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Abstract: A new ensemble algorithm based on K-means clustering and probabilistic neural network called K-means-
PNN for classifying the industrial system faults is presented. The proposed technique consists of a preprocessing unit
based on K-means clustering and probabilistic neural network. Given a set of data points, firstly the K-means algorithm
is used to obtain K-temporary clusters, and then PNN is used to diagnose faults. To validate the performance and
effectiveness of the proposed scheme, K-means-PNN is applied to diagnose the faults in TE Process and compared with
K-means clustering and back-propagation neural network called K-means-BP, algorithm. Simulation studies show that
the proposed K-means-PNN algorithm compared with K-means-BP algorithm not only improves the accuracy in fault
classification but also is a reliable and computationally efficient tool.
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1. Introduction

There has been an increasing interest in fault diag-
nosis in recent years, as a result of the growing de-
mand for higher performance, efficiency, reliability
and safety in control systems. Industrial fault may
cause inevitable economic losses, seriously environ-
mental pollution and even fatal injuries. Quick fault
diagnosis method can help avoid abnormal event pro-
gression and minimize the quality and productivity
offsets.

There are many methods for fault diagnosis [1-9].
Usually, fault diagnosis methods are classified into
three general categories: quantitative model-based me-
thods, qualitative model-based methods, and process
data-based methods [10-12]. In the early days, many
researchers diagnose faults by the model-based method.
However, model-based FDD uses mathematical sys-
tem models to estimate the system state and parame-
ters, and in general these methods can only solve the

problem of low dimensional systems. Alternatively,
data-driven FDD can deal with high dimensional data,
and data dimension reduction techniques [13-17] are
generally applied to many areas of information.

In general, fault diagnosis involves a two-step se-
quential process of symptom extraction and actual di-
agnosis. Many fault diagnosis algorithms have been
proposed in the literature [18], such as statistics, ge-
ometric, neural network, expert system, K-means and
fuzzy methods, with applications to traffic systems,
chemical processes, electrical systems, and rotating
machinery [19, 20]. Depending on the information
available to classify training, there are two kinds of
classification ways. One is supervised learning [21-
24], such as PNN and SVM. The other is unsupervised
learning [25-27], also called clustering.

As each fault diagnosis technique has its disadvan-
tages, the ensemble method makes traditional classi-
fication method improve. The ensemble method can
solve many complex problems in fault diagnosis area.
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More and more researchers pay attention to the en-
semble method.

Coal mining requires various kinds of machinery.
The fault diagnosis of this equipment has a great im-
pact on mine production. The problem of incorrect
classification of noisy data by traditional support vec-
tor machines is addressed by a proposed Probability
Least Squares Support Vector Classification Machine
(PLSSVCM) [28]. The introduction of a probability
value gives the classification results from traditional
LSSVCM a quantitative evaluation to match their qual-
itative explanation. The PLSSVCM is applicable to
binary and multi-class problems. Diagnostic results
using roller bearings show that PLSSVCM performs
well with small-scale fault diagnosis problems. It has
a perfect generalization property even with uncertain,
noisy samples. If the number of samples is larger
than large computation, loads will be needed to use
the cross-validation method of determining the regu-
larization factor and the width of a Gaussian kernel.
Therefore, future research will focus on the selection
of optimal kernel parameters for PLSSVCM that will
improve its accuracy even more.

Some articles add some clustering algorithms be-
fore ANN classification [29]. R.Eslamloueyan has
proposed a duty-oriented hierarchical neural network
(DOHANN) for isolating the faults of a relatively com-
plex process. The concept behind the suggested method
is to appoint a specific fault diagnostic agent for a par-
ticular set of similar fault patterns. The performance
of DOHANN has been evaluated and compared to some
other methods of fault diagnosis through using the test
data of TE process. According to the results, the DO-
HANN recognizes the process faults much better than
SNN. Training of each network in the DOHANN is
carried out more conveniently because its neural net-
works are structurally simpler than that of the SNN
model.

