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Abstract:  Image mining is concerned with knowledge discovery in image databases. With the advance of 
multimedia technology and growth of image collections, it is becoming crucial to analyze the compactness of image 
data and apply it to image mining. In this paper, we study the class compactness and boundary compactness of image 
data, which are used in image classification and data confining, respectively. The data confining procedure produces 
a relevance graph representing relevant image pairs and their relevancy. Based on relevant image pairs, a manifold 
learning technique is applied to compute distances between images and manifolds of images. Image retrieval is based 
on these distances. The effectiveness of the proposed approach has been validated by experiments on real-world 
images. 

Keywords: Class compactness; Boundary compactness; Manifold learning; Image mining; Image classification; 
Image retrieval 

 
 

1. Introduction 

Progresses in the image acquisition and storage 
technology have led to tremendous growth in the 
significantly large and detailed image databases [1]. 
A recurring problem in computer vision and pattern 
recognition is knowledge discovery from image 
databases. Much more than just an extension of data 
mining to image domain, the image mining is an 
interdisciplinary endeavor to address this problem, 
which has gradually become the attention focus of 
research community. Image mining is a technique to 
extract patterns, implicit knowledge, and/or image 
data relationship which are not explicitly stored in 
images [2]. Applications include, but are not limited 
to, web data mining, image retrieval, medical and 
healthcare informatics, satellite image analysis, and 
mineral forecast.  

The main intention of image mining is to generate 
considerable patterns without any information of the 
image content, the patterns types are different [3]. 
Frequently-used image mining techniques include: 
image similarity search, image association rule 
mining, image classification, image clustering, and 
neural networks. When manual image annotation 
becomes more and more unfeasible, image search, 

based on content similarity becomes popular. A lot 
of image retrieval systems adopt the similarity-based 
paradigm, including QBIC (IBM Query by Image 
Content) [4], VisualSEEk [5], Virage’s VIR Image 
Engine [6], and Excalibur’s Image RetrievalWare 
[7]. Image association rules provide information in 
image databases, such as interesting but non-obvious 
spatial or temporal causalities. Many association 
rule mining methods [8][9] have been proposed for 
image databases. The main objective of the image 
classification is to decide whether an image belongs 
to a certain category or not. Uehara et al. [10] used a 
binary Bayesian classifier to achieve a systematic 
image classification, where images are divided into 
two types: indoor and outdoor. Vailaya et al. [11] 
proposed a hierarchical classification of vacation 
images: at the highest level, images are classified as 
indoor or outdoor; outdoor images are further 
classified as city or landscape; finally, a subset of 
landscape images is classified into sunset, forest, 
and mountain classes. Image clustering methods 
partition images into clusters such that the images 
within the same cluster are similar to each other. 
Unlike the classification, the image clustering is 
unsupervised. Many image clustering methods 
[12][13] have been successfully used to better 
organize, represent, and browse images. A neural 
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network is a massively parallel distributed processor 

consists of several simple processing units, each has 

natural propensity of storing experiential knowledge 

and making knowledge available for use [14] and 

[15] presents noteworthy research work that applies 

neural network to image mining. 

We distinguish two kinds of frameworks for 

characterizing image mining systems: function 

driven and information driven. Most existing image 

mining systems [16][17] are function driven. 

Multimedia Miner [16], a system developed by 

researchers from Simon Fraser University, is used as 

a framework belonging to the first category. The 

system constructs multimedia data cube facilitating 

multiple dimensional analyses of multimedia data, 

primarily based on visual content, and the mining of 

various kind of knowledge including summarization, 

comparison, classification, association, clustering. 

Function-driven architecture cannot effectively 

handle different levels of information representation 

in image mining. Zhang proposed an information 

driven framework for image mining [18]. The 

framework distinguishes four levels of information: 

the pixel level, the object level, the semantic concept 

level, and the pattern and knowledge level. A high 

dimensional indexing schemes and the retrieval 

techniques are also included to support the flow of 

information among the levels. This framework 

makes the first step towards capturing the different 

levels of information present in image data and 

addressing the question of what are the issues and 

challenges of discovering useful patterns/knowledge 

from each level. 

The study of image mining is still in its infancy. 

