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Abstract: A new method of minimum-energy point-to-point (PTP) trajectory planning is proposed for
an LCD glass-handing robot, which is driven by a permanent magnet synchronous motor (PMSM). The
variable structure controller (VSC) is designed to track the trajectories and compensate LuGre model of
frictional torque effects. The robot system is described by a mechanical equation and an electrical equation.
To generate the minimum-energy trajectory, we employ a high-degree polynomial with suitable end-point
conditions. The real-coded genetic algorithm (RGA) is used to search for the coefficients of the polynomial
with the fitness function of minimum-energy input. Finally, numerical simulations of the minimum-energy
inputs are compared for various degrees of polynomials. It is concluded that the proposed methodology can
effectively design the minimum-energy trajectory, and the nonlinear VSC can track the designed trajectories
for the robot system driven by a PMSM.

Keywords: LCD glass-handling robot; minimum-energy; permanent magnet synchronous motor (PMSM); real-
coded genetic algorithm (RGA); trajectory planning

1. Introduction files for the actuation systems of automatic machines.

Huang et al. [5] have proposed a novel minimum-
energy point-to-point (PTP) trajectory planning method
for a motor-toggle servomechanism. In order to gen-
erate a robot’s trajectory, the genetic algorithm (GA)
was developed to search optimal solutions for the tra-
jectories [6, 7]. The dynamic formulation of an LCD
glass-handling robot driven by a PMSM was formu-
lated by Hamilton’s principle [8, 9], where the iden-
tification and tracking control were also performed
for the system. A survey [10] of controlling ac ma-
chines for high dynamic performance including dif-
ferent types of machines and converters with their spe-
cific control characteristics was performed.

Canudas de Wit et al. [11] proposed a dynamic fric-

The subject about trajectory planning has been ex-
tensively studied. The problem of robot trajectory
planning is a very complex task, and plays a crucial
role in design and application of robots in task space.
The robot trajectory planning can be accomplished
through the way of generating and optimizing ruled
surfaces under constraints of kinematics, dynamics and
control performances. Based on an algorithm which is
capable of obtaining a sequence of feasible robot con-
figurations, a path between the given initial and the
goal configurations to be reached is obtained [1]-[3].
Biagiotti and Melchiorri [4] developed the trajectory
planning of the computation of desired motion pro-
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tional model that combines the stiction behavior, i.e.,
the Dahl effect, with arbitrary steady-state frictional
characteristics which include Stribeck effect. Fric-
tional force is a nonlinear behavior and can cause some
difficult problems such as static errors, limit cycles
and stick-slip in mechanical systems [12]. The vari-
able structure controller (VSC) can enhance the ro-
bustness under plant disturbances and uncertainties [13,
14]. One of the most recent topics in the variable-
structure system theory is represented by the second-
order sliding-mode control methodology [13]. Lee
et al. [14] proposed an integral sliding-mode control
method to obtain zero steady-state error under an ex-
ternal step disturbance and to show its robust control
with respect to the parametric variations of the input
channel.

In this paper, we adopt the RGA to obtain the poly-
nomial coefficients with a fitness function of minimum-
energy input for the PTP motion profile of an LCD
glass-handling robot. In this paper, the mathematical
model includes the electrical and mechanical equa-
tions. The VSC is designed to compensate the fric-
tional torque. Various degrees of polynomials with
the minimum-energy inputs are compared in numeri-
cal simulations. It is found that the proposed method-
ology can effectively design the minimum-energy tra-
jectory, and the VSC can track the minimum-energy
trajectory for the robot system driven by a PMSM.

2. Dynamic equations of the mechatronic syste

In order to completely formulate the dynamic equa-
tions, we use the electrical and mechanical equations
to describe the LCD glass-handling robot driven by a
PMSM.

For the electrical equation, we adopt [10] and have

d
vy :Rsiq+akq+a)S7Ld (1)

where Vv, is the stator voltage, R; is the stator resis-
tance, i, is the stator current, 7Lq is the stator flux link-
ing, @; is the inverter frequency and A, is the stator
flux linking.

In Figure 1, the mechatronic system consists of a
PMSM, two timing belt drives and three arms. An
LCD glass-handling robot is driven with a maximum
travel distance 260 mm in the X; direction by a PMSM.
The principle of the motion is that the PMSM drives
Arm 1 at point Oto convert into rotation of Arm 1
and then the timing belt 1 curl Gear 1 to pull rotation
of Gear 2. At this time, Arm 2 also rotates along with

rotation of Gear 2 and then the timing belt 2 curl Gear
4 to pull rotation of Gear 3.

