

Traffic Balance after Link Failures Using Few Weight Changes

Jing Wu1, Chengcheng Guo, Puliu Yan, Jianguo Zhou

 Lab for Internet and Information Technology, School of Electronic Information
 Wuhan University,129 Luoyun Road, Wuhan, Hubei 430079, P.R. China

Abstract: Some failures in the network may lead to hot spot. The weight changes can be used to keep the traffic
balance again after failures. But frequent weight changes may lead to disturbance in the network, so we should
change link weights as few as possible. Local search algorithm can achieve that, but the computation is too complex.
We present an OSPF/IS-IS weights tuning scheme named flow enumeration to reduce the computation complexity.
The scheme is based on flow analysis and the main idea is to increase the weight of the link with maximum
utilization and decrease the number of flows on the link. The simulations indicate that the computation time of our
scheme is much lower than local search algorithm and the results of maximal link utilization are close.

Keywords: Traffic balance; Link weight; Link utilization; Traffic matrix; Local search; Flow enumeration

1. Introduction

The current approach to backbone design based
on traffic engineering appears sufficient in most
cases to keep the network load balanced. Sundar and
Supratik [1] study data collected from 138 links on
Sprint’s IP backbone and found that the occurrence
of sudden “hotspots”, where the link utilization is as
high as 90%, is mostly caused to link failures.
However, at any given time, there is usually only
one such “hotspot” in the network. Hence solutions
are required to alleviate link overload after link
failures.

In connectionless-oriented network, traffic is
routed along shortest path to the destination, so the
weights can be tuned to optimize the network
resources again after some failures. But weight
changes should be taken as few as possible, because
even a single weight change is disruptive for a
network. The weight change has to be flooded in the
network. Every router re-computes the routing tables
with several seconds after it receives the LSA update.

 1 Corresponding author.
Email address: silence_wu@163.com

Obviously, the more weight changes are flooded
simultaneously, the more chaos are introduced in the
network, and more packets are set back and forth
between routers without the same view of network
during the convergence.

Traffic balance of connectionless-oriented IP
network based on link weight configuration is
presented, when traffic engineering is developed
originally. But traditional network management
depends more on operators’ experiences for weight
configuration, so there is not much deep research on
the field. Nevertheless, as recommended by Cisco
[2], link weights are often just set inversely
proportional to the capacities of the links, without
taking any knowledge of the demand into account.
Bernard Fortz et al [3] firstly present the research to
optimize the weight setting based on the projected
demands from AT&T WorldNet backbone. It shows
that optimizing the weight settings for a given set of
demands is NP-hard, so it resorted to a local search
heuristic. The weight setting obtained from the
algorithm could support a 50%-110% increase in the
demands compared to the suggestion of Cisco.
Bernard Fortz et al also use the local search heuristic
for weight optimization in a changing world [4]. Its
goal is also to minimize the maximal link utilization

International Journal of Intelligent Engineering and Systems 2(2008)40-47 40

or minimize the sum of weighted link utilization
through improving an input weight setting w0 with
as few weight changes as possible. Firstly, about
1000 single weight changes to w0 are considered,
corresponding to about five weight changes for each
arc in our largest networks. As in [3], the number of
weight changes is limited considered by applying
random sampling to the neighborhood structure, as
exploring the full neighborhood is too time
consuming. Instead of selecting only the best weight
change, 100 best weight changes are kept in a family
F of “best weight settings.” The process is iterated
with F instead of w0. It considers 1000 single weight
changes for each weight setting in F and a new F is
selected containing the 100 best of the old weight
settings in F and the about 100000 new weight
settings considered. After i iterations, including the
start from w0, the family consists of weight settings
with up to i weight changes from w0. The size of F
corresponds to the breadth of the search. The
simulation results indicate that for the largest
networks considered, 10 iterations took about 1 1/2
hours on a single processor of a 194 MHz CPU SGI
Challenge XL. The computation is too complex.
Bernard and A. Nucc [5,6] then consider the
possible link failures before original weight
configuration. The worse case of link failure or the
average effects of all possible link failures are
considered to make the link weight configuration
robust. The pre-configuration mechanism avoids the
LSA and routing table update, but it is not very
optimal for it can’t cover all the failure scenarios
and the computation is consuming. Alan Gous [7]
describes the framework for automated optimization
of routing metrics. It is indicated that the link
weights should be tuned in a certain order to
decrease the instability time of the network. But the
tuning order is not discussed further.