Many researchers classify faults by the K-means al-
gorithm. M. Laszlo and S. Mukherjee [30] are mo-
tivated by the observation that the popular k-means
method for clustering is very sensitive to the initial set
of centers with which it is seeded. The new method
employs a simple chromosomal representation which
is easily implemented and yields partitions of better
quality. They have demonstrated that their GA works
as well as published methods on the small data sets
considered in the literature, and that it produces near
optimal partitions for data sets of much larger size and
dimensionality. Jim Z.C. Lai, Tsung-Jen Huang and
Yi-Ching Liaw [31] present a fast k-means clustering

algorithm (FKMCUCD) using the displacements of
cluster centers to reject unlikely candidates for a data
point. The computing time of the proposed algorithm
increases linearly with the data dimension d, whereas
the computational complexity increases exponentially
with the value of d. Theoretical analysis shows that
the method can reduce the computational complexity
of full search by a factor of SF and SF is independent
of vector dimension.

A key problem in fault detection and diagnosis is
the issue of misclassification due to noises or outliers
in the raw data. For this reason a combined approach
based on K-Means clustering and PNN is presented in
this paper.

This paper is organized as follows. The second sec-
tion briefly introduces fault diagnosis strategy based
on K-means-PNN. And to validate the performance
and effectiveness of the proposed scheme, the fault di-
agnosis approach using K-means-PNN based on sim-
ulation benchmark of TE process is illustrated in Sec-
tion III. Finally, concluding remarks are made in Sec-
tion VI.

2. K-means and PNN Algorithm

2.1 K-means
The K-means algorithm is a simple and efficient clus-

tering method that has been applied to many engineer-
ing problems.

For almost all center-based clustering algorithms,
the structure is:

Input:
K: Number of clusters
X: Data set matrix
N: Number of data samples (patterns)
d: Data dimension
Output:
C: Cluster centers matrix
M: Membership matrix
Variable
Z: The k-clustering performance
di j=||xi−c j||: Distance from data sample xi from cen-

ter c j and the steps are

• Initialization;
• Data membership calculation;
• Center recalculation;
• Convergence check.

K-means algorithm was first proposed by J. B. Mac-
Queen in 1967 [32]. The k-means clustering algo-
rithm partitions data points into k clusters S j ( j =
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1,2, . . . ,k) associated with representatives (cluster cen-
ters) C j. Denote the set of data points as S = {Xm},
where m = 1,2, . . . ,N and N is the number of data
points in the set S. Let d(X ,Y ) be the distortion be-
tween any two vectors X and Y . In this paper, d(X ,Y )
is defined as the squared Euclidean distance between
X and Y .

Let Cnm be the nearest cluster center of Xm and dm =
d(Xm,Cnm). The goal of k-means clustering algorithm
is to find a set of cluster centers SC = {CI} so that the
distortion J defined below is minimized, where I =
1,2, . . . ,k and k is the number of clusters.

J =
N

∑
m=1

dm (1)

The major process of k-means clustering is mapping
a given set of representative vectors into an improved
one through partitioning data points. It begins with
an initial set of cluster centers and repeats this map-
ping process until a stopping criterion is satisfied. The
Lloyd iteration for the K-means clustering is given as
follows [33].

Figure 1 The sketch of K-Means algorithm

Given a set of cluster centers SCP = {C j}, find the

partition of S which is divided into k clusters SI , where
I = 1,2, . . . ,k and SI = {X |d(X ,CI)≤ d(X ,C j)} for all
I 6= J

Compute the centroid for each cluster to obtain a
new set of cluster representatives SCp+1.

The k-means clustering algorithm is briefly described
as follows.

Step1. Begin with an initial set of cluster centers
SC0. Set p = 0.

Step2. Given the set of cluster centers SCp, per-
form the Lloyd iteration to generate the improved set
of cluster representatives SCp+1.

Step3. If it is changed by a small enough amount
since the last iteration, then stop. Otherwise set p +
1→ p and go to step2.

The nearest cluster center is determined by comput-
ing the Euclidean distances between each cluster cen-
ter and all data points. The Euclidean distance be-
tween a data point X = (X1,X2, . . . ,Xm)d and cluster
center C = (C1,C2, . . . ,Cm)d is defined as

d(X ,C) = [
m

∑
k=1
| Xm−Ck |2]0.5 (2)

Figure 1 shows the sketch of K-Means algorithm.

2.2 Probabilistic neural network
Probabilistic neural network (PNN) is a special type

of radial basis-function networks [34]. The structure
of the PNN classifier [35] is illustrated in Figure 2.
It consists of an input layer, pattern layer, summation
layer and an output layer. The input layer is merely
a distribution layer. No computation is performed in
this layer. Neurons in the pattern layer utilize multi-
dimensional kernels to estimate the probability den-
sity function for classification. On receiving a pattern
x from the input layer, the neuron xi j of the pattern
layer computes its output using the following equa-
tion:

Figure 2 The architecture of the PNN
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ϕi j(x) =
1

(2π)a/2σa exp[−(x− xi j)T (x− xi j)
2σ2 ] (3)

where a denotes the dimension of the pattern vector
x, δ is the smoothing parameter and xi j is the neuron
vector.

