
International Journal of
Intelligent Engineering & Systems

http://www.inass.org/

A Lightweight, Fast and Efficient Distributed Hierarchical Graph Ne uron-based
Pattern Classifier

R. A. Raja Mahmood1,∗ , A. H. Muhamad Amin 1, andA. I. Khan 1

1Clayton School of Information Technology,
Monash University, Victoria, Australia

Abstract: A lightweight, fast and efficient pattern classifier based onDistributed Hierarchical Graph Neuron (DHGN) is
proposed and implemented. A classifier with such features isessential for the emerging networks such as wireless sensor
networks and mobile ad hoc networks, where resources such asbandwidth and energy are limited. The proposed classifier
adopts an in-network processing algorithm and has a one cycle learning capability. DHGN network is a new form of
neural networks which consist of a hierarchical graph-based representation of input patterns. This paper compares the
proposed solution with the well known Self-Organizing Map (SOM) classifier, in relation to accuracy and computational
complexity. The results show that our solution offers lowercomputational complexity than SOM while guaranteeing
satisfactory accuracy.

Keywords: Lightweight Classifier, Distributed Hierarchical Graph Neuron (DHGN), Self-Organizing Map (SOM),
Computational Complexity.

1. Introduction

Pattern recognition is an important research field
in a variety of scientific and engineering disciplines.
The components of pattern recognition include pre-
processing, feature selection, and extraction, classifi-
cation and optimisation. Our research work focuses
on the pattern classification area, in particular to pro-
pose and implement a lightweight, fast and efficient
pattern classifier. In general, the function of a clas-
sifier is to separate a number of patterns into appro-
priate classes. Many of the existing classifiers adopt
one of the following methods: (i) similarity-based
or template matching, (ii) statistical or probabilistic,
or (iii) error minimisation. Some examples of clas-
sifiers include Bayes rule, K-mean, K-nearest neigh-
bour, Multilayer Perceptron (MLP), Self-Organizing
Map (SOM), decision tree and Support Vector Ma-
chine (SVM) with Kohonen SOM [1] being the most
prominent classifier and has been widely implemented

∗ Corresponding author.
Email address:

Raja.Mahmood@infotech.monash.edu.au.

in numerous applications [2–5]. Most of these classi-
fiers including Kohonen SOM are iterative in nature
and accurate. However, they are time consuming and
resource intensive. Although Kohonen SOM has been
proven effective and efficient as an intrusion detection
mechanism, with a high percentage of detection rate
and low false alarm rate, in wired environment [5,6] -
with high support for computational resources - but it
may not be practical in the resource constrained net-
works.

Wireless sensor networks and mobile ad hoc net-
works are the central parts of the emerging wire-
less networks. In recent years, there has been a rapid
growth in research interest to explore the capabil-
ities and limitations of these networks. These net-
works consist of tiny, low-powered battery devices
with many limitations, including being unsecured and
having limited resources in relation to their process-
ing capacity, power, and memory. In relation to the
security aspect of these wireless networks, it is known
that the networks can easily be crippled by the infa-
mous Distributed Denial of Service (DDOS) attack.
Therefore, having an effective and efficient security

International Journal of Intelligent Engineering and Systems 4 (2008) 9–17 9

mechanism, such as intrusion detection system (IDS)
is critical for reliability of these networks. Adopting
SOM approach in the IDS for these networks may not
be practical due to its intensive usage of resources.
Hence, there is a demand for not only an efficient
classifier, but also a lightweight classifier for such net-
works. It is our aim to propose an accurate classifier
with lightweight and fast response features through
Distributed Hierarchical Graph Neuron (DHGN) al-
gorithm. DHGN is a single-cycle pattern recognition
algorithm that offers high recognition accuracy within
short recall time [7]. Ultimately, it is our main goal
to implement DHGN-based classifier as part of IDS
solution in the Mobile Ad Hoc Networks (MANETs).

In this paper, we aim to show the efficiency and
effectiveness of our proposed solution by compar-
ing DHGN with Kohonen SOM. In particular, we
investigate the classification accuracy and computa-
tional complexity of these algorithms. We also provide
the average execution time taken for DHGN to clas-
sify the input patterns to emphasise its fast response
time. This paper consists of 6 sections. Section 2 pro-
vides an overview of the Kohonen SOM and section 3
presents our proposed algorithm. Section 4 describes
the data and method used in the experiments. Section
5 presents the experimental results and provides the
discussion on the findings. Finally, Section 6 presents
our conclusion.