With the advance of multimedia technology and 

growth of image collections, it is becoming crucial 

to analyze the compactness of image data and apply 

it to image mining. We can see the world, classify 

and analyze various scenes; in this process, data 

compactness plays an very important role. In the 

ever-changing world, we observe objects of different 

types; the appearance of objects in each type has a 

relatively stable and compact model. The stability 

and compactness in appearance indicate data 

compactness. In this paper we study the class 

compactness and boundary compactness of image 

data, which are used in image classification and data 

confining, respectively. The data confining produces 

a relevance graph representing relevant image pairs 

and their relevancy. Based on relevant image pairs, a 

manifold learning technique is applied in the 

computation of distances between images and 

manifolds of images. Image retrieval is based on 

these distances.  

This paper is an extension of our previous work 

[19]. The rest of the paper is organized as follows. In 

the Section II, we will introduce a mathematical 

representation of image mining. Section III presents 

our approach for image classification by class 

compactness. Section IV proposes our scheme for 

data confining by boundary compactness. Image 

retrieval by manifold learning is elaborated in 

Section V. Section VI reports the experiments. 

Section VII concludes. 

2. Mathematical Representation of Image 

Mining 

Image mining is concerned with knowledge 

discovery in image databases. It is an effort to 

transform the low level image features into patterns, 

descriptions, and/or object relationship. Let R
d
 be 

the feature space of an image set,  
d

n RxxxX  },...,,{ 21  
be the vector representation of the images in the 

feature space. The scenes of the images are divided 

into m categories:
  

},...,,{ 21 m  

Image clustering or classification can be represented 

as a mapping Xg : . In the real world, scenes 

in the same category are very different under 

different conditions, the images of these scenes form 

a manifold in the feature space. For large quantities 

of image data, we can use a manifold learning 

approach to investigate the problem of the semantic 

representation of images. Manifold Learning 

pursues goal to embed originally high dimensional 

data in a lower dimensional space, while preserving 

characteristic properties. For an image scene ψi, a 

manifold learning is a mapping di

ii Rgg  )(: 1 . 

Put together, the scene space can be formulated as,  

 
1

m
di

i
i

Y R


  
 

and the goal of image mining is to find a mapping 

from the image set X to the scene space Y, 

YXh : , where )),(),(()( xgxgxh i and ixg )( . 

Image association rule mining aims to find a set of 

association rules to reveal and represent the 

occurrence frequency of a group of objects/features, 

or their relationship. A typical association rule can 

be written as %]%,[ csQP  , where P and Q are 

predicated, s% is the support of the rule, and c% is 

the confidence. It is common to use P for low level 

features and Q for semantic features so that we can 

use association rules to infer image semantics from 

low level features. Thus dRp  , YQ  , and every 

association rule is represented as a point in the 
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association with the rule space )()( YRd  , where 

( )  represents the power set of a set.  

The above mathematical representation of image 

mining can be translated into an image mining 

framework, shown in Figure 1. 

 

 
Figure 1 The framework of image mining 

3. Image Classifying by Class Compactness 

One main problem of image classification is that 

the relationship between inter-class distance and 

intra-class distance is not fully explored. To address 

this problem, we introduce an iCluster Tree model. 

An isolation cluster, or icluster, is a connected subset 

whose inter-subset distance to its complement (ECD, 

External Connecting Distance) is longer than its 

intra-subset distance (ICD, Internal Connecting 

Distance).  

 

 
      (a)       (b) 

Figure 2 (a) Two compact classes with long ECD and 

short ICD (b) Two classes which are not as compact 

 

See Figure 2. The compactness of an icluster is 

defined as ECD/ICD. We can prove that all iclusters 

form a rooted tree, called the iCluster Tree. See 

Figure 3. 

 

 
   (a)     (b)         (c) 

 

Figure 3 (a) A data set (b) The iclusters (c) The Icluster 

Tree 

 

We apply this model to image classification. Let 

the training and test sets respectively be represented 

as Xtn = {x1, x2, … , xt} and Xtt = {xt+1, x t+2, … , xn}. 

The predefined class set is Y = {Y1, Y2, … , Ym}. On the 

training set Xtn, there is a mapping:  ftn: Xtn → {1, 

2, … , m} which assigns each training point to a 

preset class. Supervised classification aims to extend 

the mapping ftn to the test set Xtt. 