In order to simplify the dynamic model, we assume
that (A) the timing belts have no difference in slipping
in the driving and driven gears, (B) the timing belts are
rigid (i.e. the stiffness of timing belts are infinite), and
(C) the motor shaft and all of the gears and arms are
rigid. Here, one degree-of-freedom dynamic model
was formulated by Hamilton’s principle [8] as follows

[JO - COS(”¢1) JFJm](ﬁl +Bm¢1

. 2
+sin(ngr) 97 = Kei, ()

where
Jo=1+(n—12L+(1-2n)L+ (n— 1), +4Is
+(1—2n)% s +my[1? + (n— 1)2b?]
+ma[lF 4 (n— 1)212]) + myl? +msl?
mg[12+ (n—1)213],
J1 =2(n—1)[mab+ (m3 +me) )11,
w=n(n—1)[myb+ (ms+me)h]l;.

01, @1, and ¢, are the angular displacement, angular
speed and angular acceleration, respectively. J,, is
the moment of inertia of the rotor, B, is the damp-
ing coefficient, K; is the motor torque constant of the
PMSM, and the detailed notations can also be seen in
[8]. Equation (2) is a nonlinear ordinary differential
equation, and the coefficients of the moment inertial
and the nonlinear damping are functions of the rotor
angle.

Two kinematic equations [8] of the geometric con-
straints in the X; and Y; directions can be described
as

X = llcos¢1 —|—lzCOS(¢1 —n¢1), 3)
Yi=4 sin(])l —|—lzsin(¢1 —I’l(Pl). @)
where n is the radius ratio of 93 /% . Equations (3)

and (4) are the relationships between the translations
of point O3 and rotation of Arm 1.

3. Point-to-point trajectory design

The minimum-energy PTP trajectory [4], [5] is de-
signed on the basis of a high-degree polynomial, which
is able to satisfy desired constraints of angular dis-
placement, speed, acceleration and jerk at the start
time #p and end time 7. From a mathematical point
of view, the problem is then to find a function such
that

¢l = ¢ik(t)7t S [t()vT]a (5)

where the superscript * indicates the designed trajec-
tory, ¢; (¢)and is the designed angular displacement of
Arm 1.

International Journal of Intelligent Engineering and Systems, Vol.4, No.4, 2011 2



ﬂ_ Timing bel 2
..

Timing belt 1

synchronous motor

(b)

Figure 1 The LCD glass-handling robot driven by a PMSM.
(a) The experimental equipment. (b) The geometrical
mode.

3.1 Polynomial trajectories

The trajectory planning problem can be easily solved
by considering a polynomial function as

o/ (1) =ao+ait+ at’ +ast> + -+ apt™, (6)

where each coefficienta;, i =0,1,--- ,m, is areal num-
ber; a, # 0, and m is a positive integer. There are
m+ 1 coefficients to be determined such that the con-
straints are satisfied at the start and end time. The
degree m of the polynomial depends on the number of
constraints to be satisfied and on the desired smooth-
ness of the resulting motion.

Considering a polynomial of degree twelve, and the
angular displacement, speed, acceleration and jerk are
zero at the start time, we have

7(0)=ap=0, @)
) (0) =a; =0, (8)
$1(0) =a2 =0, ©)
¢*H1(0) = a3 = 0. (10)

The angular displacement is &, and the angular speed,
acceleration and jerk are zero at the end time 7, thus
we have

07 (T) =@, (11)
¢/ (T) =0, (12)
¢;(T) =0, (13)
6;(T) =0 (14)

where ® is the maximum angular displacement. In
this paper, we have ® = 1.57 rad, which is obtained
from (3) with the maximum distance X; = 260mm in
the X direction of the LCD glass-handling robot. Sub-
stituting the eight conditions (7)-(14) into the twelve-
degree polynomial (6), we have the four analytic so-
lutions

as = 35 T+ T4ag + 4T5a9 + 107° alo

1
—1—20T7a11—|—35T apy, ()
as = =847k — 4T a5 — 15T*a —36T%ar0 |
—70T%y; — 1207 ay,,
ag = 70:% +6T%ag +20Tag +45T*ayg a7
+84T5a11 + 14075y,
ar; = —20% —4Tag — 10T209 - 20T3a10 (18)

—35T%a;, —56T3ays.

The coefficients a4 — a7 are to be determined once
ag — ayp are known. The coefficients ag — aj; in (15)-
(18) for the twelve-degree polynomial trajectory are
to be determined by the following RGA method.

