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Abstract: There are two basic methods of fuzzy pattern recognition: one is direct method based on membership
degree, and another is indirect method based on closeness degree. In this paper, different algorithms of closeness
degree have been studied and a new method for calculating the closeness degree has been introduced. By combining
the concepts of membership degree and closeness degree, the pattern characteristic values derived from both real
numbers and fuzzy set expressions can be handled, then soft transition from direct method to indirect method can be
realized by the new algorithm; It also could adjust every kind of weights of closeness degree to adapt itself based on the
characteristics of classical model and be recognized model. And some case studies would be provided to demonstrate
the effectiveness and availability for the new algorithm. The algorithm could also be used in different circumstances
to deal with closeness degree other than pattern recognition.
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1. Introduction

As the emergence of the computer in the 1940s and
the rise of artificial intelligence in the 1950s, pattern
recognition has become a major branch of artificial in-
telligence. Pattern recognition is often called pattern
classification, which deals with object classifying ac-
cording to the features of the objects. In recent years,
the new pattern recognition methods have been con-
stantly emerging, such as Artificial Neural Networks
[1, 2], GA [3], D-S evidence theory [4, 5] and cluster
analysis [6]. As for fuzzy pattern recognition, there
are two methods, the direct method with the maximum
membership principle based on the concept of mem-
bership degree and the indirect method using near-
est neighbor principle based on the concept of close-
ness degree [7, 8]. In other fields, closeness degree
and membership degree are the most commonly used
fuzzy measures, such as fault diagnosis [9], product
design [10, 11] and fuzzy comprehensive evaluation

[12] etc.
The current closeness degree algorithms have cer-

tain adaptability, and it must be applied to particular
occasions. Therefore, in order to avoid error recog-
nition, different algorithms are used in different occa-
sions. The model to be recognized (called model A
in the following content) may be a real number set or
fuzzy set. A bridge between them is built in this arti-
cle which is establishing a close degree algorithm to
handle two types of data simultaneously.

2. Common algorithms of closeness degree

2.1 Lattice closeness degree
The lattice closeness degree is the closeness degree

based on the inner product and outer product.
Assumption: there are two fuzzy sets on the uni-

verse X , denoted by Ã(x) = uÃ(x), B̃(x) = uB̃(x), if
their kernel and support set meet: kerÃ 6= Φ, kerB̃ 6=
Φ, suppÃ 6= X , suppB̃ 6= X , then the following two
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equations are the lattice closeness degree of Ã, B̃.

η1(Ã, B̃) =
1
2
[Ã◦ B̃+(1− Ã¯ B̃)] (1)

η1(Ã, B̃) = (Ã◦ B̃)∧ (1− Ã¯ B̃) (2)

Where, Ã◦ B̃ =
∨

x∈X
(Ã(x)

∧
B̃(x)), is the inner prod-

uct of Ã, B̃; Ã¯ B̃ =
∧

x∈X
(Ã(x)

∨
B̃(x)), is the outer

product of Ã, B̃.

2.2 The closeness degree based on integral
If the universe X is continuous, then we have

η2(Ã, B̃) =
∫

X(Ã(x)∧ B̃(x))dx
∫

X(Ã(x)∨ B̃(x))dx
(3)

and

η2(Ã, B̃) =
2

∫
X(Ã(x)∧ B̃(x))dx

∫
X Ã(x)dx+

∫
X B̃(x))dx

(4)

where the integral is the Lebesgue integral; if universe
X = R, the integral is the Riemann integral.

If the universe of is discrete, then we have:

η2(Ã, B̃) = ∑s
i=1 (Ã(xi)∧ B̃(xi))

∑s
i=1 (Ã(xi)∨ B̃(xi))

(5)

and

η2(Ã, B̃) =
2∑s

i=1 (Ã(xi)∧ B̃(xi))

∑s
i=1 (Ã(xi)+∑s

i=1 B̃(xi))
(6)

2.3 The closeness degree based on distance
The closeness degrees based on Hamming distance

and Euclidean distance can be formulated as:

η3(Ã, B̃) = 1− 1
β −α

∫ β

α
|Ã(x)− B̃(x)|dx (7)

and

η3(Ã, B̃) = 1−(
1

β −α

∫ β

α
(Ã(x)− B̃(x))

2
dx)

1
2 (8)

where the universe X is closed interval [α,β ] of real
number field.