We combine the two sets into one set:  

X = Xtn ∪ Xtt = {x1, x2, … , xt, xt+1, x t+2, … , xn} 

and let G be a graph constructed on X and T be the 

icluster tree of G. Each icluster C has a training 

histogram, which is a m-tuple: ( |C ∩ Y1|, |C ∩ Y2|, … , 

|C ∩ Ym| ). The training histograms of iclusters can be 

computed recursively. Initially we compute the 

histogram of each leaf iclusters, i.e., an icluster with 

one point. Let the point be v and the histogram is : 

(|{v} ∩ Y1|, |{v} ∩ Y2|, … , |{v} ∩ Ym|) 

 For each non-leaf node, we add the histograms of 

all its children to get the histogram of this node. The 

concentration ratio of C is defined as:   

ConcentrationRatio(C) = 
||

|)(|1

nt

imi

X

YCMax   

An icluster C is called concentration on class Yk if 

its concentration ratio is no less than a given 

threshold T_ratio and 

|C ∩ Yk| = |)(|1 imi YCMax   

We make a top-down search to find all 

concentrated iclusters: we start with the root node; 

for each node, if it’s concentrated (with respect to a 

given threshold) then add it to the result queue, 

otherwise repeat the process on its child nodes. The 

result queue has a property that the concentrated 

iclusters in the queue do not overlap. For a test point 

p in a concentrated icluster (concentrated on class Yi) 

in the queue, we let f(p) = i, where f is the extended 

function of ftn. However not all points appear in 

these concentrated iclusters.  Let Z be the set of 

points classified thus far and suppose Z = Z1 ∪ Z2 

 

Preprocessing: feature 

extraction 

Image classification/ 

clustering based on 

class compactness 

Cluster shape 

analysis based 

on boundary 

compactness 

 

 

Manifold 

learning 

Image search/query 

Image 

association 

rule mining 
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∪…∪ Zm such that f(Zi) = i for 1≤ i ≤ m, i.e., points 

in each Zi are assigned to the class Yi. For any point 

q in X−Z, we calculate its distances to the centroids 

of Z1, Z2, … , Zm respectively and add q to the set Zj 

if its distance to the centroid of Zj is the shortest. 

The whole data set X is finally classified as Z1, 

Z2, … , Zm, which are corresponding to the m 

preclasses, respectively. 

The above discussion is formalized in following 

algorithms .Algorithm 1 aims computing the training 

histograms for all icluster nodes in an icluster tree t. 

It represents the training histograms with a function 

hF: {nd | nd is a node of t} X {1, 2, …, m}→N, where N 

is the natural number set including 0. When the 

algorithm finishes, the histogram of a node nd is 

(hF(nd,1), hF(nd,2), … , hF(nd,m) ). Algorithm 2 takes 

the input as a node in an icluster tree, the histogram 

function, and a concentration threshold; it outputs a 

queue of concentrated iclusters in the subtree 

starting with the given node. Algorithm 3 calls 

Algorithm 1 to compute the histograms and then 

recursively calls the Algorithm 2 to find all 

concentrated iclusters in an icluster tree. Algorithm 

4 constructs the icluster tree, calls Algorithm 3 to 

find concentrated iclusters, and then classifies the 

whole data set X into m classes Z1, Z2, … , Zm, which 

are corresponding to the m preclasses, respectively. 

Algorithm 1 takes θ(n) space for the histogram 

function hF and computes the histograms for all 

nodes in a reverse depth-first order. So the running 

time is linear to the size of the icluster tree, which is 

θ(n). The time and space needed by Algorithm 1 are 

both θ(n). Algorithm 3 takes O(n) space to represent 

the queue of concentrated iclusters and recursively 

find the concentrated iclusters. The time and space 

of Algorithm 3 are both O(n). For Algorithm 4, after 

the graph and its icluster tree are created, it calls  

Algorithm 3, taking θ(n) time and space; creates and 

initializes the classification function f,  taking θ(n) 

time and space; extends the function f to the test 

points in the concentrated iclusters, taking O(n) time 

and space; and then classifies the remaining points, 

taking O(n) time and space. So the overall time and 

space for the data classification in Algorithm 4 are 

both θ(n). 

 
Algorithm 1. Compute_TrainingHistograms(t) 

Input:  an icluster tree t 

Output:  the training histograms of all nodes 

Begin 

(1) hF ← a function from {nd | nd is a node of t} X 
{1, 2, …, m} to N 

(2) hF is initialized such that HF(nd, i) = 0 for all 

(nd, i). 

