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Abstract: The topology of a network often plays a crucial role in determining its dynamical features. There is 
increasing interest in trying to understand the relationship between the structural properties of networks and their 
behaviors. However, this problem has not been fully considered in many neural networks, which mimic certain 
biological processes. Here, we construct a recurrent network model to simulate the decision-making process of brain. 
In this model, we examined the effects of network topology on the performance of decision-making by constructing 
three different topological networks: the regular network, the random network, and the small-world network. We 
found that the regular network and the small-world network show significant better performance of decision-making 
than that in the random network when the internal noise of the networks is low. However, following the increase of 
the internal noise, the random network, instead of two other networks, shows better ability to resist the noise. Finally, 
to mimic neurodegeneration or neural injury, we introduced two types of neuronal damages: clustered damage and 
distributed damage. We found that three networks exhibit different network behaviors in the case of neuronal 
damages. The regular network and the small-world network display severe decrease of the performance in the 
distributed damage pattern, but not in the clustered damage pattern. The random network shows similarly gradual 
decrease of the performance in both damage patterns. Furthermore, the small-world network shows the best 
performance in the high levels of distributed damage. Together, our results indicate that network topology 
significantly influence the network behaviors in our model of decision-making. 

Keywords: complex network； small-world； decision-making； recurrent model. 

 
 

1. Introduction 

Decision-making is an essential cognitive 
behavior for daily life in animals or even in human 
being (for reviews, see Schall, 2001; Platt, 2002; 
Glimcher, 2003; Smith & Ratcliff, 2004; Sugrue et 
al., 2005). By applying physiological and 
psychophysical techniques, neuroscientists have 
obtained many experimental data, which offer the 
basis for further theoretical analysis. For example, in 
a visual motion discrimination task, the monkey is 
trained to make a judgment about the direction of 
motion in a near-threshold stochastic random dot 
display and to report the perceived direction with a 
saccadic eye movement. Electrophysiological 
recording as well as functional brain imaging has 
been carried out to link the animal’s behavior to 

neural activities in specific brain areas (Newsome et 
al., 1989; Britten et al., 1993; Parker & Newsome, 
1998; Romo & Salinas, 2001; Platt, 2002; Roitman 
& Shadlen, 2002; Glimcher, 2003; Romo & Salinas, 
2003). Based on the biological findings, some 
computational models have been established to 
estimate and interpret the decision-making processes 
of brain (Vickers, 1970; Busemeyer & Townsend, 
1993; Usher & McClelland, 2001; Wang, 2002; 
Mazurek et al., 2003; Bogacz et al., 2006; Ditterich, 
2006; Wong & Wang, 2006; Bogacz, 2007).  

A recurrent network model shows that slow 
synaptic reverberation as well as winner-take-all 
competition can generate attractor dynamics that 
reproduce both neurophysiological and 
psychophysical data (Wang, 2002). In this model, 
each neuron receives input from all other neurons, 
and “Hebbian” rule (the synapse is strong or weak if 
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in the past two cells tended to be active in a 
correlated or anti-correlated manner) has been used 
to generate the synaptic weights. The author did not 
explore the effects of network topology on the 
decision-making process. However, recent advances 
in the field of complex network show that different 
network architectures have different network 
properties and generate different network behaviors 
(for reviews, see Albert & Barabasi, 2002; Newman, 
2003; Boccaletti et al., 2006). Instead that the 
connection topology is assumed to be either 
completely regular or completely random, many 
biological, technological and social networks lie 
somewhere between these two extremes. Based on 
the findings that many systems are highly clustered, 
like regular lattices, yet have small characteristic 
path lengths, like random graphs, Watts and 
Strongatz proposed a “small-world” network (Watts 
& Strogatz, 1998). They also found that small-world 
network displays enhanced signal-propagation speed, 
computational power, and synchronizability. These 
properties may contribute to the computational 
process in choosing alternative signals. Therefore, 
here we investigate the effects of network topology 
on the decision-making process, corresponding to 
the visual motion discrimination experiments. 