Our work is motivated by traffic balance problem
using few link changes after long-lived link failures.
Which link weight should be changed and how to
configure it are two major problems we should solve.
One of the methods is to increase the weight of the
link with maximal utilization, so some flows passing
that link can be switched to other links. The
operators can increase the weight of that link little
by little until the traffic in the network is roughly
balanced, but frequent tune is too consuming and we
try to compute the increase of link weight only one
time. In this paper, we present an algorithm named
flow enumeration to solve that problem. In the new
method, the weight increase of the link with
maximal utilization is computed step by step, so that
the flows are removed from the link with maximal

utilization to other links one by one until the
maximal link utilization no longer decreases. The
flow enumeration algorithm can compute the weight
increase very fast. The simulations reflect that the
algorithm is much more efficiency than local search
algorithm. It can also be used for tuning the weight
configuration if traffic model changes greatly.

2. Problem Formulation

Above all, we define the following notations:
wl: Weight of lth link
Δ wl: Weight increase of lth link
Cij: Capacity of link i→j
dk: Traffic demand of kth flow
sk: Source of kth flow
tk: Destination of kth flow

k
ijX : Scaling of kth flow passing through the link

i→j
alk : Scaling of kth flow passing through the lth link
E: Set of all the links
V: Set of all the nodes
K: Set of all the flows
The packets with the same input and output in the

area belong to the same flow, i.e. flow is defined
according to the source and destination of the
packets.

If some links fail, the traffic will be redistributed.
We are interested in increasing the weight of lth link
with maximal utilization after failures. If the weight
of that link increases, the traffic on the link will be
moved to other links, and the maximal utilization
will be decreased. So we want to increase the link
weight by lwΔ , so that the maximal link utilization
will be minimized. The problem can be depicted in
(1).

(1)

l is the sequence of the link with maximal

utilization after failures. α is the maximal link
utilization and the goal is to minimize α . k

ijX
could not be represented in analytic expression
directly, so classical optimization method can not be
used to solve the problem. The direct solution is to
search for lwΔ from 1 with increase step of 1. But
it is too complex, because every time lwΔ is
changed, |V| shortest path tree should be computed.
The direct solution is too consuming.

⎪
⎩

⎪
⎨

⎧

>Δ
∑ ∈∀≤Δ
∈

0
),()(

min

l

Kk
ijkl

k
ij

w
EjiCdwX α

α

International Journal of Intelligent Engineering and Systems 2(2008)40-47 41

3. Problem Solution

In fact, the main idea of flow enumeration
algorithm is very simple. If some links fail, some
links, for example lth link may become hot spot. If
the weight of lth link is increased with lwΔ , some
flows on lth link are switched to some other links.
From another viewpoint, if we want to transfer the
kth flows on lth link to other links, the weight of the
link needs some increase k

lwΔ , which is named
least weight increase for kth flow, so that the flows
won’t pass lth link again. For every flow passing the
lth link after failures, the least weight increase is
computed, and we can obtain the weight increase set

},{ ||1 K
ll wwF ΔΔ= L . So the solution is restricted in

set F. If the weight increase in F is searched and
sorted. The optimal solution can be obtained. We
will try to depict the flow enumeration algorithm in
detail.

Step1. New routing matrix computation.
If some link fail, some flows in the network must

be affected and the routing paths are changed, i.e.
the routing matrix A=(alk) is changed. The row
number represents the link sequence and the column
number represents the flow sequence. We must
recomputed new routing matrix A’ to obtain the
possible hot spot after failure. If shortest path tree is
computed with every Vv ∈ as root, the complexity
is |)|log|(| 2 VVO . In order to decrease the
computation time, incremental SPT is used for new
routing matrix computation based on original
routing matrix [8]. The idea of incremental SPT
computation is to resort the nodes below the failure
links according to Dijkstra algorithm. The
complexity depends on the number of affected
nodes.