2. Kohonen Self-Organizing Map

In general, Kohonen Self-Organizing Map (SOM)
is a feedforward neural network that has the abil-
ity to learn the characteristics of similar items in a
newly presented data set and group them into different
classes or clusters. By mapping similar input values
onto closely neighbouring neurons, SOM is able to
preserve the original topological relationship among
the objects in the data set. SOM also acts as a visuali-
sation tool, where it is able to map a high-dimensional
data set onto a lower dimensional space, normally re-
sulting into a two dimensional map. For visualisation
purpose, the unified-distance matrix (U-matrix) has
frequently been used to provide the representation of
the clusters formation and the cluster boundaries, as
presented in Figure 1. The clusters can be seen as
neurons of small distances (refers to the values on the
colorbar) separated by the large-distance neurons.

The Kohonen SOM consists of two layers: the input
layer and the Kohonen layer, with both layers fully in-
terconnected. The input vectorxi and the weight vec-
tor wi have the same number of dimensions, based on
the number of variables in the data set under consid-

Figure 1. U-matrix of the IRIS data set [9].

eration. Unlike DHGN, SOM’s learning algorithm is
iterative. In the first step, all weight vectors of the Ko-
honen layer are initialised with random values. During
each iteration, a single input neuron is randomly se-
lected and the distance between this neuron and each
neuron in the Kohonen layer is then calculated. Eu-
clidean distance metric is usually used for this pur-
pose. The Kohonen neuron with the least Euclidean
distance to the selected input neuron, that is the clos-
est to the selected input neuron, is chosen as the win-
ner neuron or Best Matching Unit (BMU). Its weight
vector is then moved towards the weight vector of the
selected input neuron using the following formula for
time k:

wi(k + 1) = wi(k) + α ∗ C ∗ (xi − wi(k)) (1)

C = e(−d2
e/2∗σ2) (2)

The coefficientC describes the size of the neigh-
bourhood around the winning neuron in Kohonen
layer. Parametersα and σ are monotonically de-
creasing during the training, leading to convergence
of the Kohonen layer. This process is iterated until
a predefined number of cycles, hence a stable state
is reached. Details of the algorithm can be found in
[1]. As such iterative process requires extensive re-
sources, SOM algorithm is not suitable for emerging
wireless networks.

3. Distributed Hierarchical Graph Neuron

The Graph Neuron (GN) theory was first introduced
in [10]. It uses a new form of neural network with the
structure and its data representations are analogous to
a directed graph. The processing nodes, termed as GN
array, are mapped as a vertex setV of a graph, and
the inter-node connections belong to the set of edges,
E. Each node holds the{value, position} pair infor-
mation and the network represents all possible data
points in the reference pattern space. Figure 2 shows
the GN array of input pattern of size 5 bits, with in-
put values of A, B and C. The dotted line represents
the inter-node communication of pattern BABBC. The

International Journal of Intelligent Engineering and Systems 4 (2008) 9–17 10

communication overheads of GN remain low as the
communications are restricted to the adjacent nodes
only. The GN array compares the edges of the graph
with subsequent inputs for memorisation (signifies a
new input pattern) or recall (signifies an old pattern). It
can be seen that the algorithm is able to detect patterns
instantly, that is in only one cycle. However, the tra-
ditional GN suffers from the crosstalk phenomenon,
therefore cannot be fully relied upon for accuracy.

Figure 2. An input pattern BABBC in a GN array.

An improved version of the GN algorithm, termed
Hierarchical GN (HGN), [8], was later developed to
provide better recognition accuracy that is highly re-
silient to pattern distortions. HGN provides a bird’s
eye view of the overall pattern structure allowing it
to accurately recognise both subpatterns and the en-
tire pattern. However, the number of processing nodes
significantly increases in HGN. As a comparison, the
GN network requires only 15 nodes while HGN re-
quires a total of 27 nodes to process an input pattern
BABBC as shown in Figure 2. The network structures
of GN and HGN arrays are depicted in Figure 3.

Figure 3. Comparison between GN and HGN network
topologies for 3-element input pattern.