(3) For each node nd of the tree t do:  

a. If nd is a leaf node, containing a point v ∈ Yi for 

some i in {1, 2, …, m} then do  hF (nd, i) ← 1. 

b. If nd is a nonleaf node then for each its child 

node ndc and each i in {1, 2, …, m} do  hF(nd, 

i) ← hF(nd, i) + hF(ndc, i). 

(4) return hF. 

End 

 

Algorithm 2. Compute_ConcentratediClusters(nd, hF, 

T_ratio ) 

Input:  an icluster node nd, a histogram function hF, 

and a concentration threshold T_ratio 

Output:  a queue of concentrated iclusters in the subtree 

starting with the given node nd 

Begin 

(1)Q ← an empty queue 

(2) If nd is concentrated with respect to T_ratio: 

a. append nd to Q  

b. rerutn Q 

(3)For each child ndc of nd do: 

b. append ConcentratediClusters(ndc, T_ratio ) to Q 

(4)return Q; 

End 

 

Algorithm 3 Compute_ConcentratediClusters(t, T_ratio ) 

Input:  an icluster tree t and a concentration threshold 

T_ratio 

Output:  a queue of concentrated iclusters 

Begin 

(1)hF← Compute_TrainingHistograms (t );      

//Calling Algorithm 1 

(2)nd ← root of tree 

(3)return Compute_ConcentratediClusters(nd, hF, 

T_ratio ); //Calling Algorithm 2 

End 

 

Algorithm 4. DataClassify (Xtt, Xtn, ftn, T_ratio ) 

Input:  a test set Xtt = {xt+1, x t+2, … , xn},  

a training set Xtn = {x1, x2, … , xt},  

a classifcation ftn on Xtn, 

and a concentration threshold T_ratio 

Output:  a classifcation f on X = Xtn ∪ Xtt 

Begin 

(1)Construct a neighborhood graph G on X = Xtn ∪ Xtt 

(2)t ← the iClusterTree of G  

(3)Q ← Compute_ConcentratediClusters(t, T_ratio ) 

 //Calling Algorithm 3 

(4)f ← a function from X to {1, 2, …, m} 

(5)f is initialized such that f (x) = ftn (x) for all training 

points x in Xtn. 

(6)For each nd in Q which is concentrated on some Yk 

do 
a. For each test point x in nd do f(x) = k 

(7)Let Z be the set of points already classified thus 

far and suppose Z = Z1 ∪ Z2 ∪…∪ Zm such that: 
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f(Zi) = i for 1≤ i ≤ m 

(8)For each point q in X−Z do  

b. Calculate its distances to the centroids of Z1, 

Z2, … , Zm respectively 

c. Find Zj such that q’s distance to the centroid of Zj 

is the shortest  

d. f (q) ← j 

e. Add q to the set Zj  

(9)Return f. 

End 

4. Data Confining by Boundary Compactness 

In real applications, high-dimensional image data 

is difficult to interpret as it requires more 

dimensions to represent. As a dimension reduction 

method, manifold learning provides an explicit 

representation for the useful implicit information 

hidden in the original feature space. But the internal 

topological and the differential structure has been 

disappeared in the dimensionality reduction process. 

On the other hand, existing surface reconstruction 

methods only work for low-dimensional, mostly 2D 

or 3D, data. We introduce boundary compactness to 

study the shape of the data set in the original 

high-dimensional feature space. The relationship 

between the data classification and data confining is 

illustrated by Figure 4. 

 

(a) 

(b) 

 (c) 

(d) 

Figure 4 (a) A data set (b) Two classes of the data set (c) 

Noise removal (d) The boundaries of the classes 

 

Given a K-dimensional set of n data points, to 

construct the Delaunay diagram, we discuss two 

cases: (1) K≤2 and (2) K >2. When K≤2, there exist 

O(n log n) algorithms (that is optimal) to compute 

the Voronoi diagram and Delaunay triangulation 

[20]. In dimension K >2, Delaunay triangulations can 

be computed in O(n⌈K/2⌉) time [21]. For the boundary 

fitting-by-erosion process, the graph to be “eroded” 

depends on K. When K≤3, we choose Delaunay 

triangulation; when K >3, the complete graph is 

used. In each case we call the graph to be eroded the 

fat graph. 