By constructing three different topological 
networks (the regular network, the random network, 
and the small-world network), we found that the 
regular component of network architecture improves 
the performance in decision-making process when 
the internal noise of the networks is low. However, 
the networks with high random component display 
better performance in the high level of the internal 
noise. Furthermore, different networks also show 
different changes of network behaviors in the case 
of neuronal damages. Our results indicate that the 
small-world network, which is endowed with both 
advantages of the regular network and the random 
network, displays the best performance in the 
decision-making process after neuronal damages, 
especially in the distributed damage pattern. 

2. Model 

As shown in Figure 1, there are two neural 
groups, each of which is sensitive to one of the two 
stimuli ( 1I  and 2I , mimic the motion to left or to 
right), compete with each other through 
self-recurrent (w+) and mutual inhibition (w-). In 
addition, Gaussian distributed noise (NS) was 
introduced to the networks to mimic the spontaneous 
neuronal activities (as the internal noise). Inside the 
neural groups, neurons are connected with each 

other in different topological manners to form three 
types of networks: the regular network, the random 
network, and the small-world network. Here the 
scheme only shows the small-world network (black 
links for regular components, white links for random 
components). 

 
Figure 1 Schematic of the model architecture in the 
decision-making process. 

 
We used a recurrent network model (Amit & 

Brunel, 1997; Hansel et al., 1998; Durstewitz et al., 
2000; Wang, 2002) with two competing neural 
groups (N = 200 for each group) to simulate the 
process of decision-making in the visual motion 
discrimination task (Fig. 1). Each neuron receives 
positive input from neurons within the same group 
by certain network connection, and receives 
negative input from every neuron within the 
alternative group. We used three different 
topological networks to construct the network 
architecture within each neural group: the regular 
network, the random network, and the small-world 
network.  For the regular network, each neuron is 
adjacently connected with k/2 (k = 20) leftward 
neurons and k/2 rightward neurons to form a circuit 
loop. For the random network, each neuron is 
randomly connected with other neurons with the 
inward degree ink  ( ink = 20) and outward degree 

outk  ( outk  = 20). For the small-world network, 
neuronal connections are modified from the regular 
network described above with Watts and Strogtz’s 
method (Watts & Strogatz, 1998). That is, parts of 
regular connections (10%) are randomly 
reconnected to keep the final degrees constant ( ink = 
20, outk = 20). All connections mentioned above are 
unidirectional. However, due to the symmetrical 
structure of the regular network, eventually neurons 
show reciprocal connections with each other in the 
parts of network connections which are composed of 
the regular component. The statistical results of 
network topology are shown in Table 2. 
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Model neurons (i) are described by their total 
synaptic input current Ii, which evolves in time 
according to the leaky-integrator differential 
equation: 

( ) [ ( )]i i ij j j aff bksydI dt I w R I G R I I Iτ =− +∑ − + +∑ ， （1） 
where syτ is the integration time constant of the 
synapse ( 50sy msτ = ), ijw  is the strength of the 

synaptic connection from unit j to unit i ( ijw  = 0 or 

1), ( )jR I  is the firing rate of neuron j, G is the 
inhibition function from alternative neural group, 

affI  is the afferent input (or external stimuli), and 

bkI  is the internal noise. The firing rate of a neuron 
is assumed to be: 
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max max
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where excθ is lower firing threshold ( excθ = 0.6), 

maxθ is the upper threshold of neuronal firing rate 
( maxθ = 3.0), α is a free parameter of firing rate 
( exα = 0.5). The inhibition function G is assumed to 
be a linear function: 

( )G x xβ= ，                    （3） 
where β is a free parameter of the inhibition 
strength ( β =0.1). The synaptic transmission is 
simply simulated with a constant delay ( dsy = 4 ms). 
The internal noise bkI  is introduced to mimic the 
spontaneous activities of neurons, which is 
described as the following equation: 

