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Abstract: A number of researches in different areas has been conducted on using the Principal Component Analysis 

PCA combined with Artificial Neural Networks ANN. In this current research, we use these two techniques to estimate 

the radius ratio b/a (a: outer radius, b: inner radius) of an elastic tube based on its form function. The PCA technique 

is used to estimate the component loadings corresponding to form function. Then, the component loadings it’s used in 

the ANN technique to estimate the radius ratio of the tube. To get the optimal network, several configurations are 

implemented and tested. The optimal configuration selected is a network with 16 inputs, 2 hidden layers composed of 

4 and 1 neurons respectively, and trained by the back-propagation algorithm. This configuration is able to estimate the 

radius ratio 𝑏/𝑎 with a mean absolute error MAE of about 0.0024 and a mean square error MSE of 0.0008. This study 

reveals benefits of the combination between PCA and ANN, and also it provides some new ideas for further researches. 

This current work can be used as a novel approach for the characterization of an elastic tube. 

Keywords: Radius ratio, estimation, form function, principal component analysis, artificial neural networks. 

 

 

1. Introduction 

Currently, soft computing techniques which 

differs from the traditional methods has been widely 

used to solve complex nonlinear problems by 

applying different approaches [1-4]. Recently there 

has been an increasing interest for the use of ANN 

approach [5-6]. It’s a computational model inspired 

from natural biological neural networks. It consisting 

of a large number of interconnected processing 

neurons that simulates the human brain learning [6]. 

The ANN allows to learn easily to estimate 

relationships between one or several input variables 

called independent variables and one or several 

output variables called dependents variables without 

a specific mathematical function. Hence, an ANN 

works properly for solving complicated non-linear 

problems of multivariate systems. In addition, many 

input variables may cause poor generalization 

performance [7]. These problems can be solved by 

combining artificial neural network with principal 

component analysis [8-9]. PCA transforms the 

original data set into a set of uncorrelated variables 

that capture all of the variance of the original data set 

[10]. On the other hand, if the database is limited and 

contains qualitative information, the combined 

system can be used in modelling complex system 

behaviors [11]. 

The aim of the present study is to investigate and 

to  explore the capability of combining both 

approaches of Neural Networks and Principal 

Component Analysis to estimate the radius ratio 𝑏/𝑎 

(a: outer radius, b: inner radius) based on 

backscattering form function by an immersed elastic 

tube. In previous works, many theoretical and 

experimental studies show that acoustic resonances 

of a cylindrical shell are related to its physical and 

geometrical proprieties [12-17]. Conversely, starting 

from the resonances of circumferential wave, we can 
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characterize material constituting a cylindrical shell 

and its geometry [18]. This study use a close 

relationship between circumferential waves 

propagates in the case of an elastic tube, and lamb 

waves propagates in the case of a plat at same 

thickness. The necessary condition is to check this 

similarity between these two types of waves. It must 

be used for an elastic tube (radius ratio 𝑏/𝑎 >  0.90) 

and a plat of same thickness  (𝑒 = 𝑎 − 𝑏) . The 

similarity allows to use the traditional relationships 

applied in the case of Lamb waves to go up to the 

value of the reduced cut-off frequency (𝑘𝑎)𝑐 in the 

case of a tube. The result obtain by this study is 

limited to an elastic tube with radius ratio (𝑏/𝑎 >
 0.90). In this term paper we explore the capability to 

estimate the radius ratio 𝑏/𝑎 of an elastic tube with 

radius ratio (𝑏/𝑎 >  0.50) to resolve this problem. 

We introduce a new approach which is based on soft 

computing technique to develop a model that is 

capable to estimate the radius ratio of an elastic tube 

using backscattering form function. This problem is 

divided into two main phases: the first is the pre-

processing and component loadings estimation phase. 

The second is the estimation phase, where a number 

of trial is tested until we carried out less errors to find 

the best network architecture. To perform, many 

configurations are evaluated and tested.  