(a) (b)

Figure 1 Two fuzzy sets

2.4 Analysis
From Fig. 1, it is shown that two fuzzy sets of Ã,

B̃, A1 = kerÃ, B1 = kerB̃; x∗is the intersection of the
membership functions between Ã and B̃. In Fig1(a), it
is obvious that η1(Ã, B̃) >> η2(Ã, B̃); when moving B̃
gradually towards left to make B̃ coincide with Ã, then
η1(Ã, B̃) = 1, but η2(Ã, B̃) is still small. When the
right distribution of B̃ gradually moving towards + ∝
(See Fig1(b)), η3(Ã, B̃) always keeps invariant, how-
ever, η2(Ã, B̃) is constantly decreasing, until tending
to 0.

As it can be seen, for the same question, totally dif-
ferent conclusions can be obtained by using different
algorithms of closeness degree. Assume that Ã and
B̃ in Figure 1 represent 1D fuzzy patterns, using the
threshold principle to determine whether it is the same
category (assume the threshold value λ = 0.5). The
answer is positive according to η1(Ã, B̃); whereas it
is negative according to η2(Ã, B̃). The divergence of
judgment is because of the essences reflected by the
two algorithms of closeness degree are different. The
analysis will be done by using terms from Genetic Al-
gorithms (GA) in this paper.

Considering the universe X of Ã, B̃ as an evolution-
ary population of GA, and the very element in X as an
individual of the population, then η1(Ã, B̃) just repre-
sents the quality of the optimal one while the quality
of entire population is ignored. It can be seen from
Fig. 1(b) that η1(Ã, B̃) = uÃ(x∗) = uB̃(x∗) is the mem-
bership degree of element x∗ to fuzzy set Ã, B̃ and also
has the same meaning with the adaption degree of op-
timal individual in GA. Here, x∗ is the intersection of
the membership functions of Ã, B̃ which is equivalent
to the optimal individual in the population. There-
fore, η1(Ã, B̃) describes the similarity of Ã, B̃ which
is solely depending on membership degree. It reflects
the concept of membership degree.

In the opposite, η2(Ã, B̃) only represents the popu-
lation characteristic without considering the optimal
individual characteristic. This difference is the real
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reason of divergence between using Eqs. (1)-(2) and
Eqs. (3)-(4).

Just like constructing adaption degree function which
emphasizes GA, if an algorithm can be constructed of
closeness degree which is able to make η1(Ã, B̃) com-
patible with η2(Ã, B̃), then error recognition would be
sufficiently reduced.

3. The proposed closeness degree algorithm

A more convenient and simple calculation method
is proposed in this paper, and it integrates the advan-
tages of the integral closeness degree and the distance
closeness degree:

η4(Ã, B̃) = 1− 1
β −α

∫ β

α

|uÃ(x)−uB̃(x)|
(uÃ(x)∨uB̃(x))

dx (9)

where uÃ(x) and uB̃(x) are the membership functions
of Ã, B̃.

For the different distribution of the support sets suppÃ
and suppB̃ of the fuzzy sets Ã, B̃ in universe, the fol-
lowing contents discuss the closeness degree algorithm
of Ã, B̃ in different situations .

3.1 Both continuous intervals suppÃ and suppB̃

Assumption: There are two convex fuzzy sets Ã, B̃
on the universe X = R, whose membership functions
are uÃ(x) and uB̃(x), and their support sets suppÃ and
suppB̃ are the continuous intervals on universe, then:

suppÃ =< A∗0,A
∗∗
0 >= {x|uÃ(x) > 0,x ∈ X}

suppB̃ =< B∗0,B
∗∗
0 >= {x|uB̃(x) > 0,x ∈ X}

where < ∗,∗∗ > represents the open interval, closed
interval or half open half closed interval, and holds the
same meaning as following.