0/ ( ) / ( )bk bkdI dt I I ns n tτ σ= − − + ，    （4） 
where nsτ  is the integration time constant of the 
noise ( nsτ  = 5 ms), 0I  is the initial state of 
synaptic current ( 0I = 0.1), ( )n t is a white-noise 
with zero mean and unit standard deviation, and σ is 
the modifiable factor of the white-noise, which 
corresponds to the virtual standard deviation of the 
noise. For most of the simulations, we used 

0.5σ = . To examine the effects of the internal 
noise on the network behaviors, we varied σ from 
0.5 to 1.0. 
 

Table 1 Range of model parameters. 
      

Parameters Description Value 

N Neuron number within each group 200 

kin Inward degree of each node 20 

kout Outward degree of each node 20 

Ttotal Running Time for each trial (ms) 800 

dt Integration of time step (ms) 0.4 

pst Proportion of the stimulated neurons 0.3 

μ0 the basal level of the stimuli 0.25 

c' coherent level of the stimuli variable 

θexc 
lower firing threshold for synaptic 

transmission  

0.6 

θmax upper firing threshold  3 

θout 
threshold of the current to generate 

behavior 

1 

pout 
threshold of the proportion to generate 

behavior 

0.6 

τsy time constant of synapse (ms) 50 

dsy 
delay time of synaptic transmission 

(ms) 

4 

α a free parameter of firing rate 0.5 

β a free parameter of inhibition strength 0.1 

τns time constant of noise (ms) 5 

σ 
standard deviation of the internal 

noise 

variable 

Pdam Proportion of the damaged neurons variable 

 
Table 2 Statistics of topological features in three 
networks: inward degree ( ink ), outward degree ( outk ), 
cluster coefficient (cc), and path length (pl). (SW 
indicates small-world). 
          

Network Kin Kout cc pl 

regular 20 20 0.711 5.477 

random 20 20 0.191 2.02 

SW 20 20 0.502 2.436 

3. Results 

In this section, we investigate the effects of 
network topology on the decision-making process in 
three different aspects. The first part of this section 
examines the effects of network topology on the 
performance of decision-making. The second part 
examines the effects of the internal noise on the 
decision-making process. The third part examines 
the effects of neuron damages (including the 
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clustered damage pattern and the distributed damage 
pattern) on the decision-making process in three 
different topological networks. 

3.1 Effects of network topology on decision 
making process 

After a short delay period (200 ms), two stimuli 
Aμ  and Bμ  are delivered to the parts of two 

neural groups ( 30%pst = ) respectively with 
duration of 400 ms. Then another delay period (200 
ms) is introduced, serving for additional time to 
generate the decision-making process. Therefore, the 
total simulation time ( totalT ) is 800 ms. To mimic the 
visual motion discrimination task in the monkey, we 
used the input coherent c′ (from 0 to 1.0) to linearly 
correlate two stimuli Aμ  and Bμ :  

0

0

(1 )
(1 )

A

B

c
c

μ μ
μ μ

′= +
′= −
，          （5） 

where 0μ is the base level of the stimuli 
( 0 0.25μ = ). Considering the internal noise, at low 
coherent (small c′ ), the stimuli to the two neural 
groups are similar and hard to distinguish. However, 
the competition between these two neural groups 
will eventually lead to one of the two attractor state, 
in which one neural group displays elevated 
persistent activity while the other group’s activity is 
suppressed. Suppose that neural group A receives 
stronger stimuli Aμ , while neural group B receives 
weaker stimuli Bμ . For instance, in a trial at the 
coherent level 0.2, the regular network (Fig. 2 (a)) 
and the small-work (Fig. 2 (b)) generate robust 
decision-making process indicated by persistent 
activity of the group A, while the random network 
(Fig. 2 (c)) fails to generate winner-take-all pattern. 
The firing rate (or the synaptic current) of the group 
A in the random network drops to the base level 
after the offset of the stimulus. 