For 3D and higher dimensional data, the erosion 

process is based on local density and controlled by 

boundary compactness. When the erosion process 

stops, we get the data shape (Figure e). Given an 

n-dimensional (n > 2) data set X and some x in X, we 

select m points closest to x in the MST, and compute 

the average length (x) of the MST edges connecting 

the m points and x. (x) indicates the local density at 

x. For any edge pq in the fat graph, we define its 

boundary compactness as formula: 

( ( ) ( )) / 2

P Q

P Q 



  
 We remove from the fat graph the edges of 

boundary compactness greater than a threshold and 

get a graph, called the relevance graph. In the 

relevance graph, points connected by an edge 

represent closely related instances in real world. 
 

(a) 

 

(b) 

 

Figure 5 Data confining by cutting the Delaunay 

triangulation at “good” boundary gaps: (a) the data set (b) 

its MST 
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(c) 

(d) 

(e) 

(f) 

 

Figure 5 Data confining by cutting the Delaunay 

triangulation at “good” boundary gaps: (c) its Delaunay 

triangulation (d) removal of boundary gaps of big 

boundary compactness (e) the shape of the data (f) the 

boundary 

 

We now introduce the algorithm (Algorithm 5) to 

compute (x) for each vertex x in the MST. In the 

preprocessing step, for each vertex x in MST, we 

sort its neighbors by their distances to x. In 

Algorithm 5, for each x in MST, we consider MST 

as a tree rooted at x, and search the rooted tree to 

find m closest neighbors of x and compute (x). 

 
Algorithm 5. Delta (MST, x, m) 

Input:  MST, a vertex x in MST, and an integer m 

Output: (x) 

Begin 

1. (x)  0 

2. j  the number of neighbors of x in MST 

3. i  min(m, j) 

4. Take first i closest neighbors of x, save them to a 

list L 

5. For each v in L, parent(v)  x 

6. k  0 

7. while k < m 

a) a   the first item of L 

b) d(a)  the distance between a and parent(a) 

c) (x)  (x) + d(a) 

d) k  k + 1 

e) j  the number of neighbors of a in MST 

f) Take first min(mk, j1) closest neighbors of a 

excluding parent(a), save them to a list L2 

g) For each v in L2, parent(v)  a 

h) i  min(mk, | L2|+| L|) 

i) Merge sort L2 and L, take the first i vertices and 

save to L 

8. (x)  (x)  m 

9. return (x)  
End 

 

We make a straightforward analysis for the space 

and time. The  (•) function takes O(n) space. So is 

the parent (•) function. The list L uses O(m) space. 

The total space is O(n), including the MST 

representation. As for time, we use O(n
2
) time to 

compute the MST. In the preprocessing, at an x of j 

neighbors in MST, O(j log j) time is needed to sort 

its neighbors. So the preprocessing uses O(n log n) 

time. In Algorithm 5, for each x, Steps 1-6 takes 

O(m) time. Steps 7(a-e) takes O(1) time; Steps 7(f-g) 

takes O(mk) time; Step 7(h-i) takes O(mk) time. 

So the time for Step 7 is O(m
2
). The time needed by 

Algorithm 5 is O(m
2
). It takes O(n log n + n m

2
) = 

O(n log n) time to run the preprocessing step and 

Algorithm 5 on all x in X. The total time including 

the MST creation is O(n
2
). 

Once the relevance graph is created, it can be 

used for surface reconstruction and investigation of 

the topological and differential structure of a data set. 

In this paper the data confining process results in 

relevance graph for each data class, which is then 

used for image retrieval. 

5. Image Retrieval by Manifold Learning 

An image retrieval system is a computer system 

for browsing and retrieving images from a large 

image base. In this paper we will apply manifold 

learning techniques on the image retrieval. Many 

machine learning systems tend to be very slow when 

operating on high-dimensional data, as is known as 

the curse of dimensionality. In many applications, 

the observed data are found to lie on the low  

dimensional manifold embedded in the higher 

dimensional space. Manifold Learning, also referred 

to as non-linear dimensionality reduction, is a 
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technique to find the intrinsic structure of high 

dimensional data by mapping them to a lower 

dimensional manifold, while preserve characteristic 

properties. 