λÃ,B̃ =
|suppÃ|− |suppB̃|
|suppÃ|+ |suppB̃|

=
A0
∗∗−A0

∗−B0
∗∗+B0

∗

A0
∗∗+B0

∗∗−A0
∗−B0

∗

(10)

where suppÃ and suppB̃ are the 0-strong cuts of Ã,
B̃, and the support sets of Ã, B̃; |suppÃ|= A0

∗∗−A0
∗,

|suppB̃ = B0
∗∗−B0

∗|, the geometric meaning is the
width of the support set. It is defined that A0

∗ and A0
∗

are not equal to − ∝, A0
∗∗ and B0

∗∗ are not equal to
+ ∝, to ensure suppÃ and suppB̃ are limited intervals.

Based on the definition above, a closeness degree
algorithm is proposed as following:

η(Ã, B̃) = |λÃ,B̃| ·η1(Ã, B̃)+(1−|λÃ,B̃|) ·η2(Ã, B̃) (11)

When the kernels of and are close enough, the close-
ness degree algorithm is:

η(Ã, B̃) =
λÃ,B̃ + |λÃ,B̃|

2
η1(Ã, B̃)

+(1−
λÃ,B̃ + |λÃ,B̃|

2
)η2(Ã, B̃)

(12)

In the fuzzy pattern recognition, η(Ã, B̃) will be used
to calculate the similarity between the model to be rec-
ognized (Model A) and typical model (called Model
B in the following content). Among them, Ã and B̃ are
the characteristic values.

In Eq. (11), λÃ,B̃ and 1− λÃ,B̃ can be regarded as

the weights of η1(Ã, B̃) and η2(Ã, B̃), so is called the
weight parameter.

In Eq. (12), the weight parameter of η1(Ã, B̃) and
η2(Ã, B̃) are 0.5(λÃ,B̃ +|λÃ,B̃|) and 1−0.5(λÃ,B̃ +|λÃ,B̃|).

Assumption: Ã, B̃, C̃ are on the universe X , the fol-
lowing equations can be proved:

1) η(Ã, B̃) = η(B̃, Ã);

2) η(Ã, Ã) = 1,η(Ã,Φ) = η(B̃,Φ) = η(C̃,Φ) = 0;

3) C ⊆ B⊆ A⇒ η(Ã,C̃)≤ η(Ã, B̃)∧η(B̃,C̃);

where η is the closeness degree function on the uni-
verse X , and η(Ã, B̃) is the closeness degree of Ã and
B̃.

There is a more universal closeness degree algo-
rithm:

η(Ã, B̃) = f (|Aε |, |Bε |) ·η ′(Ã, B̃)

+(1− f (|Aε |, |Bε |)) ·η ′′(Ã, B̃)

= λÃ,B̃ ·η ′(Ã, B̃)+(1−λÃ,B̃) ·η ′′(Ã, B̃)

(13)

where η ′(Ã, B̃) and η ′′(Ã, B̃) express η1(Ã, B̃) and
η2(Ã, B̃) respectively, or η1(Ã, B̃) and η4(Ã, B̃) in Eqs.
(1)-(9).

For the fuzzy sets of normal type, Kosit type and Γ
type, the range of support set can not be guaranteed
within finite intervals, so λÃ,B̃ can not be calculate by
Eq. (10). This paper presents a general algorithm:

f (|Aε |, |Bε |) =
|Aε |− |Bε |
|Aε |+ |Bε |

=
Aε

∗∗−Aε
∗−Bε

∗∗+Bε
∗

Aε
∗∗+Bε

∗∗−Aε
∗−Bε

∗

(14)

where |Aε |, |Bε | are the ε-cuts of Ã, B̃, then the close-
ness degree can be calculated by Eqs. (11)-(12).

International Journal of Intelligent Engineering and Systems, Vol.3, No.4, 2010 11



As long as Ã, B̃ do not belong to the higher semi-
trapezoid distribution or the lower semi-trapezoid dis-
tribution, choose the appropriate value to ensure |Aε |
and |Bε | as finite intervals, it can use Eqs. (7)-(8) to
calculate the closeness degree, which is no longer lim-
ited by Eq. (10), requesting Aε

∗ and Bε
∗ not equal to

− ∝ as well as Aε
∗∗ and Bε

∗∗ not equal to + ∝.
Lower semi-trapezoid distribution is also known as

partial small, which applies to the membership func-
tion when x is small (shown in Fig. 2(a)); Higher
semi-trapezoid distribution is also known as partial
large, which applies to the membership function when
is larger (shown in Fig. 2(b)).