To quantify the network behaviors, we used the 
percentage of correct choice and reaction time as 
two criteria. The choice is considered as a “correct” 
action if one neural group, which receives higher 
external stimulus, generates positive persistent 
activity across certain firing threshold 

outθ ( 1.0outθ = ) with a certain percentage 

outp ( 0.6outp = ) of activated neuron number. The 
time point across the threshold is defined as the 

reaction time. Therefore, high correct choice or low 
reaction time indicates the good performance of 
decision-making. As shown in Fig. 2, following the 
increased coherent level, the percentage of correct 
choice (Fig. 2 (d)) for all networks is increased 
while the reaction time (Fig. 2 (e)) is decreased. 
Moreover, we found that the regular network and the 
small-world network show significant higher correct 
choice and lower reaction time than those in the 
random network, especially at low coherent levels 
(0.05-0.2). These results indicate that the regular 
component of the network architecture amplifies the 
small difference between two similar signals and 
improves the speed of signal recruitment during the 
competition of two neural groups. 

 

Figure 2 Effects of network topology on the 
performance of decision-making. 

As shown in Figure 2, an individual trial of 
decision-making process at the coherent level 0.2 in 
three different topological networks. The curves are 
the averaged synaptic input currents of the neural 
group (N = 200). The neural group A is supposed to 
receive stronger stimuli, while the neural group B 
receives weaker stimuli. Two dotted lines indicate 
the onset and the offset of the stimuli respectively.  
The regular network and the small-world network 
show significantly higher correct choice and lower 
reaction time than those in the random network. The 
decision-making process is simulated in the low 
internal noise ( 0.5σ = ). Data are fitted by the 
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logistic curve ( 2R > 0.99 for all curves). In each test 
point, the data are obtained after average of 100 
trials. The error bar indicates mean standard error 
(SEM). 

3.2 Effects of the internal noise on network 
behaviors 

Biological decision-making process might not be 
entirely reliable due to the noise in the sensory 
system or in the environment. As mentioned above, 
we introduced the internal noise to mimic neuronal 
spontaneous activities, which may be activated by 
stochastic background inputs inside the brain, rather 
than external stimuli. However, it’s difficult to 
determine the appropriate amplitude of the noise, 
which responds to the physiological state of real 
neurons. Thus, here we examined the effects of the 
internal noise on network behaviors by 
systematically varying the standard deviation σ from 
0.5 to 1.0. As shown in Fig. 3a, neural networks 
show spontaneous decision-making, which is 
considered as incorrect choices, in the condition of 
high internal noises ( 0.7σ > ) even without 
external stimuli. The percentage of incorrect choice 
is increased when the standard deviation σ is higher. 
Finally all networks show completely incorrect 
choices in the noise level 1.0σ = . Further 
comparison of network behaviors among different 
topological networks shows that the random 
network has the best ability to resist the internal 
noise in a wild range (form 0.75σ =  to 0.9σ = ), 
while the regular network and the small-world 
network have the similar noise-resistant ability (Fig. 
3a). For instance in a trial ( 0.8σ = ), the regular 
network (Fig. 3 (b)) and the small-world network 
(Fig. 3(c)) generate spontaneous decision-making 
process, while the random network (Fig. 3 (d)) only 
shows very low level of the firing rate. These results 
indicate that the random component of the network 
architecture contributes to the resistance to the 
internal noise. 

 
Figure 3 Effects of network topology on the 
resistance to the internal noise. 

As shown in Figure 3, in the high levels of the 
internal noise (See Fig. 3(a)), the networks generate 
spontaneous output of decision-making even without 
the external stimuli, which is considered as a 
negative correct choice. The random network shows 
significantly better ability to resist the internal noise. 
Data are fitted by the logistic curve ( 2R > 0.99 for 
all curves). In each test point the data are obtained 
after average of 100 trials. The error bar indicates 
SEM. An individual trial of spontaneous 
decision-making process ( 0.8σ = ) in the regular 
network (Fig. 3(b)), the small-world network (Fig. 
3(c)), and the random network (Fig. 3(d)). The 
curves are the averaged synaptic currents of the 
neural group (N = 200). The neural group A is 
supposed to receive stronger stimuli, while the 
neural group B receives weaker stimuli. 