A variety of manifold learning methods can be 

found in the literature. Topologically Constrained 

Isometric Embedding [22] uses both local and global 

distances to learn the intrinsic geometry of flat 

manifolds with boundaries. The algorithm filters out 

potentially problematic distances between distant 

feature points based on these properties of the 

geodesics connecting those points and their relative 

distance to the boundary of the feature manifold, 

thus avoiding an inherent limitation of the Isomap 

algorithm. RankVisu [23] is a mapping method 

designed to the preservation of neighborhood ranks 

rather than their dissimilarities. A mapping of data is 

obtained in which neighborhood ranks are as close 

as possible according to the original space. 

In our approach, image retrieval is implemented 

by computing distances between points, between a 

point and a manifold, and between manifolds. See 

Figure s. Using the scheme introduced in [24], a 

manifold M is represented as a set of subspaces M = 

{C1，C2，…，Cm}. We define the following distances: 

(1) d(x1, x2) = 
1 2x x , where x1 and x2 are two 

points, and 
1 2x x  is the distance in the relevance 

graph.   

(2) d(x, C) = min '
y C

x y x x


   , where C is a 

subspace, and x’ is the projection of the point x on C. 

(3) d(x, M) = min ( , ) min min "
i i i

i
C M C M y C

d x C x y x x
  

    , 

where M is a manifold, and x” is the projection of 

the point x on M.  

(4) d(C, M)= min ( , )
i

i
C M

d C C


. 

(5) d(M 1, M 2)= 
1 1 2

2min ( , ) min min ( , )
i i j

i i j
C M C M C M

d C M d C C
  

 , where 

M1 and M 2 are two manifolds. 

 

     (a)                      (b) 
Figure 6 (a) The distance between an image and a 

manifold  (b) the distance between manifolds 

6. Experimental Validation 

We first conducted experiments to validate the 

data confining algorithm, which was implemented in 

C++ and executed on a Dell OptiPlex GX270 PC 

with 2.80GHz Pentium 4 CPU and 1GB RAM. We 

tested on three 3D data sets, as is shown in Figure 7. 

The experiment statistics is listed in Table 1. 

The relevance graphs of the 3D data sets are 

given in Figure 7 which well demonstrates the ef- 

fecttiveness of our data confining algorithm. 

 

 

Figure 7 The three 3D data sets used in our experiments 

  

Table 1 The experiment statistics of the three 3D data 

sets 
No. Shape n e tr te t 

1 bone 106,432 702,452 1505,539 738,466 1425 

2 trunk 151,288 922,856 1945,543 950,397 2438 

3 dog 290,115 1966,266 3456,477 1634,913 4974 

 

 

For each data set, we list the number of points (n), the 

number of edges (e) in the relevance graph, the number of 

triangles (tr), the number of tetrahedra (te), and the 

computation time (t) in seconds.  
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Figure 8 The relevance graphs of the three 3D data sets 

 

We now report the experiments designed to test 

the effectiveness of our image mining approach. We 

used a web spider to collect 2000 images in the 

TUTE web site (www.tute.edu.cn). A subset of 200 

images was randomly selected as the training set. 

The training images were manually classified into 

the following 10 classes: Opening Ceremony (开学

典礼), Military Training (军训), Joining the party 

( 入党 ), the Red Song Contest ( 红歌大赛 ), 

School-enterprise cooperation(校企合作), Lecture 

( 讲座 ), International Exchange ( 国 际 交流 ), 

Equipment (设备), Classroom(教室), and Campus 

Scenery(校园风光). We then applied the proposed 

classification algorithm to classify the 2000 images, 

and used the data confining algorithm to compute 

the relevance graph. The manifolds of the image 

classes were constructed.  

In the experiments, given an query image q, we 

search a best match image by finding the image m in 

the image base with the smallest d(q，m). Given a set 

of query images, we first construct a manifold M1, 

We search a best match image class by finding the 

image manifold M2 in the image base with the 

smallest d(M1，M2). The overall accuracy of the best 

matched image testing is 83%, and overall accuracy 

of the best match class testing is 87%. See Figure 9 

for the sample images 
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7. Conclusion 

In this paper we investigate class compactness 

and boundary compactness of image data. Manifold 

learning techniques are applied in the computation 

of distances between images and manifolds of 

images. The introduced techniques have been tested 

by experiments. 
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