In this work, the approach based on soft 

computing techniques was proposed. The PCA is used 

to estimate the component loadings corresponding to form 

function, and a neural networks model was developed 

and expanded with input parameters which are the 

component loadings estimated by the PCA technique 

in order to return the radius ratio corresponding to 

form function. The combined method based on PCA 

and ANN usually improves the training speed, as well 

as it enhance the robustness of the model and reduces 

model errors. The capability to estimate the radius 

ratio of an elastic tube using the proposed approach 

was tested. This approach does not present any 

approximation as in the case of the natural modes 

method which assimilates the tubes to the plates with 

the same thickness. This approximation is valuable 

for a thin tubes with radius ratio 𝑏/𝑎 >  0.9. In the 

despite, the introduced approach is able to generalize 

the solution to a thick tubes, so whatever the value of 

their radius ratio. 

2. Backscattering response from an 

elastic tube 

If an air-filled elastic tube with radius ratio 𝑏/𝑎 

immersed in water and excited by a plane acoustic 

wave perpendicularly to its axis, the shell and the 

water-shell interface automatically generate 

circumferential waves. The results shows two types 

of circumferential waves: the symmetric waves and 

the anti-symmetric waves [20-23]. Fig. 1 shows the 

cylindrical coordinate orientation and the direction of 

the incident plane wave [24-28]. These 

circumferential waves make standing waves on the 

circumference of the tube constituting resonances. 

For a tube made in a given material, the resonance 

dimensionless frequencies of these waves essentially 

depend on the radius ratio b/a. These resonances are 

observed on the spectrum of the acoustic pressure 

backscattered by the tube [25, 28-30]. The mode n of 

each resonance is the number of wavelengths around 

the circumference. 

The complex pressure Pscat (form function) 

backscattering by a tube is the summation of the 

modes that takes into account the effects of the 

incident wave, the reflective wave {1}, 

circumferential waves in the shell {2} (whispering 

gallery waves, Rayleigh wave), and interface Scholte 

wave {3}, connected to the geometry of the object 

Fig. 2. 

To explain these effects, it is necessary to apply 

the Sommerfeld-Watson transform [17, 31]. The 

Figure. 1 The geometry used for formulating the 

backscattered complex pressure by an elastic tube. 

Figure. 2 Mechanisms of the formation of echoes {1}, 

specular reflection; {2}, circumferential shell, and {3}, 

Scholte waves and Franz waves. 
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general form of the scattered pressure field in a plan 

perpendicular to the z-axis can be expressed as [32-

35]: 

 

𝑃𝑠𝑐𝑎𝑡(𝜔)

= 𝑃0

1 − 𝑖

√𝜋𝑘1𝑟
exp 𝑖(2𝑘1𝑎) ∑ 𝜀𝑛

𝐷𝑛
1(𝜔)

𝐷𝑛(𝜔)

∞

𝑛=0

cos (𝑛𝜃) 
(1) 

where (ω: angular frequency, 𝑘1 =  𝜔/𝐶1  : wave 

number with 𝐶1 is the wave velocity in the external 

fluid,  𝑃0 :  amplitude of the incident plane wave, 

𝐷𝑛
1(𝜔) and 𝐷𝑛(𝜔): determinants computed from the 

boundary conditions of the problem on the two 

interfaces, 𝜀𝑛: Neumann coefficient (𝜀𝑛 =  1 if 𝑛 =
 0 and 𝜀𝑛 =  2  if 𝑛 ≠  0),  𝑟 : distance between the 

position where the pressure is calculated and the z-

axis of the tube. 

The complex backscattering pressure computed 

in a far field is obtained for θ = π as a function of the 

dimensionless frequency 𝑥1 given by the relation: 

 𝑥1 = 𝑘1𝑎 =
2𝜋𝜈𝑎

𝐶1
 (2) 

where ν is the wave frequency in hertz.  

The physical parameters used in the calculation 

of the backscattering complex pressure are illustrated 

in Table 1. Fig. 3 show the module of the 

backscattered complex pressure calculated for tree 

examples of copper tube with radios ratio ((a) b/a = 

0.85, (b) b/a = 0.92 and (c) b/a = 0.97) in function of 

the reduced frequency  𝐾𝑎 . The backscattered 

pressure are presented respectively. 