To further investigate the effects of the internal 
noise on the decision-making process, we compared 
the network behaviors in the presence of both 
external stimuli and high internal noise. As shown in 
Figure 4(a), the random network shows the best 
performance of correct choice in the condition of 
high internal noise ( 0.7σ = ) instead of the worst 
performance in the condition of low internal noise 
( 0.5σ = ). The correct choice of the small-world 
network is similar to the performance of the regular 
network. However, the random network still shows 
the worst performance in the aspect of reaction time 
(Fig. 4(b)). Furthermore, the small-world networks 
exhibit slightly lower reaction time even than that of 
the regular network at the whole range of stimuli. 
These data confirm the results that the regular 
component improves the speed of signal recruitment 
while the random component contributes to the 
resistance of the internal noise. 

 
Figure 4 Effects of network topology on the 
performance of decision-making in the high internal 
noise. 

 
The random network shows significantly higher 

correct choice than that in the regular network and 
the small-world network (a), while the small-world 
network show significantly lower reaction time than 
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that in two other networks (b). The decision-making 
process is simulated in the high internal noise 
( 0.7σ = ). Data are fitted by the logistic curve 
( 2R > 0.97 for all curves). In each test point the data 
are obtained after average of 200 trials. The error bar 
indicates SEM. 

 

3.3 Effects of neuronal damage on network 
behaviors 

The nervous system may be damaged by some 
physical or biological processes, such as mechanical 
neural injure or neurodegenerative disease. Here we 
mimic these neuronal damages to examine the 
network behaviors of decision-making process in 
different topological networks. Due to the network 
architectures, different damage patterns may have 
different effects on the decision-making process. 
Therefore, we introduced two kinds of damage 
patterns to the networks: the clustered damage 
pattern and the distributed damage pattern. The 
clustered damage pattern refers to the damage of 
adjacent neurons from i to i+n, where n indicates the 
number of damaged neurons. The distributed 
damage pattern refers to random damage of neurons 
inside a neural group.  

We first examined the effects of clustered 
damage on the network behaviors. As shown in Fig. 
5(a), the regular network shows similar correct 
choice at different levels of clustered neuronal 
damages. The reaction time of the regular network 
in the lower coherent level is slightly decreased 
under the conditions of neuronal damages (Fig. 5 
(b)). On the contrary, the random network shows 
gradually decreased correct choice under the 
damage percentage ( damp ) from 0.2 to 0.6 (Fig. 
5(c)).  In addition, the reaction time of the random 
network is also gradually increased, following the 
increase of damp  (Fig. 5 (d)). Finally, the 
small-world network shows unaffected correct 
choice at the levels of damp  from 0.2 to 0.4 (Fig. 5 
(e)). At the level damp  = 0.6, the percentage of 
correct choice in the small-world is slightly 
decreased. The small-world network also shows 
gradually increased reaction times, following the 
increase of damage levels (Fig. 5 (f)). The 
comparison of network behaviors including both 
correct choice and reaction time shows that the 
regular network and small-world network have 
significantly better performance of decision-making 

than that in the random network at the level damp  = 
0.6 (Fig. 5 (g) and Fig. 5 (h)). These results indicate 
that the regular component of network architecture 
contributes to the ability to resist the clustered 
neuronal damage.  

 
Figure 5 Effects of network topology on the 
performance of decision-making in the case of the 
clustered neuronal damage. 