3.2 Input energy for the PTP motion

The whole PMSM may be considered thermody-
namically as an energy converter. It takes electrical
input energy from control command and then outputs
the mechanical work to drive the Arm. The absolute
value of input energy to the PMSM during the whole
time 7 is defined as

T
EQ) = [ iy |dn 19)
where

l
iy = Kt([JO—JICOS(”%)‘f‘J )01 + Bndf 20)

+ psin(no; ) §;%)
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v, :Rsi;—i—Lq%iZ+pld¢,*. (1)
The iy is electric current, and can be obtained by the
designed trajectory ¢;, ¢; and ¢} from (2). The v; is
the control command, and can be obtained by substi-
tuting i, and @; into (21). Therefore, it can be shown
that the absolute value of input energy in (19) can be
obtained once the designed trajectory is obtained.

4. The real-coded genetic algorithm

The RGA is an optimization searching algorithm,
which simulates evolution mechanism on a computer-
based platform in conjunction with natural selection
and genetic mechanism. The chromosomes are ex-
pressed by vectors and each element of vectors is called
a gene. The initial real-valued genes in the chromo-
somes are gotten through generating a sequence of
real-valued variable by a randomly limited range. All
chromosomes compose of a population and are eval-
uated according to the pre-given evaluation index and
given fitness values. According to the fitness values,
the reproduction, crossover and mutation operations
are carried out among or between the chromosomes.
The chromosomes having less fitness values are given
up, and the chromosomes having larger fitness values
are left. Those left chromosomes compose of a new
population, which maybe better than the old.

4.1 Fitness function

The RGA continuously searches the better chromo-
somes in this way until the converging index is sat-
isfied. By using the RGA merit, we can obtain the
unknown coefficients ag-aj, in (15)-(18).

The RGA procedure is shown in Figure 2, where the
reproduction procedure adopts the roulette wheel se-
lection, and the crossover and uniform mutation adopt
the methods as in [6, 7]. How to define the fitness
function is the key point of the genetic algorithm, since
the fitness function is a figure of merit, and could be
computed by using any domain knowledge.

In this paper, the fitness function f(z) in the RGA
method is defined as

1

f@zm

z=[ag a9 ajp ai a)

(22)

(23)

where z is a parameter vector of polynomial coeffi-
cients, and E(z)is the total absolute input energy.

4.2 Increasing function

During the PTP motion profile of the mechanical
system, the trajectory for the angular displacement is
required to be designed as a monotonously increas-
ing function from the start to the end points. Suppose
that ¢/ (¢) is the designed PTP motion profile defined
during 0 <t < T for ¢; < ti+1, the monotonously in-
creasing function is defined as

o1 (t:) < ¢y (tiy1)

where the subscript i stands for the i sampling time.

This constraint for a monotonously increasing func-
tion is inserted in the procedure of the RGA method
as shown in Figure 2. Without using this constraint
(24), the identified coefficients of polynomials are not
unique in the numerical simulations by the RGA method

[5].

(24)

5. Variable Structure Controller Design

In order to achieve good tracking control with the
minimum-energy input (19) even if external distur-
bances exist, we utilize the VSC to obtain the best
control performance in this paper.

5.1 Frictional model

To consider the frictional torque, we adopt the Lu-
Gre model [11, 12], which contains a state variable
representing the average deflection of elastic bristles,
which are visualized on the contacting surfaces. The

resulting model faithfully captures the majority of known

frictional behaviors, such as the pre-sliding displace-
ment, frictional lag, varying break-away torque and
stick-slip motion.

The frictional torque of LuGre model [11] is defined
as
dz
dr
where oy is the stiffness , 0] is a damping and o, is a
viscous frictional coefficient. The average deflection
of the bristles is denoted by z and is modeled by

% _ (]) _ |¢1|

di " g(g)
where ¢ is the relative velocity between the two sur-
faces. On the right-hand side, the first term gives a
deflection that is proportional to the integral of the rel-
ative velocity. The second term asserts that the deflec-
tion z approaches the value,

_ 0
91

Tf = 002+ 01— + 020y (25)

z (26)

(1) = g(d1)sign(¢1) (27)

Z
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Figure 2 Flow chart of the RGA procedure

for a steady state, as ¢; is constant. The function g(¢;)
is positive and depends on many factors such as ma-
terial properties, lubrication and temperature. It need
not be symmetrical, and direction dependent behav-
ior can therefore be captured. For a typical bearing
friction, g(¢;) will monotonically decrease from g(0)
when ¢, increases. A parameterization of g(¢;) has
been proposed to describe the Stribeck effect as