HGN was then implemented in a distributed plat-
form, termed the Distributed HGN (DHGN)[7]. In
DHGN, each input pattern is divided into subpatterns
and these subpatterns are processed concurrently. In
order to determine the status of these subpatterns, ei-
ther as new or old subpatterns, these are compared
against their respective bias indices. If such patterns
are found in the bias indices, these are considered
old patterns and are recalled as the matched indices.
However, if the patterns are not found in the bias in-
dices, these are considered as new patterns and their

information is stored, with new indices being cre-
ated. These subpatterns’ indices are then collected by
the decision-making module, which then identifies the
class to which the input belongs to, based on a ma-
jority voting scheme.

DHGN maintains similar accuracy performance as
HGN, and at the same time decreases the number of
processing nodes required as well as the computa-
tional loads. For comparison, in order to process a
35-bit binary value input pattern, the HGN network
requires a total of 648 nodes, while the DHGN algo-
rithm divides the pattern into few smaller subpatterns
and requires a total of only 126 nodes. It can be seen
that DHGN significantly decreases the number of pro-
cessing nodes required in the network. Moreover, the
final index propagation process in HGN was elimi-
nated in this implementation - that is the top index
value is not propagated to all nodes in the network -
and doing so further decreases the DHGN’s computa-
tional complexity. Figure 4 shows the DHGN imple-
mentation, which consists of a DHGN array and the
decision-making module. In this implementation, the
35-bit input pattern has been divided into seven sub-
patterns of 5 bits each. All of the subpatterns are then
processed concurrently and the results, in the form of a
list of indices, are passed to the decision-making mod-
ule. The decision-making module then determines the
class or cluster to which the input pattern belongs.
One drawback of DHGN however is that it requires a
bit of preprocessing, that is dividing the pattern into
several subpatterns before any recognition process can
take place. Simple PERL scripts have been used for
this preprocessing purpose.

Figure 4. A 7x5 bitmap of letter A is mapped as sub-
patterns of 5-bit strings over 7 hierarchically formed GN
sub-networks.

4. Experiments

Two series of experiments have been conducted to
investigate the classification performance of SOM and
DHGN in a supervised environment.

International Journal of Intelligent Engineering and Systems 4 (2008) 9–17 11

4.1. Test 1: Distorted images of characters I, S
and A

The aim of this test is to investigate the accuracy of
both algorithms in classifying distinct patterns with
certain applied distortion. In this test, the distinct char-
acters I, S and A were used. Supervised learning was
deployed in this study, with the training data compris-
ing only the perfect pattern of I, S, and A alphabets.
The testing data sets consisted of three thousands dis-
torted and six thousands distorted, I, S and A alphabets
respectively. The distortion percentage ranges from 3
percents to 60 percents or from 1bit to 21bit were ap-
plied for each of these data sets. For the three thousand
patterns data set, the training-testing data ratio used in
this study was 3:3000 or 0.1-99.9, while the training-
testing data ratio used for six thousand patterns data
set was 3:6000 or 0.02-99.98. The characteristics of
the data used in this study are presented in Table 1.

Table 1. Data and their characteristics.

Features Test 1 Test 2

Alphabets
I, S and A I, S, A, J,

Z, H and X

Input Values 0 and 1 0 and 1

Input Size
5x7 bits 5x7 bits

(total = 35 bits) (total = 35 bits)

Distortion 1 bit (3%) - 1 bit (3%) -

Rate 21 bits (60%) 10 bits (29%)

Test 3000 characters 2500 mixed

Data (1000 for eachdistorted characters

alphabet) and (I=500, S=500,

6000 characters A=500, J=400,

(2000 for each Z=300, H=200,

alphabet) X=100

4.2. Test 2: Distorted images of characters I, S,
A, J, Z, H and X

The aim of this test is two-fold. Firstly, we aim to
investigate the accuracy of both algorithms in classi-
fying not only distinct patterns, but also similar pat-
terns with certain percentage of distortion been ap-
plied. In this test, I, S, A, J, Z, H, and X alphabets
were used. Some of these patterns share similar struc-
ture, such as I and J in their 5x7 bits configurations.

Secondly, we aim to show DHGN network capability
to learn in one cycle when new pattern is introduced
to the network. In SOM’s case, the network needs to
be retrained and weights need to be readjusted until a
stabilised network is achieved whenever new training
patterns are introduced to the network.