Each neuron in the summation layer computes the
maximum likelihood of pattern x being classified into
class c)ii by summarizing and averaging the output of
all neurons that belong to the same class:

Pi(x) =
1

(2π)a/2σa

1
Ni

Ni

∑
j=1

exp[− (x− xi j)T (x− xi j)
2σ2 ] (4)

where Ni denotes the total number of samples in class
ci. If the priori probabilities for each class are the
same and the losses associated with making an in-
correct decision for each class are the same, the out-
put layer classifies the sample x accordance with the
Bayes’s decision rule based on the outputs of all the
summation layer neurons and the final result of output
is Y .

2.3 K-means-PNN
This algorithm is proposed to improve the degree of

accuracy on fault diagnosis. At the same time, it is
a combination of algorithm about K-means and PNN.
Figure 3 shows the sketch of the algorithm, which is
briefly described as follows:

Step 1: Getting test data. For example, the data in
this paper come from Tennessee Eastman process.

Step 2: Clustering the data sets using K-means al-
gorithm.

Step 3: Diagnosing the fault data of K-means clus-
tering by PNN and BP.

Step 4: Comparing the clustering results of the K-
means with two different methods.

3. Case Study

3.1 K-means algorithm clusters the data of Iris
flower

The Iris flower data set or Fisher’s Iris data set is a
multivariate data set introduced by Sir Ronald Aylmer
Fisher (1936) as an example of discriminant analysis
[36]. It is sometimes called Anderson’s Iris data set
because Edgar Anderson collected the data to quantify
the geographic variation of Iris flowers in the Gaspé
Peninsula [37].

The dataset consists of 50 samples from each of
three species of Iris flowers (Iris setosa, Iris virginica

Figure 3 The sketch of the process

and Iris versicolor). Four features are measured from
each sample which are the length and the width of
sepal and petal. Based on the combination of the four
features, Fisher developed a linear discriminant model
to distinguish the species from each other. Based on
Fishers linear discriminant model, this data set be-
came a typical test case for many classification tech-
niques in machine learning, such as support vector
machines.

This data set in cluster analysis is uncommon, since
the data set only contains two clusters with rather ob-
vious separation. One of the clusters contains the Iris
setosa species, while the other cluster contains Iris vir-
ginica and Iris versicolor, and is not separable without
the species information Fisher used. This makes the
data set a good example to explain the difference be-
tween supervised and unsupervised techniques in data
mining: Fishers linear discriminant model can only be
obtained when the object species are known.

In order to test the accuracy of the K-means algo-
rithm, the data set of Iris flower is used. Figure 4
shows that the K-means algorithm divides Iris flow-
ers into three species based on Iris flowers length of
sepal feature. The red is virginica, the blue is setosa,
and the green is versicolor.

Experiment shows that the k-means algorithm can
cluster Iris flower data distinctly.

3.2 K-means-PNN diagnoses the fault data of TE
An example of the application of the proposed strat-

egy is presented, and a combined approach based on
K-Means clustering and PNN was analyzed under the
TE process (see Figure 5).TE process [38-39] is a bench-
mark problem in process engineering. Downs and
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Figure 4 Clustering result of Iris flower

Vogel presented this particular process at an AICHE
meeting in 1990 as a plant-wide control problem. The
simulator of the Tennessee East man process consists
of five major unit operations: a reactor, a product con-
denser, a vapor-liquid separator, a recycle compressor,
and a product stripper. Two products are produced by
two simultaneous gas-liquid exothermic reactions and
a byproduct is generated by two additional exothermic
reactions. The process has 12 manipulated variables,
22 continuous process measurements, and 19 compo-
sitions. The simulator can generate 21 types of dif-
ferent faults listed in Table 1. Once the fault enters
the process, it affects almost all state variables in the
process.

First we divide the TE process data into six species
by K-means algorithm. The following fault data are
obtained by wavelet processing. Figure 6 shows the
clustering result.