As shown in Figures 5(a) and 5(b), the regular 
network shows slight change of correct choice and 
reaction time in the decision-making process, 
following gradual increase of neuronal damages. In 
Figures 5(c) and 5(d), the random network shows 
gradual decrease of correct choice and gradual 
increase of reaction time, following the increase of 
neuronal damages. In Figures 5(e) and 5(f), the 
small-world network shows similar change pattern 
to the regular network. In Figures 5(g) and 5(h), the 
comparison of network behaviors ( 0.6damp = ) 
shows that the regular network and the small-world 
network display significantly better performance 
than that in the random network. The 
decision-making process is simulated in the low 
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internal noise ( 0.5σ = ). Data are fitted by the 
logistic curve ( 2R > 0.98 for all curves). In each test 
point the data are obtained after average of 100 trials. 
The error bar indicates SEM. 

Then, we examined the effects of distributed 
damage on the network behaviors. Unlike the 
clustered damage, both correct choice and reaction 
time in the regular network are significantly affected 
by the distributed damage (Fig. 6 (a), Fig. 6 (b)). For 
instance, at the damage level damp  = 0.6, the regular 
network shows very poor performance of 
decision-making, which is indicated by the lower 
correct choice and longer reaction time. The random 
network still shows gradually decreased correct 
choices and gradually increased reaction times when 

damp  varies from 0.2 to 0.6 (Fig. 6(c), Fig. 6(d)). 
Finally, the small-world network also shows 
gradually changed performance in the 
decision-making process (Fig. 6(e), Fig. 6(f)). 
However, further comparison of network behaviors 
at the level damp  = 0.6 exhibits that the 
small-world network has the highest correct choices 
and the lowest reaction times at the whole range of 
coherent levels (Fig. 6(g), Fig. 6(h)). The random 
network still shows the worst performance of 
decision-making at the damage level damp  = 0.6. 
These results indicate that the small-world network 
has the best ability to resist the distributed neuronal 
damage.  

 
Figure 6 Effects of network topology on the 
performance of decision-making in the case of the 
distributed neuronal damage. 

As shown in Figures 6(a) and 6(b), the regular 
network shows severe decrease of network 
behaviors in the decision-making process, following 
gradual increase of distributed neuronal damages. in 
In Figures 6(c) and 6(d), the random network shows 
gradually decrease of network behaviors, following 
gradual increase of neuronal damages. In Figures 
6(e) and 6(f), the small-world network shows similar 
change pattern to the regular network. In Figures 6(g) 
and 6(h), the comparison of network behaviors 
( damp  = 0.6) shows that the small-world network 
displays the best performance than that in two other 
networks. The decision-making process is simulated 
in the low internal noise ( 0.5σ = ). Data are fitted 
by the logistic curve ( 2R > 0.98 for all curves). In 
each test point the data are obtained after average of 
100 trials. The error bar indicates SEM. 

The above changes of network behaviors may be 
due to the corresponding changes of network 
topology in the case of neuronal damages. Therefore, 
we calculated the topological features of the 
networks. As shown in Table 3, the regular network 
shows different changes of topological features 
between two different neuronal damage patterns, 
especially the inward and outward degrees. In the 
distributed damage pattern, the degrees of the 
regular network are significantly reduced. However, 
in the clustered damage pattern, the degrees are 
slightly decreased. The random network shows 
similar changes of topological features in both 
damage patterns (Table 4). Finally, the small-world 
network shows similar change patterns to those in 
the regular network. That is, two types of neuronal 
damages induce different changes of topological 
features (Table 5). Considering the results of 
network behaviors, these results indicate that there 
are strong correlations between the changes of 
network behaviors and the changes of topological 
features (See Discussion). 

 
Table 3 Topological features of the regular network under 
the conditions of neuronal damages. NaN indicates 
nonsense data because of some infinite values. 

 
              

 distributed damage pattern clustered damage pattern 

Pdam Kin Kout cc pl Kin Kout cc pl 

0 20 20 0.711 5.477 20 20 0.711 5.477

0.2 15.958 15.958 0.711 5.597 19.313 19.313 0.731 5.827

0.4 11.928 11.928 0.711 5.792 19.083 19.083 0.738 4.497

0.6 7.862 7.862 0.709   NaN 18.625 18.625 0.751 3.171
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Table 4 Topological features of the random network 
under the conditions of neuronal damages.  