Supervised learning was deployed in this study,
with the training data comprising only the perfect pat-
tern of I, S, A, J, Z, H, and X alphabets. Firstly, the
network was trained with alphabet I, S, A and then
tested with 300 distorted patterns, comprising of 100
distorted patterns per alphabet. Secondly, a new pat-
tern, alphabet J was introduced to the network and a
total of 400 distorted patterns of I, S, A and J, compris-
ing of 100 distorted patterns per alphabet, was tested.
Thirdly, we introduced pattern Z and then a total of
500 distorted patterns of I, S, A, J and Z, compris-
ing of 100 distorted patterns per alphabet, was tested.
Fourthly, pattern H was introduced and a total of 600
distorted patterns of I, S, A, J, Z and H, comprising
of 100 distorted patterns per alphabet, was tested. Fi-
nally, the network was introduced with pattern X and
total of 700 distorted patterns of patterns I, S, A, J, Z,
H and X, comprising of 100 distorted patterns per al-
phabet, was tested. Each dataset consists of 2500 dis-
torted patterns, with the distribution of the alphabets
listed in Table 1. The distortion percentage in this test
ranges from 3 percents to 29 percents or from 1bit
to 10bit. The training-testing data ratio used in this
study was 7:2500 or 0.28-97.2. The characteristics of
the data used in this study are presented in Table 1.

The SOM Toolbox [11] was used to investigate
the classification accuracy of the supervised SOM. A
SOM with a grid of 5 x 2 hexagonal nodes was cre-
ated using the perfect alphabets training data set for
Test 1, as shown in Figure 5. In Test 2, a SOM with a
grid of 5x3 hexagonal nodes was created as shown in
Figure 6. For DHGN algorithm implementation, we
employed MPICH2 message passing library on C pro-
gramming language, on a single Intel Pentium 66MHz
with 128 MB RAM test machine. A total of 18 pro-
cesses were required at one time to classify each 5-
bit sub pattern. Hence, a total of 126 (18 processes x
7 subpatterns) processes were required altogether to
classify and recognise one single pattern.

5. Results and Discussion

5.1. Classification Accuracy

5.1.1. Test 1: I, S and A characters
Figure 7 shows the classification accuracy of

DHGN and SOM algorithms in detecting distinct pat-

International Journal of Intelligent Engineering and Systems 4 (2008) 9–17 12

Figure 5. SOM of map size 5x2.

Figure 6. SOM of map size 5x3.

terns, in this case alphabet I, S and A. In general, both
algorithms show comparable classification accuracy
results for a range of 3% to 23% bits distortion, with
more than 90% accuracy achieved. SOM is superior
to that of DHGN for a range of 26% to 46% bits dis-
tortion with an average of 6.91% difference between
the two and with the greatest difference of 11.2%
at the 37% or 13 bits distortion. The high accuracy
achievement by SOM requires a large number of it-
erations, usually in the thousands, to be performed
during the learning process. SOM optimises its re-
sults by adjusting the weight of the neurons many
times and only stops when the errors have been min-
imised, i.e. when a stabilised network state has been
achieved. SOM has proven to achieve high classifi-
cation accuracy results, especially under supervised
learning in many studies, and hence these results
are expected. Although DHGN performs better than
SOM for distortion bits of 46% and more, we do not
take this result into account since 50% distortion in
any patterns is considered very high. With 50% or
more distortion imposed on a pattern, the structural
information of the pattern may have been lost.

We then increased the data set to 6000 distorted
patterns and investigated the performance of both al-
gorithms. The resulting graph, as depicted in Fig-
ure 8 shows similar pattern as the previously dis-
cussed graph (Figure 7). Similarly, the results for 6000

Figure 7. Comparison of classification accuracy between
SOM and DHGN for alphabet I,S,A with 3000 distorted
patterns of specified bits distortion.

distorted patterns show comparable result between
DHGN and SOM for up to 23% bits distortion. On
the average, SOM outperforms DHGN by 6.96% for a
range of 26% to 46% bits distortion with the greatest
difference of 11.2% at the 40% or 14 bits distortion.

Figure 8. Comparison of classification accuracy between
SOM and DHGN for alphabet I,S,A with 6000 distorted
patterns of specified bits distortion.