3. Principal component analysis 

The principal Component Analysis technique is 

one of multivariate data analysis methods [10, 36]. It 

has been widely used by almost all scientific 

disciplines. It was first introduced by Karl Pearson 

[37]. Over twenty years later, Fisherand Mckenzie 

proposed the first algorithm to PCA which is known 

as a NIPALS [38]. However, Hotlling made the major 

developmental impact on the method [39]. The 

central idea of this method is to reduce the number of 

study variables with retaining the much information 

as possible. This reduction is achieved by 

transforming the given variables of study to a new set 

of variables whose are independents and linear 

compound of input variables. 

Mathematically, PCA is an orthogonal 

transformation technique of the given variables 

which its goal is to form a new variables that are 

uncorrelated by taking linear combinations of the 

original variables. The new variables are called 

principal components [40]. The maximum variance 

of the original data are represented by the first 

principal component, the second one defines the next 

greatest variation not explained by the first 

component. Then, the third explains as much 

variation not extracted by the first and the second 

component, and so forth. In practice, for modeling a 

multivariate data using the PCA technique, the data 

are collected in a matrix. In order to make the result 

independent of the used units for each variable, the 

data matrix are normalized in order to use it in the 

calculation of the correlation matrix defined by:  

 C𝑥𝑥 =
1

𝑁 − 1
𝑋𝑇𝑋 (3) 

N: Number of observations of each variable and 

X: normalized data matrix. 

The calculation of PCA parameters can be 

summarized in the calculus of eigenvalues and 

eigenvectors of the correlation matrix C𝑥𝑥. From the 

spectral decomposition, this matrix can be written as 

follows: 
Figure. 3 Backscattered pressure spectrum by a copper 

tube with radius ratio: (𝑎) 𝑏/𝑎 =  0.85, (𝑏) 𝑏/𝑎 =
 0.92, (𝑐) 𝑏/𝑎 =  0.98 

Table 1. Physical parameter. 
 Density 

𝝆(𝑲𝒈 𝒎𝟑⁄ ) 

Longitudinal 

velocity 

𝑪𝒍(𝒎 𝒔)⁄  

Transvers 

velocity 

𝑪𝒕(𝒎 𝒔⁄ ) 

Cupper 

Water 

Air 

8920 

1000 

1.29 

4760 

1470 

334 

2325 

- 

- 
 



140 

International Journal of Intelligent Engineering and Systems, Vol.9, No.3, 2016 

 

 C𝑥𝑥 = 𝑃Λ𝑃𝑇 = ∑ 𝜆𝑖𝑝𝑖𝑝𝑖
𝑇

𝑀

𝑖=1

 (4) 

Where, 𝑝𝑖 is the 𝑖𝑡ℎ eigenvector of C𝑥𝑥, 𝜆𝑖 is the 

corresponding eigenvalue and M number of variables. 

If there is one or more linear relationships 

between input data, we have one or more eigenvalues 

equal to zero and the matrix 𝑋 can be represented by 

the first components corresponding to eigenvalues 

not equal to zero. However, the eigenvalues equal 

zero are rarely come across in practice. So, it is 

necessary to determine the number which represents 

the number of components corresponding to the 

dominant eigenvalues. Many rules are proposed in 

the literature to determine the number of components 

to retain [41]: 

 Criterion of sufficient quality of 

representation: it's the measure the percent variance 

explain by the first components, and retain all 

component needed to explain the desired one.  

 Kaiser criterion [42]: is to retain any 

components with eigenvalues great than 1.0 

Components that have a substantial contribution to 

original data. 

 Cattell criterion [43]: also called the scree 

test, it’s a graphical method performed by plotting 

the eigenvalues against their respective component 

number, and retaining the number of components 

that come before a break in the plot. 

It appears that the Kaiser criterion sometimes 

keep too many components than the Cattell criterion 

[41]. Both criterion do perfectly in normal conditions. 

In practice, an important aspect has been provided so 

that the solution must be interpretable. Therefore, on 

examines several solutions with small or high number 

of components, and chooses the one that makes the 

best sense, so like in this research. 