But in engineering, the higher semi-trapezoid distri-
bution or the lower semi-trapezoid distribution mem-
bership functions do exist; improper handling can cause
error recognition. For explaining this method, here,
remember: a typical pattern set is B̃(1), B̃(2), . . . , B̃(n)

(the model features dimension is 1), where B̃(1) is a
lower semi-trapezoid distribution, B̃(n) is a higher semi-
trapezoid distribution; model Ã is recognized neither
as the lower semi-trapezoid distribution nor higher semi-
trapezoid distribution.

(a)

(b)

Figure 2 Lower semi-trapezoid and higher semi-trapezoid

The ε-cut sets of B̃(1) and B̃(n) are denoted as B(1)
ε =

[∗,β (1)] and B(n)
ε = [β (n),∗∗]. Here, ∗ is a real num-

ber less than β (1), depending on the universe of B̃(1);
∗∗ is a real number more than β (n), depending on
the universe of B̃(n) as well. And the ε-cut set of

Aε = [α ′,α ′′], where ∗ ≤ α ′ ≤ α ′′ ≤ ∗∗, then the fol-
lowing statements can be obtained:

A If β (1) ≤ α ′, then η(Ã, B̃(1)) = 0; if β (1) > α ′,
redefine the universe of B̃(1) as [α ′,β (1)], B(1)

ε =
[α ′,β (1)] can be got, then calculate λÃ,B̃ by Eq.

(10); when calculating η(Ã, B̃(1)) by Eqs. (11)-
(12) , B̃(1) adopts the new universe [α ′,β (1)].

B If β (n) ≥ α ′′, then η(Ã, B̃(n)) = 0; if β (n) ≤ α ′′,
redefine the universe of B̃(n) as [β (n),α ′′], B(n)

ε =
[β (n),α ′′] can be got, then calculate λÃ,B̃ by Eq.

(10); when calculating η(Ã, B̃(n)) by Eqs. (11)-
(12) , B̃(n) adopts the new universe [β (n),α ′′].
There are three special instructions about the
conclusions above:

a) If the interval width of support set suppB̃(1)

|suppB̃(1)| 6= + ∝ and |suppÃ| 6= + ∝ ,set ε =
0+ to ensure B(1)ε = suppB̃(1), Aε = suppÃ,
then process is like situation A. If this condi-
tion can not be met, then an appropriate smaller
value for ε should be selected in order to calcu-
late accurate η(Ã, B̃(1)) in the premise that |Aε |
and |Bε | are both finite values.

b) If |suppB̃(n)| 6=∝ and |suppÃ| 6=∝, then set ε =
0+ , then process is like situation B, but if this
condition can not be met, then choose the value
ε under same principle of point a).

c) Still assume ε -cut set of Aε = [α ′,α ′′], even
if B̃(1) is not lower semi-trapezoid distribution,
but as long as the membership degree uB̃(1)(x)|x=α ′

of α ′ to B̃(1) is 1, then B̃(1) can be dealt with
as lower semi-trapezoid distribution. As well,
even if B̃(n) is not higher semi-trapezoid dis-
tribution, but as long as the membership de-
gree uB̃(n)(x)|x=α ′′ = 1, B̃(n) can be dealt with as
higher semi-trapezoid distribution like situation
B. Process like this can make the calculation of
η(Ã, B̃(1)) and (ηÃ, B̃(n)) more consistent with
the objective facts.

3.2 A finite set and an infinite set
Fig. 3 shows this situation. In the figure, B̃ is a trian-

gular fuzzy number, whose support set suppB̃ is con-
tinuous interval in real number field R while suppÃ
are some discrete points in closeness degree of Ã and
B̃, two kinds of methods are adopted to calculate the
weight parameter λÃ,B̃ of Eq. (5).
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Method 1: Construct a new fuzzy set B̃′ in the use
of universe XÃ of Ã and membership function uB̃(x) of
B̃, and set η(Ã, B̃′) = η(Ã, B̃).