Step2. New link overload computation.
From the original routing matrix A, the set of

flows Φ originally passing failure link is easy to
be obtained. For every flow in A, Φ∈τ , the traffic
of τ is subtracted from the load of the links
contained in the original shortest path of τ and
added into the load of the links contained in the new
shortest path of τ . Hence we can get the new link
loads and the link with maximal utilization ul. If ul >
uth, it reflects that the weight should be changed. uth
is the threshold and should be set according to the
network state and topology. l is the sequence of the
link with maximal utilization.

Step3. Flow enumeration.
For the lth row in A’, the non-zero element

corresponds to the flows passing the lth link. The set
of the flows passing the lth link can be represented as
F={f1,f2,…f|F|} ， the length of the shortest path

corresponding to every flow is Fffw mm ∈∀)(.
Step4. Shortest path computation without lth link.
We exclude the lth link from the topology, and

compute the shortest path corresponding to every
flow in the set F again. For every flow, the length of
shortest path without lth link can be represented as

Fffw mm ∈∀)(' . The incremental SPT algorithm
can also be used here.

Step5. Least weight changes computation.
Fffwfwfw mmmm ∈∀+−=Δ 1)()()(' (2)

The weight of lth link must be increased with
)(mfwΔ at least to ensure that fm won’t pass lth link.

The elements in the set of weight changes are
resorted, hence a sequence of weight changes

)()()}({ '

1
''''''

+Δ≤ΔΔ=Δ iii fwfwfw and corresponding
flow sequence F’ are obtained. Every time the
weight of lth link is increased with)(''

ifwΔ , some
flow will be removed from lth link.

Step6. Computation of maximal link utilization
for all possible weight changes.

For i=1 to |F|, the new weight)('''

ill fwww Δ+=
and the new routing for the flow '

if are computed.
Hence maximal link utilization iu max for all
possible weight changes can be obtained.

Step7. Computation of minimization of maximal
link utilization.

In the flow enumeration algorithm, the weight of
the link with maximal link utilization after failures is
increased to alleviate hot spot or congestion. The
flows passing the link are enumerated and removed
from the link and rerouted without the link one by
one, and the corresponding maximal link utilization
is computed step by step. The minimization of
maximal utilization is selected. The algorithm
reduces the search ranges of weight increase, so it is
much efficiency.

4. Simulations

4.1 Methodology

4.1.1 Simulation topology

The Transit-stub topology generation tool [9] is
used to generate random or transit-stub topology
with 50, 100, 150 and 200 nodes respectively. The
node degree is distributed in the interval [3.92 5.78]
as depicted in Figure 1. The original link weights are
distributed in the interval [1000 3000] uniformly.
4.1.2 Simulation traffic matrix

The gravity model [10] is always used for traffic
matrix simulation. The gravity model can be
represented as Tij ∝ Ti* • T*j, where Tij is the traffic

International Journal of Intelligent Engineering and Systems 2(2008)40-47 42

from i to j, Ti* and T*j denote the total traffic entering
the network at i and exiting at j. For each node x ，

we pick two random numbers Ix，Ox∈[0,1], which
represents the traffic scaling entering and exiting the
network at x. Another parameter T denotes the
throughput of the network, and the traffic entering at
i and exiting at j can be represented as Tij=T• Ix • Ox.
Similar methodology is also used in reference [1][4].
It is supposed that all the link bandwidth in the

network is 10G. The table below represents the value
of T(Mb) and corresponding maximal link
utilization.

The value of T in transit-stub topology is much
smaller than random topology. Because the
transit-stub is a kind of hierachical topology, the
links between different layers easily become the
bottlenecks. The threshold of link weight tuning is
uth=0.8.

4.2 Simulation results and analysis

4.2.1 Single link weight change

Figure 2 denotes the comparison of maximal
utilization after weight changes according to flow
enumeration algorithm and local search algorithm
respectively. The neighborhood scaling b is set 0.5,
1, 1.5, 2 respectively in local search algorithm. The
searching range is the original weight scaled by b.
M=1, i.e. the weight of at most one link is changed.
Every simulation is repeated five times and average
is considered as the result for a single link failure,
two link failures and single node failure respectively.
The failure elements are selected randomly, but the
same elements are selected in every group
simulation. Several conclusions can be obtained
from Figure 2.

(1) The bigger the neighborhood scaling b of local
search algorithm is, the more optimal the result is,
because the searching range is extended.