4. Artificial neural networks 

The artificial neural networks technique is an 

alternate computational approach inspired by studies 

of brain and nervous systems [5-6]. It is based on 

theories of the massive interconnection and parallel 

processing architecture of biological neural systems. 

Indeed, the advantage of neural networks is that they 

are capable of modelling non-linear systems. 

Currently many researchers applied neural networks 

model in estimation study. 

Back-Propagation neural network [44] that is 

characterized by the error backpropagation the last to 

the first layer, is the best and the most popular 

multilayer neural network [45]. In practice, BP neural 

network consisting of three adjacent layers, input, 

hidden and output layers, the input one consisting of 

neuron representing various input variables. The 

hidden layers consist of many hidden neuron and an 

output layer consisting of output variables. Each 

neuron in a certain layer is connected to every single 

neuron in the next layer by links having an 

appropriate and an adjustable connection weight. The 

input neuron pass on the input signal values to the 

neuron in the hidden layers. The values are 

distributed to all the neuron in the hidden layers 

depending on the connection weights between the 

input neuron and the hidden neurons. Fig. 4 shows 

corresponding architecture of the neural network 

used in this study and the schematic representation of 

a neuron. 

The training of neural networks is as follows: for 

the neuron 𝑗, with input 𝑥𝑖, its output 𝑂𝑗 is calculated 

with the following formula: 

 𝑂𝑗 = 𝑓(𝑦𝑗 + 𝑏𝑗)      ;       𝑦𝑗 = ∑ 𝜔𝑖𝑗𝑥𝑖

𝑛

𝑖=1

 (5) 

where 𝜔𝑖𝑗 is the connection weights between the 

neurons in the previous layer and the actual neurons, 

𝑏𝑗  is the bias input of the actual neurons, n is the 

number of input, and 𝑓  is the activation function of 

the neurons is usually a sigmoid function defined by: 

 𝑓(𝑥) =
1

1 + 𝑒−𝑥 (6) 

The back-propagation algorithm is used to 

minimize the error of the output defined as: 

 𝐸 =
1

2
∑ ∑(𝑇𝑝𝑘 − 𝑂𝑝𝑘)2

𝑚

𝑘=1

𝑙

𝑝=1

 (7) 

Figure. 4 Neural networks architecture and the schematic 

representation of a neuron.  
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where 𝑙 is the number of training example, 𝑚 is the 

number of output neurons, 𝑇𝑝𝑘 is the target output of 

𝑘𝑡ℎ  neuron of 𝑝𝑡ℎ  training example, and 𝑂𝑝𝑘  is the 

output value of 𝑘𝑡ℎ neuron of 𝑝𝑡ℎ training example. 

In the training process, when the error falls below the 

threshold or tolerance level, the training will stop. 

The error 𝛿𝑘  in output layer and error 𝛿𝑗  in hidden 

layer are defined as: 

 

𝛿𝑘 = 𝜆(𝑇𝑘 − 𝑂𝑘)𝑓′(𝑂𝑘)    ;    

 𝛿𝑗 = 𝜆 ∑ 𝛿𝑙𝜔𝑖𝑗𝑥𝑖𝑓′(𝑂𝑗)

𝑛

𝑖=1

 
(8) 

where 𝑇𝑘  is the target output and 𝑂𝑘  is the actual 

output of the 𝑘𝑡ℎ output neuron in the output layer, 

𝑂𝑗 is the actual output value in the hidden layer, and 

𝜆 is the adjustable variable in the activation function. 

In the training process the weights and biases in both 

output and hidden layers are modified repeatedly, 

there new values are written as: 

 
𝜔𝑖𝑗(𝑘 + 1) =  𝜔𝑖𝑗(𝑘) +  𝜂𝛿𝑗𝑂𝑖  ;   

𝑏𝑗(𝑘 + 1) =  𝑏𝑗(𝑘) +    𝜂𝛿𝑖 
(9) 

where 𝑘  is the number of the epoch and 𝜂  is the 

learning rate. 

This modification proceeds downward. Through 

such an iterative process, the network attains the 

ability to promptly output the similar output value to 

the target output. The performance of the networks 

depends mainly on data representation [46]. 

