol.9, No.3, 2016 

 

 

Figure. 2 Comparison of one bottom layer and two layers 

environment in water media. 

 

In the TL curve plot (Figure 2) and pressure field 

(Figure 3), the significant differences of the water 

column at long range illustrate the influence of 

sediment thickness on the acoustic pressure field. 
 

 

 
Figure. 3 The acoustic pressure field for an environment 

with two different bottom thicknesses 

Third problem consists of a water column with 

variable bottom topography ranged from 400 m to 

250 m on top of sediment with compression speed, 

density and attenuation similar to those of 

mentioned in second test problem. The source depth 

is set to 100 m and the source frequency is set 100 

Hz. Figure 4 shows the acoustic pressure field of 

this problem for final rang of simulation is 10 km. 

To highlight the performance of the present method, 

we compare the obtained result of FEPE with the 

simulation result of UMPE standard software [7]. 

Figure 5 shows TL curve comparison that using the 

same environmental properties such as type of initial 

field, sampling grid points in both depth and depth, 

attenuation mechanism, absorption layer structure 

and shear property of bottom interface parameters 

(speed, density and attenuation) can give results that 

are quite close to those of obtained by running 

UMPE.  

 

 
Figure. 4 The acoustic pressure field for third test case 

 

 
Figure. 5 The comparison of standard UMPE method 

with FEPE for the same initial set points. 
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Figure. 6 The Munk sound speed profile of deep water. 

 
 

The last environment is a deep ocean including 

water column of depth 5000m and the Munk sound 

speed profile is given in figure 6. The final 

simulation range is set 50km for a source depth of 

91.6 m, a receiver depth of 131 m and source 

frequency of 20Hz. Figure 7 shows comparison of 

TL curves of standard Keraken normal mode 

method [12] and proposed technique. As can be seen 

from this figure, the proposed method has good 

agreement with the Keraken normal mode.  

To investigate the capability of the method 

presented in this study, we introduce a waveguide 

problem in which the fluid half-space with greater of 

100m and with values of speed and absorption given 

by 500m/s and 1dB/𝜆, respectively. TL comparisons 

in the waveguide are shown in Figure 8. As can be 

seen, the proposed method result has a good 

agreement with the UMPE result.  

 
Figure. 7 The comparison of KRAKEN normal mode and 

FEPE method for similar environmental parameters. 

In this paper, propagation of low frequency sound 

speed in underwater was investigated. To simulate 

this underwater acoustic phenomenon, parabolic 

equation method is applied and the governing 

equations are numerically solved by implicit finite 

difference scheme. Two benchmark problems are 

used for the validation of the developed method for 

the range dependent problems. The obtained 

numerical results are compared against the reported 

results of semi-analytical methods and good 

agreement is displayed. 
 
 

 
Figure. 8 Transmission loss comparisons for the solid 

bottom. The source and receiver depths are 100m. 

 

 

5. Conclusions 
 

Sound propagation at low frequency is one of the 

most important subjects of research in underwater 

acoustics. In the paper, parabolic equation method 

was applied for numerically analyzing sound 

propagation with low frequencies in different 

situations. To accomplish this task, Galerkin finite 

element approach was adopted to solve the 

governing parabolic equation. All the analyses and 

numerical investigations conducted in this paper 

were accomplished by a developed computer 

program which was written in MATLAB software. 

The capability of proposed method was validated by 

comparing transmission loss predictions to 

predictions obtained using standard benchmark 

models for several test cases. For validation of 

proposed method, we chose to compare our results 

to those obtained using UMPE. The numerical 

results demonstrated good agreement in comparison 

with physically behavior of wave propagation in 

ocean environment. Moreover, proposed method 

was proved as a reliable method for wide angle, 
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bottom-interacting situation with complex 

boundaries in ocean acoustic wave propagation. 
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