(2) For (b)ts50 and (c)ts100，the hot spot can’t be

avoided no matter through flow enumeration
algorithm or local search algorithm. Because the hop
spot is on the ‘key’ link, i.e. the flows on the link
won’t be switched no matter how the weight is
changed. The cases occur in transit-stub topology
more often than in random topology, because the
transit-stub is hierarchy topology and the links
between different layers are easy to become the
bottleneck.

(3) For (a)r150, (a)ts150, (a)ts200, (b)r150,
(b)ts150, (b)r200，the results of flow enumeration
algorithm are much better than local search
algorithm. Because the weight must be changed so
much that the increase exceeds 2wi. So the increase
exceeds the searching range of local search
algorithm.

(4) For（c）r50，the local search algorithm is better
than flow enumeration algorithm. The essence of the
flow enumeration algorithm is to remove the flows
from the link with maximal utilization in some order.
So before a flow is switched, some other flows may
have been switched before. It is not a good idea if

4.36 5.78 4.2 4.11 3.92 4.44 4.067 4.01

0

20

40

60

80

100

120

140

160

r50 r100 r150 r200 ts50 ts100 ts150 ts200
topology type

nu
m

be
r o

f n
od

es

node degree<=5

node degree<=10

node degree<=15

average node degree

Figure 1. Node degree distribution of simulation topology

Table 1. Value of T in the simulation
Topology type r50 r100 r150 r200 ts50 ts100 ts150 ts200

T(Mb) 300 80 120 30 40 10 30 5
Maximal utilization(%) 86.6 71.0 69.7 76.8 76.9 57.7 75.3 76.8

International Journal of Intelligent Engineering and Systems 2(2008)40-47 43

the flows are switched to other links with very large
utilization. But local search algorithm changes the

weights randomly, so the flows maybe switched to
some links with low utilization.

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 . 4

1 . 6

1 . 8

r 5 0 t s 5 0 r 1 0 0 t s 1 0 0 r 1 5 0 t s 1 5 0 r 2 0 0 t s 2 0 0
t o p o lo g y t y p e

m
ax

im
al

 li
nk

 u
til

iz
at

io
n

b e f o r e f a i l u r e a f t e r f a i l u r e

f l o w e n u m e r a t i o n l o c a l s e a r c h (b = 0 . 5)

l o c a l s e a r c h (b = 1) l o c a l s e a r c h (b = 1 . 5)

l o c a l s e a r c h (b = 2)

0

0 . 5

1

1 . 5

2

2 . 5

r 5 0 t s 5 0 r 1 0 0 t s 1 0 0 r 1 5 0 t s 1 5 0 r 2 0 0 t s 2 0 0
t o p o lo g y t y p e

m
ax

im
al

 li
nk

 u
til

iz
at

io
n

b e f o r e f a i l u r e a f t e r f a i l u r e f l o w e n u m e r a t i o n

l o c a l s e a r c h (b = 0 . 5) l o c a l s e a r c h (b = 1) l o c a l s e a r c h (b = 1 . 5)

l o c a l s e a r c h (b = 2)

Figure 2. Maximal link utilization through single weight change after failures

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

r 5 0 t s 5 0 r 1 0 0 t s 1 0 0 r 1 5 0 t s 1 5 0 r 2 0 0 t s 2 0 0
t o p o lo g y t y p e

m
ax

im
al

 li
nk

 u
til

iz
at

io
n

b e f o r e f a i l u r e a f t e r f a i l u r e

f l o w e n u m e r a t i o n l o c a l s e a r c h (b = 0 . 5)

l o c a l s e a r c h (b = 1) l o c a l s e a r c h (b = 1 . 5)

l o c a l s e a r c h (b = 2)

(a) Maximal link utilization through weight changes after single link failure

(b) Maximal link utilization through weight changes after two link failures

(c) Maximal link utilization through weight changes after sin link failures

International Journal of Intelligent Engineering and Systems 2(2008)40-47 44

(5) In other cases, the effect of flow enumeration
algorithm is similar to local search algorithm, but
the flow enumeration algorithm is much more
efficiency. The table below reflects the computation
time of two algorithms. The computation time is the
average of five same simulations and the process is
Pentium(R) 4 CPU 2.8GHz. FE, LS, SLF, MLF and
SNF respectively denote flow enumeration
algorithm, local search algorithm, single link failure,
multiple link failures and single node failure.