With a difference average of only 6.91% (for 3000
distorted patterns) and 6.96% (for 6000 distorted pat-
terns) in performance accuracy between these algo-
rithms, DHGN’s result is satisfactory considering that
it employs a faster one-cycle learning process.

5.1.2. Test 2: I, S, A, J, Z, H and X characters
In this test, we increased the number of patterns to

be classified with some of these patterns share simi-
lar structural information. The resulting graph, as de-
picted in Figure 9 shows that the accuracy of DHGN
is superior to that of SOM. On the average, DHGN
outperforms SOM by 17% with the greatest difference
of 21% that occurs at the 20% or 7 bits distortion.

This particular result is promising for DHGN, but
more rigorous testing using more patterns need to be
done in the future for verification. We anticipated at
the beginning that SOM would perform better or simi-

International Journal of Intelligent Engineering and Systems 4 (2008) 9–17 13

Figure 9. Comparison of classification accuracy between
SOM and DHGN for alphabet I,S,A,J,Z,H,X with 2500
distorted patterns of specified bits distortion.

lar to DHGN in this test as well. The only explanation
for SOM to perform poorly when similar alphabets
were introduced in the network is perhaps the num-
ber of records taken for training dataset is very small.
Unlike in the previous test, a very small training set
is sufficient due to the distinct structural patterns of
the classified alphabets. Perhaps in the future, SOM
needs to be trained with distorted patterns as well in
order to perform better in this test. Besides low accu-
racy percentage shown by SOM, extensive resources
are also required to retrain its network in this test.
For each new pattern been introduced to the network,
SOM network needs to be retrained. This iterative ac-
tivity of calculating BMUs and adjusting weights is
computationally expensive, and definitely not feasi-
ble if it is to be done several times over short periods
of time. In emerging networks, an on-line intrusion
detection system (IDS) is commonly used, where net-
work patterns or traffic conditions need to be updated
in regular time periods in order to detect potential at-
tacks. Using SOM for on-line IDS is not feasible as
it is computationally expensive to retrain.

5.1.3. Quantization Error (QE)
Besides percentage of classification accuracy,

Quantization Error (QE) is also used to measure
SOM’s performance - to measure the data represen-
tation accuracy. QE is computed as the means of the
distances between the input vectors and their BMUs
on the map. With default settings, the QE value gener-
ated by SOM Toolbox in Test 1 was 0.532. Whereas,
the QE value for Test 2 was 1.549. We believe the
QE value, can be reduced if better parameters con-
figuration is used. The high error value in QE in Test
2 was reflected in the high error percentage of SOM
classification as depicted in Figure 9.

5.1.4. Summary
In brief, the accuracy results between DHGN and

SOM in the first test are comparable, while DHGN
outperforms SOM in the second test. Besides high ac-
curacy percentage shown by DHGN, it is a fast algo-
rithm for it has a one-cycle learning capability. Hence,
whenever a new pattern is introduced to the DHGN
network, it gets learned instantly, while SOM requires
iterative process for this learning and retraining to oc-
cur. Ultimately, DHGN algorithm saves more energy
and time in comparison to SOM. Since DHGN is able
to provide such capability, we believe DHGN-based
classifier is a working solution for intrusion detection
system in these networks.

5.2. Computational Complexity

The Big-O notations for both SOM and DHGN
have been estimated to study their complexity levels.
Big-O notation is a theoretical measure of the exe-
cution of an algorithm, usually the time or memory
needed, given a specified problem size [12].

The supervised SOM consists of three important
stages: (i) weight initialisation, (ii) BMU calculation,
and (iii) weight adjustment. In the weight initialisation
stage, nodes are created with random assigned weight.
At this stage, the computational complexity depends
heavily on the number of created nodes. Hence, for a
given weight initialization process,w, the complexity
of n nodes can be simplified asf(w) = O(n3). Figure
10 shows the estimated time taken to initialise up to
100,000 nodes. The estimated time derived is based
on the assumption that the instruction speed used is 1
microsecond (µs) per instruction.

Figure 10. Complexity performance of SOM’s weight ini-
tialisation process.