               

 distributed damage pattern clustered damage pattern 

Pdam Kin Kout cc pl Kin Kout cc pl 

0 20 20 0.191 2.021 20 20 0.191 2.02

0.2 15.998 15.998 0.191 2.079 15.971 15.971 0.192 2.082

0.4 11.875 11.875 0.191 2.178 11.925 11.925 0.191 2.173

0.6 7.986 7.986 0.193 2.315 7.959 7.959 0.189 2.32

 
Table 5 Topological features of the small-world network 
under the conditions of neuronal damages. NaN indicates 
nonsense data because of some infinite values. 

               

  distributed damage pattern clustered damage pattern 

dam_p Kin Kout cc pl Kin Kout cc pl 

0 20 20 0.504 2.438 20 20 0.502 2.435

0.2 15.968 15.968 0.502 2.505 18.988 18.988 0.546 2.411

0.4 11.962 11.962 0.503 2.64 18.404 18.404 0.591 2.329

0.6 7.926 7.926 0.498    NaN 17.574 17.574 0.65 2.185

4. Discussion 

In the present study, we constructed a recurrent 
network model to simulate the decision-making 
process. Compared with the previous recurrent 
model of decision-making (Wang, 2002), here we 
simplify the dynamical process of neuronal firing by 
ignoring the detailed descriptions of synaptic 
currents, such as currents mediated by AMPA, 
NMDA, and GABA receptors. However, we focus 
our study on the effects of network topology on the 
performance of decision-making by constructing 
three different types of networks: the regular 
network, the random network, and the small-world 
network. We found that the networks containing 
large regular components show better performance 
of decision-making than the network with random 
components in the case of low internal noise. 
However, in the case of high internal noise, the 
networks with random components show better 
performance of decision-making. In addition, in the 
case of neuronal damage, especially largely 
distributed neuronal damage, the small-world 
network remains the best ability to execute the 
decision-making process. All these results indicate 
that the small-world network, which contains both 
regular component and random component of 
network architecture, exhibits the relatively stable 

network behavior in the alternative decision-making 
process.  

In our model, we didn’t examine the effects of 
the scale-free network (Barabasi & Albert, 1999), 
which has been identified in many biological and 
other systems (Albert & Barabasi, 2002).  That’s 
because we think there is no biological significance 
to construct a neural group with scale-free topology. 
The neural groups we constructed are used to mimic 
a particular brain structure, which contributes to the 
decision-making process. In a brain structure, there 
are no biological evidences to support the 
assumption that a few neurons own the large 
proportion of synaptic connections. Instead most of 
neurons inside a brain structure should be 
homogenous in the aspect of connection probability. 
Otherwise, removal (in case of neurodegeneration or 
neural injury) of some “essential” neurons may 
result in fatal damage to the whole brain structure. 
However, the existence of these “essential” nodes is 
one of basic properties of scale-free network. In 
addition, recent evidences show that the formation 
of some brain structure, such as the brainstem 
reticular formation, is a small-world, but not 
scale-free, network (Humphries et al., 2006). 
Therefore, the scale-free network is excluded in the 
present study. 