If XÃ = {xi|i = 1,2, . . . ,s}, then define the member-
ship function of B̃′ as below:

uB̃′ =
s

∑
i=1

uB̃(x)|x=xi

xi
(15)

Then substitute |Aε | and |Bε | in Eq. (14) with lÃ and
lB̃ in Fig. 3(a), and calculate λÃ,B̃. Apply Eq. (4) to

calculate η2(Ã, B̃′) while calculating η(Ã, B̃′) by Eqs.
(11)-(12).

Method 2: According to the distribution of uÃ(x),
fit it to a fuzzy number of triangle or trapezoidal, con-
struct the fuzzy set Ã′ as Fig. 3(b). Then substitute
suppÃ with suppÃ′, and calculate λÃ,B̃ by Eq. (10).
Even if the distribution of uB̃(x) is not linear, uÃ(x)
can be fit to the triangular or trapezoidal.

(a)

(b)

Figure 3 A support set of fuzzy sets Ã, B̃ is continuous and
the other is discrete

3.3 Both finite sets suppÃ and suppB̃

At first, uÃ(x) and uB̃(x) are linearly fitted respec-
tively, constructing two fuzzy sets Ã′ and B̃′ on con-
tinuous universe, then calculate η(Ã′, B̃′) by using the
method proposed in Section 3.1, and set η(Ã′, B̃′) =
η(Ã, B̃).

4. The features of closeness degree algorithm

At present, the approaches of the fuzzy pattern recog-
nition are divided into direct method and indirect method.
The former one, model A is legible, each of whose di-
mension features are ordinary real numbers; but the
latter one, model A is fuzzy, each of whose dimension
features are fuzzy numbers. Both kinds of method are
using membership degree and closeness degree to rec-
ognize objects based on maximum membership prin-
ciple and the nearest neighbor principle.

In this paper, the closeness degree η(Ã, B̃) of fuzzy
sets Ã and B̃ is synthesized by η1(Ã, B̃) and η2(Ã, B̃)
(or η4(Ã, B̃) ) under some weights. The weight param-
eter is not a fixed value in the closeness degree algo-
rithm of Eqs. 11)-(13), but can adaptively adjust under
the characteristics of eigenvalue from model A and
model B. This kind of self-adaption not only makes
this algorithm manage every feature of be recognized
mode which is expressed by ordinary real numbers
and fuzzy numbers simultaneously, but also achieve
soft transition between direct and indirect by merging
membership and closeness degree, thus it no longer
rigidly divides pattern recognition methods into two
distinctive types. It has reduced the likelihood of er-
ror recognition effectively. Explain as follows:

Weather Ã and B̃ are the same pattern need to be rec-
ognized. Here, suppose B̃ is a m dimensions typical
model whose eigenvalues are all fuzzy numbers de-
noted by m element vectors B̃ = (B̃1, B̃2, . . . , B̃m),and
its characteristic factors set is Z = {z j| j = 1,2, . . . ,m};
Ã is m dimensions of recognized mode, whose eigen-
values have both fuzzy numbers and ordinary real num-
bers .

Suppose the j dimension eigenvalue of Ã is ordinary
real number a j, and notice that: ordinary real number
is the special case of fuzzy number. For ordinary real
number a j, it can be also seen as a fuzzy numbers
whose mean value is a j, with left and right extensions
are both zero. So its fuzzy model is shown below:

Ã j = uã j(x) =

{
0, x = a j

1, x 6= a j
(16)

Despite that a j can be expressed as Ã j, it is actu-
ally a certain point in real universe R, the support set
suppÃ j of Ã j also is a certain point in the universe R
as well, the interval width is:

|suppÃ j|= 0 (17)

Then calculate the weight parameter λÃ j,B̃ j
by Eq. (10),

closeness degree η(Ã j, B̃ j) = η1(Ã j, B̃ j) by Eqs. (11)-
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(12), algorithm η1 reflects the concept of membership
degree, so:

a) If is just the fuzzy expression of ordinary real
number a j, η(Ã j, B̃ j) and η1(Ã j, B̃ j) represents
the membership degree of a j to B̃ j.