5. Methodology 

This section describes the steps taken to 

implement the PCA and the ANN approaches Fig. 5 

describe the methodology used in this study. 

The first phase consist on the estimation of the 

component loadings with PCA in two steps. In the 

first step, we collecting all data base in the input 

matrix. Then this data is normalized. After that, the 

PCA technique well applying to the training and 

validation data set. The principal components was 

estimated and classified according to their variations. 

In the second step, the component loadings of the 

testing data base are estimated. The component 

loadings is the weighting factors (components 

coordinates) of principal components for the input 

data. It’s the projection of analyzed data in the space 

defined by the principal components. This parameter 

inform how much of the variability of analyzed data 

is represented by the principal components.  
The second phase is implementing the 

component loadings in the neural networks 

architectures. For all architectures, the activation 

function is a differentiable sigmoid function, which 

helps to apply the non-linear mapping from inputs to 

outputs, the synaptic weights are initialized randomly. 

The number of hidden layers vary from 1 to 2 and 

varying at the same time the number of neurons in 

hidden layers. The number of neurons in hidden 

layers can vary according to the complexity of the 

problem and the size of the data set. The 

implementation of the neural networks requires [47]: 

A collection of the data for the training, validation 

and testing. The training data is the component 

loadings corresponding to form function in the 

training data set, it’s used to adjust the neural network 

weights. The validation data set is the component 

loadings corresponding to form function in the 

validation data set, it’s used to minimize over fitting. 

No adjustment of the neural network weights occurs 

with this data set. But, any increase in accuracy over 

the training data set affect the increase in accuracy 

over a data set that has not been shown to the network 

before. If the accuracy over the training data 

increases, while the accuracy over the validation data 

stays unchanging or decreases. Then, the network 

configuration is being over fitted and therefore the 

training will be stopped. The testing data set is the 

component loadings corresponding to form function 

Figure. 5 Methodology of implementation of PCA and 

ANN 
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in the testing data set. It’s used for testing the final 

solution in order to confirm the capability of the 

learned neural network in estimation. 

Then, the output results obtained for each model 

were compared with the corresponding actual results. 

ANN model estimation performance can be assessed 

by statistical coefficients, the mean absolute error 

MAE, the mean square error MSE, and the 

correlation coefficient R. The corresponding 

definitions are given as follows: 

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑑𝑖 − 𝑒𝑖|

𝑛

𝑖=1

 (10) 

 𝑀𝑆𝐸 =  √
1

𝑛
∑|𝑑𝑖 − 𝑒𝑖|

𝑛

𝑖=1

 (11) 

 
𝑅 =

∑ (𝑑𝑖 − �̅�)(𝑒𝑖 − �̅�)𝑛
𝑖=1

√∑ (𝑑𝑖 − �̅�)2𝑛
𝑖=1 ∑ (𝑒𝑖 − �̅�)2𝑛

𝑖=1

 
(12) 

where d is the desired value, e is the estimated value, 

�̅� is the mean of the desired value, �̅� is the mean of 

the estimated value, and n is the total number of the 

data. The smaller MAE and MSE values and the 

larger value of R represent the less deviation and 

corresponding to the better performance of the model. 

6. Results and discussion 

The total data set consisted of 50 form functions 

of different radius ratio from 0.50 to 0.99. The data is 

divided into three subsamples: training set (60%), 

validation set (20%) and testing set (20%). The 

proportions of the training and the validation sets are 

selected manually from the data base. After applying 

PCA to training set and validation set, the PCA 

parameters was estimated. Fig. 6 shows a 

representation of eigenvalues in terms of principal 

components for the models and Fig. 7 shows the 

relative contribution of each component to the total 

variance of data. For example, in Fig. 6 the first 

component is about 13.5% of the variance; it means 

that this component represents a significant part on 

all form function. The components two and three are 

respectively about 8.1% and 5.3% of the variance. 

The principal components obtained revealed that 12 

components with eigenvalue greater than 1. The 

components together explain 56.90% of total 

variance Fig. 7. 