00g(91) = T+ (T, — Te)e (28)

where 7, is the Coulomb frictional torque,7; is the stic-
tion torque and ¢ is the Stribeck angular velocity. It
follows from (25), (27) and (28) that for the steady-
state motion the relation between angular velocity and
frictional torque can be given by

Tp = 00g(1)sign(d1) + 0291
— zsign(ér) + (1, — 1)e ) sign(g) 29
+ 0201

Dynamic Equation (2) can be rewritten by adding the
frictional torque (29) as

[Jo — Jicos(n@r) + Jn] 91 + B

30
+ usin(ngy) 6 = Kiig —17(30) o

5.2 Sliding function

Combining the electrical equation (1) for the PMSM,
and the dynamic equation (2) for the mechanical sys-
tem, and using the state variable x = [¢1 @1 i )7 , we
obtain the dynamic state equation for the LCD glass-
handling robot as follows

x=Ax+Bu+D 31
0 1 0
—By,—usin(ng; ) o K
where A= | 0 Jo—J1 cos(n¢1)]+J,:L Jo—Jicos(n1)+Jm >
0 _ Pk _R
Lq L‘I
0 0
T
B=1 0 1.D= |~ | 4= Ve
. 0

q

To design a VSC [14], we decompose (31) as

| B | An A || X By
8 s

where x| = [ Z;l ] , X2 =g,
1

0 1 0
A= 0 — By —usin(ngy) ¢ ,App = ke s
Jo—Jicos(ndy)+Jm Jo—Jicos(ndy)+Jn
— pA _ Rop _ |0 _ 1
AZI—[O —L:},Azz——%,&—[o},Bz—Lq-
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Under the VSC, the system can track the trajectory
and approach to the sliding surface, so the sliding sur-
face has to include track object. The sliding function
can be expressed as

X1 —X*l

s=ce=c(x—x")=[a o }([ Xy —x2"

e

*
|5 Jxemr

If the system model is on an ideal sliding surface
s = ce =0, we can determine the equivalent system
and an associated linear control input.

In order to consider the linear system, we set ¢; =0
inAj; and A, of Equation (32). On the sliding surface
s = 0, we can obtain

where ¢; € R'*2,¢c, € R; x*| =

x2:x2*_%[xl_xl* ] (34)

Substituting (34) into (32), we have
X1 =Anx FAR(R —o e [ x1—x1* ]) (35
Defining k = ¢ 'er we rewrite (35) as
X1 = (A1 —Apk)x; + A2 (x5 +kxj) (36)

It is seen that the locations of poles of the resulting
system (36) can be obtained by selecting k and ¢;. Be-
cause (Aj1,A]2) is controllable, we use a pole place-
ment method to select the gain k in (36).

5.3 Design the VSC law

The variable structure control [14] can be separated
into the equivalent and nonlinear control components
as u = upq = u,. The equivalent control can be selected
by the following equations

X =Ax+ Bu 37

§s=cée=0 (38)

From (37) and (38), we obtain the equivalent control
input as

lteg = —(cB) ! (cAx — cx¥) (39)

The approaching condition [14] s§ < O can bring the
system model to the sliding surface s = 0 Selecting
the nonlinear control as

lteg = —(cB) ! (ousgn(s) + aas) (40)

where o) and o are positive constants. Finally, it
follows that

ss = sc(Ax+Bu+D —x")
= scAx — scB((cB) ™! (cAx — ci*)
+scD+ (¢B) "' (aysgn(s) + aps)) — scx*
= —0s® — ay|s| +¢cDs <0, if a; > |cD)|

(41)

From (41), the approaching condition is negative ex-
cept on the sliding surface s = 0.

For suppressing the switch function to create chatter
free, we use the saturation function to replace the sign
function and write the controller as

u=—(cB) " (cAx — cx*)

| 42)
—(cB)™ (ousat(s) + o)
e L [iens) bl>
€
where sat(s,€) = s/e |s| <& = sign(s) s
s/le Isl<e

-1 s<-—¢

6. Numerical simulation

6.1 Trajectory planning

In numerical simulations, the fourth-order Runge-
Kutta method is employed to calculate the absolute
input energy via a windows supported MATLAB soft-
ware with a sampling time sec and the total time sec.
The identified parameters of the LCD glass-handling
robot driven by a PMSM are given in Table 1 [8].