In a recurrent network model, the essential factor 
to win the competition between alternative choices 
is to rapidly recruit the activated neurons to exceed 
the firing threshold (Schall, 2001; Mazurek et al., 
2003). Due to the large cluster coefficient in the 
regular network or the small-world network (Table 
2), the recruitment in these networks is more 
efficient than that in the random network. As a 
matter of fact, the regular network and the 
small-world network have significantly higher 
correct choice and lower reaction time than those in 
the random network in the case of low internal noise. 
Thus, these results imply that the cluster coefficient 
may be the key parameter to control the network 
behavior in the decision-making process when the 
internal noise is low. However, the high internal 
noise leads to large variation of neuronal firing rates. 
Then, the large cluster coefficient in the regular 
network and the small-world network may also 
enlarge the error signals of those variations, which 
results in more wrong output of decision-making. In 
the other hand, the short path length in the random 
network may contribute to rapid dispersal of error 
signals. Therefore, the regular network and the 
small-world network show lower correct choice than 
that in the random network when the internal noise 
is high. However, large cluster coefficients still 
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contribute to the rapid recruitment of competing 
signals no matter these signals are efficient signals 
or error signals when the firing rates are lower than 
the threshold. Thus, the regular network and the 
small-world networks still show significantly lower 
reaction time than that in the random network, 
especially in the case of low coherent input levels. 
When the neuronal states in the stimulated cluster 
exceed the firing threshold, the essential factor to 
win the competition is to recruit more neurons 
outside that cluster. In this case, the short path length 
in the small-world network helps the spread of the 
competing signals to the inactivated neurons, which 
leads to a larger recruitment cluster, compared with 
the recruitment in the regular network. Therefore, 
the small-world network shows the lowest reaction 
time among three networks. Taken together, 
different network features may contribute to 
network behaviors in the different conditions.  

The robustness of the network behavior is a very 
important criterion of the network. Many complex 
systems display a surprising degree of tolerance for 
errors (Albert et al., 2000; Albert & Barabasi, 2002). 
For example, the removal of some nodes only has 
few effects on the network connections or network 
behaviors. In the present study, we introduced 
neuronal damages to examine this error tolerance or 
attack vulnerability. Different topological networks 
have totally different connections. For instance, 
neurons in the regular network prefer to connect 
adjacent neurons, while neurons in the random 
network randomly connect other neurons. Therefore, 
different damage patterns may have different effects 
on the network behavior. Our results improve this 
possibility. We found that the distributed damage 
pattern causes significantly different effects on the 
performance of decision-making in the regular 
network, compared with the clustered damage 
pattern. The clustered damage in the regular network 
almost has no effects on the network behavior (Fig. 
5). However, the distributed damage causes severe 
reduce of the performance of decision-making in 
both aspects of correct choice and reaction time (Fig. 
6). Statistical results of network topology show that 
the inward and outward degrees of nodes in the 
regular network are significantly decreased, 
following the increase of the distributed damage 
levels. Meanwhile, the clustered damage only has 
small effects on the degrees of nodes (Table 3). This 
reduced degrees caused by the distributed damage 
lead to the decrease of the recruitment of more 
neurons in the alternative competition, which 
consequently results in the decrease of the 
performance of decision-making. For the random 
network, two damage patterns have similar effects 

on the topological features (Table 4), and finally 
cause similar decrease of the network behaviors.  
For the small-world network, two damage patterns 
also induce similar changes of topological features 
and network behaviors to those in the regular 
network (Table 5). That is, the distributed damage 
pattern causes more severe decrease of the network 
behaviors than the clustered damage pattern. 
However, the changes are quantitatively different 
between two networks. In the case of clustered 
damage damp  = 0.6, the regular network shows 
slightly better performances of decision-making than 
that in the small-world, although the performances 
in both networks are just varied a little (Fig. 5). 
However, in the case of distributed damage damp  = 
0.6, the small-world network shows significantly 
better performance than the regular network in the 
both aspects of correct choice and reaction time (Fig. 
6). These results indicate that the small-world 
network has better ability to resist neuronal damages, 
especially the distributed damage. 

Taken together, different topological networks 
have some advantages in different conditions. In 
total, the small-world network shows good network 
behaviors in the cases of high internal noise and 
neuronal damages. Our findings give a hint that the 
network topology is one of essential factors to 
consider during the construction of neural networks. 
Moreover, our results from the computational model 
may contribute to the understanding of neuronal 
connections in the biological brain. In other words, 
the good performance of the small-world network 
raises the following question, that is, are the 
neuronal connections in a particular brain region of 
animals or human being organized as the 
small-world pattern?   
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