The faults clustered by K-means algorithm are as
follows:

Cluster No.1: { F1, F2, F12}
Cluster No.2: { F3, F9, F13, F14}
Cluster No.3: { F11, F15, F16, F21}
Cluster No.4: { F7, F10, F17, F19}
Cluster No.5: { F4, F5, F20}
Cluster No.6: { F6, F8, F18}
PNN is a feed-forward neural network with super-

vised learning, which uses Bayes decision rule and
Parzen window. In this paper, PNN is used to diag-
nose faults in each cluster.

Figure 7 shows the fault types divided by K-means-
PNN. In Figure 7, each segment contains 300 data and
cluster No.1 is classified into three kinds of types by
K-means-PNN. Label 1 is normal data, label 2 is fault
1, label 3 is fault 2, and label 4 is fault 12. In Figure
7, normal data segment contains 300 data, each fault
type also contains 300 data, and the total data is 1200.

Figure 5 Control system of the Tennessee Eastman process

Table 1 Process faults for the Tennessee Eastman process

Variable Disturbances Type
A/C feed ratio, B

1 composition Step
constant

2 B composition, A/C Step
ratio constant

3 D feed temperature Step
Reactor cooling

4 water inlet Step
temperature

Condenser cooling
5 water inlet Step

temperature
6 A feed loss Step

C header pressure
7 loss-reduced Step

availability
8 A, B, C feed Random

variation
9 D feed temperature Random

variation
10 C feed temperature Random

variation
Reactor cooling

11 water inlet Random
variation

temperature
Condenser cooling

12 water inlet Random
temperature variation

13 Reaction kinetics Slow drift
14 Reactor cooling Sticking

water valve
15 Condenser cooling Sticking

water valve
16-20 Unknown Unknown

The valve for Step
21 Stream 4 was fixed Constant

at the steady state Position
position
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Figure 6 Clustering result of all fault types

Figure 7 Clustering result of K-means-PNN on No.1

In each fault type segment, the first 160 data are the
normal data and the last 140 are the fault data. Figure
7 shows that the correct percentage of classification
by K-means-PNN is 91.33%.

Experiment result indicates that K-means-PNN is a
kind of efficient classification method.

3.3 K-means-BP diagnoses the fault data of TE
BP neural network is a kind of feed forward, whole

link, and multi-layers network. Its characteristics in-
clude the association ability, memory ability, self-flexi-
bility, self-learning and so on. It provides a new method
to solve the prediction and control problem for the
non-linear system [40].

Currently, BP algorithm is widely used for training
neural networks [41, 42]. Supposing a set of P train-
ing samples is available, the problem can be character-
ized as the process of minimizing the following sum
squared error:

J(W ) =
1
2

p

∑
s=1

N

∑
i=1

(ds,i− ys,i)2 (5)

where ds,i and ys,i are the ith target and actual outputs
corresponding to the sth training pattern, W is a vector
composed of all the weights and biases involved in
the network, and N is the number of output units. In
this scheme, an initial weight vector W0 is iteratively
adapted according to the following recursion to find
out an optimal weight vector. The positive constant η
is the learning rate.

Wk+1 = Wk−η
∂J(W )

∂W
(6)

In general, the BP algorithm [43] includes the for-
ward course and the backward course. In the forward
course, a vector is added to the input layer, which is
then spread along the network; finally, an output vec-
tor is obtained as a response of the input vector, in
which the synaptic weights can not be changed. In
the backward course, an error signal will be obtained
by comparing the output signal with the desired out-
put; the error signal is forward-spread to modify the
weight from one output layer to another. The modi-
fied network will output the signal that is closer to the
desired output. The forward course and the backward
course alternate and constantly circulate, and the out-
put will be convergent with the desired output in some
states.

Figure 8 shows that No.1 is classified to three kinds
of types by K-means-BP. Label 1 is the normal data,
label 2 is the fault 1, label 3 is the fault 2, and label
4 is the fault 12. In Figure 8, each segment contains
300 data, and the total data is 1200. In each fault type
segment, the first 160 data are the normal data and the
last 140 are the fault data. Figure 8 shows that the
correct percentage of K-means-BP is 60%.

Comparing Figure 7 with Figure 8, experiment proves
that the K-means-PNN method has a better classifica-
tion result than the K-means-BP method.

4. Conclusion

An ensemble fault diagnosis method based on K-
means and PNN called K-means-PNN is presented in
this paper. Simulation studies show that the proposed
algorithm provides an accepted degree of accuracy in
fault classification under different fault conditions and
the result is also reliable.
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Figure 8 Clustering result of K-means-BP on No.1
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