b) If Ã j is a fuzzy set, λÃ j,B̃ j
∈ (0,1), then η(Ã j, B̃ j)

is synthesized under certain weights by η1(Ã j, B̃ j)
and η2(Ã j, B̃ j), so it reflects the concept of mem-
bership degree and closeness degree.

c) In the progress of the left and right of ordinary
real numbers a j extending from 0 to Ã j, before
reaching the critical point |suppÃ j|= |suppB̃ j|,
the weight of η1(Ã j, B̃ j) goes down while the
weight of η2(Ã j, B̃ j) rises up, and it largely shows
the concept of closeness degree; after reaching
the critical point, the situation is just opposite,
η(Ã j, B̃ j) equals to η1(Ã j, B̃ j) again while the
left and right extending from to , represents mem-
bership degree again. The change of depends
on the weight parameter λÃ j,B̃ j

. Due to the self-
adaption of the membership function distribu-
tion of Ã j and B̃ j, it is possible for making smooth
transition of η(Ã j, B̃ j) between direct and indi-
rect methods.

Fig. 4 shows the two common situations of fuzzy
pattern recognition. Ã and B̃ represent a one-dimensional
model A and model B respectively (or a feature value
of multi-dimensional model). Because their cores are
close, use the Eq. (12) to calculate η . In the engi-
neering practice (such as fault diagnosis), in Fig. 4(a),
the model Ã to a large extent should be identified as
B̃, and the judgment from algorithm η1 is reasonable
when is unreasonable. Now, the algorithm η mainly
reflects the judgment of η1 by the adaptive adjustment
of k. To the practical problem expressed in Fig. 4(b),
the possibility of Ã and B̃ belonging to the same model
is smaller, and the judgment from algorithm η2 is rea-
sonable when η1 is unreasonable. Now, the algorithm
η entirely reflects the judgment of η2 by the adaptive
adjustment of k(the weight of η1 is 0).

Under the situation |Aε |>> |Bε | shown in Fig. 4(b),
if the impact of η1 is added to η , the results of η are
usually larger. But it does not match the actual project
situation, which will lead to error recognition. In this
paper, the integration of η1 mainly takes the situation
(shown in Fig. 4(a)) into account.

Because η not only expresses the closeness degree
of two fuzzy sets in the paper, but also expresses the

(a)

(b)

Figure 4 Two common situations of fuzzy pattern recogni-
tion

closeness degree of an ordinary real number to a fuzzy
set. The η defined in Eq. (12) is a broad closeness de-
gree. From the view of practical engineering, it is a
proposed function used in pattern recognition to cal-
culated the similarity degree of a characteristic ele-
ment between model A and model B. η is not a close-
ness degree algorithm with strict mathematical sense,
because:

a) η is not simply expressing the closeness degree
between two fuzzy sets in nature, but may be a
membership degree of an ordinary real number
belonging to a fuzzy set instead;

b) η(Ã, B̃) 6= η(B̃, Ã).

5. Case studies

Based on Eq. (16), it would no longer distinct or-
dinary real numbers and fuzzy numbers symbolically.
m-dimensional vector of be recognized pattern Ã are
denoted as Ã =(A1,A2, . . . ,Am) with the form of fuzzy
vector; Characteristics factor set Z = {z j| j = 1,2, . . . ,m};
There are typical patterns altogether B̃(1), B̃(2), . . . , B̃(m),
among B̃(i) = (B̃(1), B̃(2), . . . , B̃(m)), i = 1,2, . . . ,n. The
weight vector of Z is presented as W =(w1,w2, . . . ,wm).

The closeness degree weighted between Ã and B̃(i)

is:
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η(Ã, B̃(i))

= W ◦ (η(Ã1, B̃
(i)
1 ),η(Ã2, B̃

(i)
2 ), . . . ,η(Ãm, B̃(i)

m ))

=
m

∑
j=1

w j ·η(Ã, B̃(i)) (18)

Eventually is identified as the typical pattern of

max{η(Ã, B̃(i))|i = 1,2, . . . ,n}

.
The effectiveness and practicability of the proposed

algorithm are demonstrated by two cases.
The first one is the insulation fault diagnosis of power

transformer.
Table 1 lists four kinds of eigenvalues of typical fail-

ure mode. Characteristic factors Z1, Z2 are the volume
ratios of the transformer oil melt CH4 and C2H6 (unit
10-6). In Table 1, a three-dimensional array in cell
represents a normal fuzzy number.