With n original variables, we will obtain n 

principal components, still have as many new 

components as original variables except uncorrelated. 

Often it is desirable to retain a smaller set of the 

principal components for easier interpretation of the 

analysis. Then, the component loadings are estimated. 

So every function form was described by a number of 

the component loadings correspond to the number of 

principal components chosen, which is the input of 

the neural networks architectures developed and 

trained by the back-propagation algorithm. The 

reason to train more models is to get the best neural 

Figure. 6 Eigenvalues and contributions of component to 

the total variance in terms of principal components. 

Figure. 7 Representation of cumulative variance in terms 

of principal components. 

Table 2. Parameters of different neural networks 

architecture. 

 

 

Number of 

input 

variables 

Number of 

hidden 

layers 

Number of 

neurons in 

hidden layers 

1 

2 

3 

4 

5 

6 

7 

12 

16 

17 

32 

10 

16 

22 

1 

1 

1 

1 

2 

2 

2 

9 

6 

12 

1 

6/10 

4/1 

3/2 
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networks architecture that has the optimum number 

of inputs, the optimal number of hidden layers and 

the optimal number of neurons in hidden layers. 

Table 2 shows the most successful network tested. 

The optimal configuration is obtained by the 

minimization of the difference between the desired 

and the estimated outputs. Selection of the network 

was performed at minimum of mean absolute error 

(MSE). The result of calculated errors are presented 

in fig. 8. The best architecture is a network with 16 

inputs, 2 hidden layers. Each layer is composed of 4 

and 1 neurons respectively and 1 neuron in the output 

layer. The table 3 presents the radius ratio 𝑏/𝑎 

estimated and desired for the testing data set.  

The PCA-ANN model output are very similar to 

desired output. The performance of the model was 

done according to the mean square error is 𝑀𝑆𝐸 =
0.0008  and the mean absolute error is  𝑀𝐴𝐸 =
0.0248 . Fig. 9 shows the estimated values of the 

radius ratio traced according to the desired values of 

the radius ratio for testing data. The best results are 

obtained when the points are illustrated at the straight 

line. This means that the value of the coefficient of 

determination R is 1. The values of the coefficient of 

determination R corresponding to the testing data for 

the optimal configuration are 𝑅 = 0.98. These values 

show that there is a positive and almost perfect 

agreement between the desired and estimated radius 

ratio. Fig. 10 shows the validation performance of the 

configuration calculated by considering the Mean 

Squared Error (MSE). As presented in this figure the 

training of the network was stopped at epoch 18 with 

a best validation performance equal to 0.0009.  

7. Conclusion 

 The scattering acoustic from elastic tubes is the 

object of many studies experimental and theoretical. 

In this study, we have introduced a new approach 

which is based on soft computing technique to 

estimate the radius ratio of an elastic tube from its 

form function. The proposed approach is based on 

combination between principal component analysis 

Figure. 8 Errors for the estimation of the radius ratio 

with different ANN configurations 

Table 3 – Values of desired and estimated radius ratio 

Desired radius ratio Estimated radius ratio 

0.500 

0.550 

0.600 

0.650 

0.700 

0.750 

0.800 

0.850 

0.900 

0.950 

0.539 

0.555 

0.636 

0.676 

0.716 

0.756 

0.844 

0.821 

0.896 

0.909 

 

Figure. 9 Correlation of desired and estimated values 

of radius ratio for testing data 

Figure. 10 Visualization of errors of training validation 

and testing data as a function of the number of iterations. 
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and the artificial neural networks techniques. The 

model which is based on this two techniques has been 

developed to return the radius ratio corresponding to 

the form function. In this current research, we have 

tested the capability to estimate the radius ratio of 

different tubes made from copper. The introduced 

model shows almost perfect agreement between 

desired and estimated radius ratio. This technique can 

be generalized to other tubes made from different 

materials and can help us to estimate others 

parameters related to tube. This study reveals 

advantages of the application of the proposed 

approach in scattering acoustic. This research can be 

used as a new method for the characterization of an 

elastic tube. In the further researches, with regard to 

the algorithm, other techniques can be examined to 

ameliorate this study.  
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