In the BMU calculation stage, the complexity de-
pends heavily on the number of iterations during train-
ing as well as the number of the input vector. Hence,

International Journal of Intelligent Engineering and Systems 4 (2008) 9–17 14

for a given BMU calculation process,m, the com-
plexity of training iterations,n, can be simplified as
f(m) = O(n4). The estimated time taken to perform
up to 100,000 iterations of calculating the Euclidean
distance between the input values and all neurons in
this stage is given in Figure 11.

Figure 11. Complexity performance of SOM’s BMU cal-
culation process.

In the last stage, the weight adjustments are pro-
vided not only for the winning neuron but also for its
neighbours in a certain neighbourhood. The degree
of adjustment depends on the degree of similarity be-
tween the neuron and the input. As a result of weight
adjustment, a group of neurons are obtained forming
a cluster. The Big-O for the weight adjustment is sim-
ilar to the BMU calculation (refers to Figure 11) and
hence not provided.

In DHGN, the learning process consists of the fol-
lowing steps: (i) present input vectorx in orderly
manner to the network array, and (ii) compare the
subpattern with the bias index of the affected node
or neuron, and respond accordingly. There are two
main processes in DHGN algorithm: (i) network ini-
tialisation, and (ii) classification. In the network ini-
tialisation stage, we are interested to find the number
of created nodes and the number of initialised neu-
rons. In DHGN, the number of generated neurons is
directly related to the input pattern’s size. However,
only the neurons of the base layer of the hierarchy are
initialised. Equation 3 shows the number of neurons
in DHGN, Ndhgn, given the size of the pattern,S, the
size of each DHGN array,Rdhgn, and the number of
different elements within the pattern,ne:

Ndhgn = ne[

S
Rdhgn

+ 1

2
]2 (3)

The computational complexity for the network ini-
tialisation stage,Gdhgn for n number of iterations,n
could be written as in the following equation:

f(Gdhgn) = O(n) (4)

This equation proves that DHGN’s initialisation
stage is a low-computational process, and hence
acquires less computational time in comparison to
SOM’s weight initialisation process. Figure 12 shows
the estimated time for this process. Similar speed
assumption of 1 microsecond (µs) per instruction is
applied in this analysis. It can be seen that the time
taken in the initialisation process of DHGN is far less
than SOM. For instance, DHGN takes only 0.2 sec-
onds (see Figure 12) while SOM takes about 3 x 108
seconds (see Figure 10) to initialise 20,000 nodes.

Figure 12. Complexity performance of DHGN’s network
generation process.

In the classification process, only few comparisons
are made for each subpattern, i.e. comparing the input
subpattern with the subpatterns of the respective bias
index. The computational complexity for the classi-
fication process is somewhat similar to the network
generation process, except an additional loop is re-
quired for the comparison purposes. The pseudo code
of this process is as follows:
for each node in the network
{

recognition()
{

for each bias entry
{

if input index = stored index
{
recall stored index
}
else
store input index

}
}
classification()

}

International Journal of Intelligent Engineering and Systems 4 (2008) 9–17 15

From this pseudo code, the complexity of the clas-
sification processCdhgn for n number of iterations
could be written as the following equation:

f(Cdhgn) = O(n2) (5)

It can be seen from Equation 5 that DHGN’s clas-
sification process requires less computational com-
plexity in comparison to SOM’s BMU calculation and
weight adjustment activities. For instance, the time
taken for classification by DHGN in a network of
50,000 nodes is less than 3 seconds (see Figure 13)
while SOM’s BMU calculation process alone takes
about 5 x 1013 seconds to complete (see Figure 11),
and with similar time needed to perform weight ad-
justment.

Figure 13. Complexity performance of DHGN’s classifi-
cation process.

In summary, the estimated time graph of the DHGN
algorithm is linear, while the corresponding graph of
SOM algorithm is exponential. This proves that the
DHGN is an efficient algorithm - lightweight and fast
- in comparison to SOM.

5.3. Execution Time

The DHGN algorithm takes advantage of the paral-
lel computing. Figure 14 shows the average time taken
by DHGN to classify one distorted pattern, which was
between 12.25ms and 13.1ms. Since the classifying
and recognition task was divided into several pro-
cesses and working concurrently, the execution time
has been reduced significantly. Taking into consider-
ation the test machine that was used to run MPI and
DHGN algorithm, we believe the time is relatively
small and hence has shown that the DHGN is a fast
classifier. A comparison in relation to execution time
between SOM and DHGN is not feasible since SOM
was tested on a high performance machine, that is on
an Intel Pentium 2.8GHz, with 1GB of RAM.