Table 1 The typical pattern characteristics of power trans-
former insulation failure

Z1 Z2
Low temperature (161, 90, 90) (39, 5.0, 5.0)

thermal fault
High temperature (320, 30, 30) (103, 65, 65)

thermal breakdown
Low energy (73, 20, 20) (42, 14, 14)

discharge fault
High energy (76, 30, 30) (14, 4.0, 4.0)

discharge fault

Through measuring of the current fault state repeat-
edly, the normal fuzzy eigenvalues of model are: Z1 =
(90,9,9); Z2 = (34,0.01,0.01).

The weights of characteristic factors Z1 and Z2 are
both 0.5.

The similarity of the current failure mode and four
typical failure modes calculated in the use of η1, η2
and η . Three different algorithms are shown in Table
2.

The current failure mode will be judged as low en-
ergy discharge by η1 and η∗; To this, the judgment of
η2 is high energy discharge. In fact, the current fault
really belongs to low energy discharge, therefore, the
judgment from η1 and η∗ is right while the judgment
from η2 is wrong.

The other case is product selection.
When designing a relay, the frequency of contact

(denoted as Z) requirement is an important technical

Table 2 The similarity between the current failure mode and
the typical failure mode

η1 η2 η∗
Low temperature 0.4829 0.0926 0.4454

thermal fault
High temperature 0.1620 0 0.1620

thermal breakdown
Low energy 0.7154 0.1276 0.5744

discharge fault
High energy 0.4396 0.2194 0.3380

discharge fault

indicator in choosing the electromagnetic relay (de-
noted as mode B̃(1)) or solid state relays (denoted as
mode B̃(2)). B̃(1) and B̃(2) as the eigenvalues of Z can
be described as trapezoidal fuzzy numbers (0,8,0,4),
(20,1000,20,0) respectively. Users are given designed
products (denoted as mode Ã) of the characteristics of
Z values (8,100,2,20). Select the type of product ac-
cordingly.

The distribution of uQ̃(x) for trapezoidal fuzzy set

Q̃(α1,α2,β1,β2) is shown in Fig 5. According to the

Figure 5 Trapezoidal fuzzy set Q̃

algorithms above:

η1(Ã, B̃(1)) = 1; η1(Ã, B̃(2)) = 1;
η1(Ã, B̃(1)) = 0.02727; η2(Ã, B̃(2)) = 0.09960;
η(Ã, B̃(1)) = 0.02727; η(Ã, B̃(2)) = 0.87179;

It can be seen that η1 could not make a choice and
fail to the current problem; the conclusion of η2, η
identifying the current product as solid state relay type
is right. However, it is shown that η2(Ã, B̃(2))= 0.09960,
which is just too low to be convincing. While the cal-
culated results of η is persuaded.

Because the kernels of Ã, B̃(1) and B̃(2) are close
to each other, use the Eq (12) to calculate η(Ã, B̃(1)),
η(Ã, B̃(2)); In the calculation, B̃(2) is treated as lower
semi-trapezoid:

λÃ,B̃ =
(120−114)
(120+114)

= 0.02564,
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η1(Ã, B̃(2)) = 1;η2(Ã, B̃(2)) = 0.86842

6. Conclusion

Based on the two mostly common used closeness
degree algorithms, a new general closeness degree al-
gorithm is proposed in the paper, which constructs the
similarity function between the typical model and the
model to be recognized in the fuzzy pattern recogni-
tion. This algorithm is a comprehensive reflection of
the concept of membership degree and closeness de-
gree. It can not only handle the pattern characteristic
values both derived from real numbers and fuzzy set
expressions, realizing direct and indirect recognition
integration, but also adaptively focus on membership
and closeness according to the characteristics of pat-
tern characteristic values, by reducing the occurrences
of error recognition. Effectiveness of the algorithm is
verified by case studies.
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