Table 2 indicates that flow enumeration algorithm
needs much less time than local search algorithm.
Because |V| shortest path trees construction are
needed in local search algorithm every time the link
changes are searched. On the contrary, flow
enumeration algorithm computes the weight increase
from the routing changes of flows.

4.2.2 Multiple link weight changes

Figure 2 indicates that the single link weight
change may still make the maximal utilization
smaller than the threshold. So we can consider
changing weights of multiple links. For local search
algorithm, M iterations are needed for getting
optimization solution. For flow enumeration
algorithm, the weights of M links may be tuned.
Figure 3 denotes the comparison of maximal
utilization after multiple weight changes according
to flow enumeration algorithm and local search
algorithm respectively. The neighborhood scaling b
is set 2 in local search algorithm. M=5, i.e. at most
five link weights are changed. Every simulation is
repeated five times and average is considered as the
result respectively. The failure elements are selected
randomly.

Table 2. Computation time of flow enumeration and local search algorithms for single weight change (seconds)
 r50 ts50 r100 ts100 r150 ts150 r200 ts200
FE SLF 0.1 0.2 0.5 1.5 1.8 12 30 66
LS b=0.5 SLF 23 25 123 164 384 354 1164 1090
LS b=1 SLF 24 25 124 164 386 356 1163 1091
LS b=1.5 SLF 24 25 124 164 385 356 1163 1090
LS b=2 SLF 24 25 124 164 386 356 1163 1090
FE MLF 0.1 0.2 0.5 1.6 1.8 12 33 86
LS b=0.5 MLF 22.9 25 134 165 384 358 1163 1085
LS b=1 MLF 23.0 24 134 171 386 356 1164. 1083
LS b=1.5 MLF 23 24 133 169 387 357 1164 1084
LS b=2 MLF 23 24 129 169 385 356 1165 1084
FE SNF 0.1 0.2 0.4 1.6 1.7 7.7 38 64
LS b=0.5 SNF 23 24 120 165 386 312 1161 1169
LS b=1 SNF 23 24 120 164 383 315 1162 1169
LS b=1.5 SNF 23 24 120 167 386 314 1162 1170
LS b=2 SNF 23 24 120 167 383 314 1160 1170

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 . 4

1 . 6

1 . 8

2

r5
0

ts
50

r1
00

ts
10
0

r1
50

ts
15
0

r2
00

ts
20
0

t o p o lg y ty p e

m
ax

im
al

 li
nk

 u
til

iza
tio

n

f l o w e n u m e r a t i o n (s i n g l e
l i n k f a i l u r e)

l o c a l s e a r c h (s i n g l e

l i n k f a i l u r e)

f l o w e n u m e r a t i o n (t w o
l i n k f a i l u r e s)

l o c a l s e a r c h (t w o l i n k

f a i l u r e s)

f l o w e n u m e r a t i o n (s i n g l e
n o d e f a i l u r e)

l o c a l s e a r c h (s i n g l e

n o d e f a i l u r e)

Figure 3. Maximal link utilization through multiple weight changes after failures

International Journal of Intelligent Engineering and Systems 2(2008)40-47 45

Figure 3 indicates that the effect of local search
algorithm is a little better than flow enumeration
algorithm in some cases. It attributes to two reasons.

(1) The flow enumeration algorithm stops if the
maximal utilization is smaller than the threshold.
But local search algorithm won’t stop until the M
iterations are finished.

(2) If the link with maximal utilization of this
iterative step is same as last step, the flow
enumeration algorithm can’t increase the weight of
the link to decrease the maximal utilization any
more. But local search algorithm can decrease the
maximum further through changing the weights of
other links.

But the computation time of local search
algorithm increases 100 times while the computation
time of flow enumeration algorithm is within 100
seconds as depicted in the Table 3.