Figure 14. Average time taken for classifying 3000 and
6000 distorted patterns using DHGN.

6. Conclusion

The SOM and DHGN algorithms have been anal-
ysed and their performances have been presented.
Unlike the iterative SOM algorithm, which is time
consuming and resource intensive, DHGN algorithm
adopts a faster one-cycle learning approach, and
hence is a fast and lightweight classifier. This has
been highlighted in the computational complexity
results of both algorithms; the complexity of the
DHGN algorithm is linear, while that of the SOM is
exponential. In relation to the classification accuracy
of distinct patterns, both algorithms show compa-
rable results with SOM outperforms DHGN classi-
fication accuracy marginally by an average of less
than 7%. However, in classifying similar patterns,
DHGN outperforms SOM by an average of 17%. As
SOM is computationally expensive, it requires mas-
sive resources to be implemented. Hence, SOM is
impractical to be used in the resource-scarce wire-
less networks. We believe DHGN-based classifier is
an effective solution for intrusion detection systems
in these networks for it saves energy, time, and is
comparatively accurate. In future work, we plan to
perform more rigorous testing to validate our initial
finding as well as employ our proposed algorithm for
detecting DDOS attacks in mobile ad hoc networks.

References

[1] T. Kohonen, ”Self-Organising Maps,” Springer,
Berlin, 2001

[2] Z. Chi, J. Wu, and H. Yan, ”Handwritten numeral
recognition using self-organizing maps and fuzzy
rules”, Pattern Recognition 28(1) 1995, pp.59-66.

[3] D. R. Chen, R. F. Chang, and Y. L. Huang,
”Breast cancer diagnosis using self-organizing map
for sonography”,Ultrasound in Medicine and Biology
Vol.26, 2000, pp. 405-411.

International Journal of Intelligent Engineering and Systems 4 (2008) 9–17 16

[4] J. Huysmans, B. Baesens, J. Vanthienen, and T.
Van Gestel, ”Failure prediction with self organizing
maps”,Expert Systems with Applications 30 (3), 2006,
pp. 479-487.

[5] A. J. Hoglund, K. Hatonen, and A.S. Sorvari,
”A Computer Host-Based User Anomaly Detection
System Using the Self-Organizing Map,” In:IEEE-
INNS-ENNS Intl Joint Conference on Neural
Networks (IJCNN’00), vol. 5, 2000.

[6] P. Lichodzijewski, A. N. Zincir-Heywood, and M. I.
Heywood, ”Host-based intrusion detection using self-
organizing maps”, In:Proc.of the IEEE International
Joint Conference on Neural Networks, May 2002.

[7] A. H. Muhamad Amin and A. I. Khan,
”Parallel Pattern Recognition Using a Single-
Cycle Learning Approach within Wireless Sensor
Networks”, In: Proc. of the Ninth Intl. Conf. on
Parallel and Distributed Computing, Applications,
and Technologies (PDCAT) 2008, IEEE Computer
Society, December 2008.

[8] B. B. Nasution and A. I. Khan, ”A Hierarchical Graph
Neuron Scheme for Real-Time Pattern Recognition,”
In: IEEE Transactions on Neural Networks, vol. 19,
pp. 212-229, 2008.

[9] E. Anderson, ”The irises of the Gaspe Peninsula”.
Bulletin of the American Iris Society 59, 1953, pp.
2-5.

[10] A. I. Khan, ”A peer-to-peer associative memory
network for intelligent information systems,” In:Proc.
of the Thirteenth Australasian Conf. on Information
Systems, vol. 1, 2002.

[11] J. Vesanto, E. Alhoniemi, J. Himberg, K. Kiviluoto,
and J. Parviainen ”Self-Organizing Map for Data
Mining in Matlab: The SOM Toolbox,” Simulation
News Europe, vol. 25, 1999.

[12] P. E. Black, ”big-O notation”, in Dictionary of
Algorithms and Data Structures [online], Paul E.
Black, ed., U.S. National Institute of Standards
and Technology. 2 November 2007. (accessed
16/05/2008) Available from:
http://www.nist.gov/dads/HTML/bigOnotation.html

International Journal of Intelligent Engineering and Systems 4 (2008) 9–17 17