The coefficients of the polynomials with 8-12 de-
grees are obtained by the RGA and are shown in Table
2. In this Table, the feasible domains are taken -1 to 1
for all the coefficients.

Figure 3 (a-h) show the comparisons among 8-12
degrees of polynomials. Figure 3 (a-d) show the de-
signed trajectories of the angular displacements, speeds,
accelerations and jerks of Arm 1, respectively. Taking
time derivatives of the designed trajectories, we obtain
its time derivatives,substitute into (2), and obtain the
input current as shown in Figure 3 (e). By using (21),
we can obtain input voltage of the PMSM as shown
in Figure 3 (f). Figure 3(g, h) show the input energies
and the fitness values, respectively. From Figure 3(h),
it is seen that the fitness value increases with increas-
ing the degrees’ number of polynomials, and all the
genes of the chromosome almost converge before the
first 10 generations.

From Table2, it can be found that the minimum ab-
solute input energy occurs for the twelve-degree poly-
nomial. This value is lower -2.574% than that of eight-
degree polynomial.
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Figure 3 Comparisons among eight- to twelve-degree polynomials in numerical simulations. (a) The angular displacement.
(b) The angular speed. (c) The angular acceleration. (d) The angular jerk. (e) The current. (f) The voltage. (g) The input
energy. (h) The fitness functions of evolution history.

Table 2 Coefficients of polynomials and total input energy

Polynomial | Coefficient | Coefficient | Coefficient | Coefficient | Coefficient | Total input W %

function

of degree as ag apo ap apn energy(J)
8 0.998 — - - — 1.243 -
9 0.988 -0.740 - - - 1.242 -0.080
10 0.836 0.941 -0.926 - - 1.238 -0.402
11 0.947 0.947 0.793 -0.894 - 1.228 -1.207
12 0.763 0.836 0.810 0.978 -0.977 1.211 -2.574
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Table 1 The identified parameters of the robot system

Parameter Values
Jo(kg —m?) 0.3585
Ji(kg —m?) | 0.0006708
u(kg —m?) | 0.0006708

L,(H) 0.00153
Y 0.03572

Ry(Q) 0.00103
n 1.9135

K;(Nm/A) 0.55624
I (kg —m?) 0.0679

Bu(Nms/rad) | 0.2858

6.2 Tracking control

In numerical simulations of the VSC, the fourth-
order Runge-Kutta method is also employed with MAT-
LAB software. The LuGre model parameters and con-
trol gains are shown in Table 3. In order to make sys-
tem not on the sliding surface at r = 0, we set ¢ =
—0.1 at the start time. To compare the control per-
formance, we show two work cycles with each cycle
2 second. Here, we just show the case with twelve-
degree polynomial.

Figures 4 (a-n) compare the designed and tracking
trajectories. Figures 4 (a, ¢, e) compare the angu-
lar displacements, speeds and accelerations, respec-
tively, for the designed and tracking trajectories. Fig-
ures 4 (b, d, f) show the errors of the angular dis-
placements, speeds, accelerations, and tracking errors,
respectively, between the designed and tracking tra-
jectories. Figures 4 (g, i) compare the input voltages
and currents, respectively, for the designed and track-
ing trajectories. Figures 4 (h, j) show the errors of
the input voltages and currents, respectively, between
the designed and tracking trajectories. Figure 4 (k)
shows the sliding surface. Figure 4 (1) shows the fric-
tional torque of LuGre model. Figure 4 (m) compares
the input energies among the designed, tracking and
eight-degree polynomial trajectories. It is found that
they are very close, and the VSC is proven to track the
trajectories well with frictional torques. Figure 4 (n)
shows phase trajectory in the state space (91, 1, iy).

7. Conclusion

In this paper, the minimum-energy-based PTP tra-
jectory planning method is performed for an LCD glass-
handling robot by utilizing the absolute input energy
as the fitness function to determine the polynomial co-
efficients by the RGA. From the comparisons in nu-

Table 3 The identified parameters of the robot system

Coulomb frictional torque F; 0.8(Nm)
Static frictional torque Fj 1(Nm)
Stribeck velocity d)s 0.005(rad/sec)
Viscous coefficient o, 0.047
cl (149.2,20.91)
) 1
o 150
(073 110

merical simulations, the minimum-energy input oc-
curs when the highest-degree polynomial is chosen.
The nonlinear controller VSC successfully tracks the
trajectories and compensates the frictional torques well.
Moreover, the proposed methodology in this paper can
also be applied to any mechatronic system driven by
a PMSM for designing the minimum-energy PTP tra-
jectory using a high-degree polynomial function.
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