5 Conclusion

If the network capacity is not redundant enough,
network failures always lead to some links
overloaded. The explicit routing can be used in
MPLS network to avoid that problem, but pure IP
network only depends on network management to
make the traffic balance. Changing link weight is
one of those effective mechanisms. But frequent
weight changes may cause instability of network, so
link weights should be changed as few as possible.
Though local search algorithm can change the link
weight as few as possible, it is too complex. The
flow enumeration algorithm is presented in the paper
for weight changes. Its main idea is to increase the
weight of the lth link with maximal utilization after
failures, so that for the flows on the lth link originally,
the shortest paths won’t include the lth link any more
after weight changes. The flow enumeration
algorithm shrinks the solution searching range of
local search algorithm, so it is more efficiency. The
simulations validate that the time of single weight
change computation is always within 100 seconds,
but the complex of local search algorithm increases
fast with the number of links whose weights are
changed increases.

Flow enumeration algorithm is very efficiency,
but if the network topology is not connected well,
only weight changes can’t solve the problem. So for
connectionless-oriented, both link weight
configuration and topology update are important for
network management operators to keep the traffic
balance. The work related to the reliable network
topology will be studied further.

Acknowledgments

This work was supported by the National Nature
Science Foundation of China under Grant No.
60502028.

References

[1] Sundar Iyer, Supratik Bhattacharyya, Nina Taft,
Christophe Diot: “An approach to alleviate link
overload as observed on an IP backbone”, In: Proc.
of INFOCOM2003, Vol. 1, 30 March-3 April 2003,
pp: 406 - 416

[2] Cisco. (1997) Configuring OSPF. [Online]. http://ww-
w.cisco.com/uni-verc/cc/td/doc/product/software/ios1
13ed/113ed_cr/np1_c/1cospf.htm.

[3] Bernard Fortz, Mikkel Thorup: “Internet Traffic
Engineering by Optimizing OSPF Weights”, In: Proc.
of INFOCOM 2000, 26-30 March 2000, vol.2, pp.
519 – 528

[4] Bernard Fortz, Mikkel Thorup: “Optimizing
OSPF/IS-IS Weights in a Changing World”, IEEE
Journal on selected areas in communications, Vol.
20, No. 4, May 2002

[5] Bernard Fortz, Mikkel Thorup: “Robust optimization
of OSPF IS-IS weights”, In: Proc. of INOC 2003, pp:
225-230, October 2003.

[6] A. Nucci, B. Schroeder, S. Bhattacharyya, N. Taft, C.
Diot: “IGP Link Weight Assignment for Transient
Link Failures”, SPRINT ATL Technical Report
TR02-ATL-071000.http://cambridgeweb.cambridge.in
tel-research.net/people/pub/cdiot/TR02-ATL-071000.
pdf

[7] Alan Gous, Arash Afrakhteh: “Traffic Engineering
through automated optimization of routing metrics”,

Table3 Computation time of flow enumeration and local search algorithms for multiple weight changes (seconds)
 r50 ts50 r100 ts100 r150 ts150 r200 ts200
FE SLF 0.2 0.3 1.3 1.6 1.8 11.5 29.6 65.7
LS SLF 9164 9922 51245 78840 167033 187690 218723 259214
FE MLF 0.3 0.3 0.7 4.6 1.9 12.0 33.3 86.3
LS MLF 9176 9924 50812 78900 168812 193443 227224 269763
FE SNF 0.2 0.3 1.6 1.6 1.7 7.7 37.9 124.3
LS SNF 9595 9655 50985 78913 162945 180745 230803 269047

International Journal of Intelligent Engineering and Systems 2(2008)40-47 46

In: Proc. of Trans-European Research and Education
Networking Association Networking Conference, June
2004

[8] J. M. McQuillan, I. Richer, and E. C. Rosen: “An
overview of the new routing algorithm for the
Arpanet”, In: Proc. of 6th symposium on Data
communications, pp: 63-68, ACM Press, 1979

[9] Calvert K, Doar M, Zegura E.: “Modeling Internet
topoloty”, IEEE Communication Magazine, 1997,
Vol.35, No.6, pp:160-163

[10] Yin Zhang, Matthew Roughan, Nick Duffield, Albert
Greenberg: “Fast Accurate Computation of
Large-Scale IP Traffic Matrices from Link Loads”,
In: Proc .of SIGMETRICS’03, June 10-14, 2003, San
Diego, California, USA

International Journal of Intelligent Engineering and Systems 2(2008)40-47 47

