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Abstract 

 
In this paper, we consider the design of stable linear switched systems for polytopic 

uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop 
switched systems can stabilize unstable open loop systems or stable open loop systems but in 
which there is no solution for a common Lyapunov matrix. For continuous time switched 
linear systems, we show that if there exists solution in an associated Riccati equation for the 
closed loop systems sharing one common Lyapunov matrix, the switched linear systems are 
stable. For the discrete time switched systems, we derive an LMI to calculate a common 
Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop 
linear quadratic state feedback regulators guarantee the global asymptotical stability for any 
switched linear systems with any switching signal sequence. 

 
Keywords: Continuous time linear switched system, discrete time switched linear systems, linear quadratic 

state feedback regulator, common Lyapunov matrix. 
 
1. Introduction 

A switched linear systems is hybrid dynamical system which consists of several 
linear subsystems and a switching rule that decides which of switching rule is active at 
each moment. In the last two decades, there has been increasing interest in stability 
analysis and control design for switched systems in [1], [2], [3], [4], [5], [6], [7], [8], 
[9] and [12] The motivation for studying switched systems is from the fact that many 
practical systems are inherently multimodal. Many researchers have studied the use of 
multiple models in adaptive control of both linear and nonlinear in which controllers 
are switched depending on which model provides the least identification errors. 
Stability results for such continuous time, switching control systems have been shown 
for the linear [10] and for a certain nonlinear case [11]. The linear multiple model 
switching is similar to the control of Markovian jump linear systems or the system has 
models whose parameters change with respect to an underlying Markov chain. 

This paper assumes that the switching signal can be designed by control engineers. 
Hence, we investigate the design of stable linear switched systems for polytopic 
uncertainties via their closed loop linear quadratic state feedback regulators. The closed 
loop linear switched systems can stabilize unstable systems or stable systems but there 
is no solution for a direct common Lyapunov matrix. It is clearly that the quadratic 
stability requires for uncertain systems a quadratic Lyapunov function which guarantees 
asymptotical stability for all uncertainties. 
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The outline of this paper is as follows. In section 2, we consider the linear quadratic 
state feedback design for continuous time case. Section 3 presents the linear quadratic 
state feedback design for discrete time case. Three examples are provided in section 2 
and section 3 to illustrate the main ideas in each section. Finally in section 4, 
conclusions are drawn and some directions of future research are discussed. 
 
2. Linear Quadratic State Feedback Design for Continuous-Time Case  

In this section, we consider the continuous-time switched linear system 

( , )( ) ( ) x tx t A x t  (2.1)

where ( ) nx t   is the state vector, ( , )x t  is a switching rule defined by 

( , ) : {1,2,..., } n
ix t N   , and   denotes nonnegative real numbers. Therefore, 

the switched system is composed of continuous time combination of 
:   ( ) ( )i iCS x t A x t  for {1,2,..., } ii N  (2.2)

Here, we assume that iCS  are uncertain polytopic type described as: 

1


jN

i ij j
j

A A  for {1,2,..., } jj N  (2.3)

where jN  are the number of the extreme points of the polytope (constant matrices) 

1 2{ , ,..., }
jj NA A A A  and the weighting factors 1 2{ , ,..., }

ji i i iN     belongs to 

1

: 1



jN

i ij
j

  , 0ij   (2.4)

As indicated in [1], even if each of matrices jA  and all switched systems iCS  are 

globally stable with their eigenvalues being absolutely negative, there can exist a switching 
sequence that destabilizes the close-loop dynamics. For all given stable matrices jA , the 

stability of the switched systems iCS  is guaranteed if we can find out a common Lyapunove 
matrix P . 

Lemma 2.1: The switched linear systems iCS  for stable polytopic uncertainties jA  can 

guarantee the global asymptotical stability for any switched linear systems with any switching 
signal sequence if there exists a common positive symmetric definite matrix ' 0 P P  and 

positive symmetric definite matrices ' 0 j jQ Q  such that '  j j jA P P A Q , j . 

Proof: Since we assume that all matrices jA  are stable and the state update equations for 

the linear switched systems (2.3) are 
1

( )


  
jN

i ij j
j

x A x A x  . For a positive Lyapunov function 

'( ) ( ) ( )iV x x t Px t , we have always a negative time derivative ( ) 0
iV x , and the system is 

stable for any switched systems with any switching signal sequence: 
'

' ' ' '

1 1 1 1

( ) ( ) ( ) 0
   

   
            
   
   

j j j jN N N N

i ij j ij j ij j j ij j
j j j j

V x A x Px x P A x x A P PA x x Q x     (2.5)
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The existence of a direct common Lyapunov matrix '  j j jA P PA Q  among stable 

matrices jA  and positive symmetric definite matrices ' 0 j jQ Q  can be searched with 

quadratic stability of polytopic systems or directly solved with LMIs. 
Example 2.1: Consider the switched linear systems iCS  composed of four extreme points  

11

0.2 0.5

0.3 0.1

  
  
 

A , 12

1 1

1 1

  
   

A , 13

2 1

1 2

 
   

A , and 14

2 1

1 2

  
   

A  (2.6)

All above matrices are stable (their eigenvaluse ip of those matrices are absolutely 
negative): 

11 0.05 0.3571  p i , 12 1 1  p i , 13

1

3

 
   

p , and 14 2 1  p i  (2.7)

Searching with quadratic stability of polytopic systems, we find out a common Lyapunov 

matrix for all four matrices 1

0.8928 0.4107

0.4107 1.5454

 
  
 

aP . 

Solving directly with LMIs, we find out another similar common Lyapunov matrix  

1

0.71311 0.2920

0.2920 1.0851

 
  
 

bP . Here, we can conclude that the switched linear systems iCS  are 

stable with any switched linear systems and with any switching signal sequence. 
It is difficult to find out a direct common Lyapunov matrix P  in (2.5) for all extreme 

points of the polytope jA . In this example, if we only change 14A  in equation (2.6) by a new a 

stable matrix 14

0.25 0.5

1 0.1

 
   

NewA  with small eigenvalues 14 0.075 0.685  Newp i , there is no 

solution for a common Lyapunov matrix for  four stable matrices.  
The assumption that all matrices jA  are stable seems usually unrealistic. Thus, how can 

we deal with unstable systems or stable systems but in which there is no solution for a 
common Lyapunov matrix? 

For stabilizing all possible switched linear systems with any switching sequence, we 
investigate the design of a close loop quadratic state feedback regulator, one of the most 
common useful algorithms in control theory. The algorithm allows to change from unstable 
open loop dynamics ( ) ( )x t Ax t  into some stable closed loop dynamics 

( )   Cx A BK x A x . 
In the design of a linear quadratic state feedback regulator for a continuous time system, 

we seek to find out the stable linear state feedback gain K  in  u Kx  for the state space 
model  x Ax Bu , where B  is the controller input (matrix). The linear quadratic regulator 
returns the solution ' 0 P P  of the associated Riccati equation: 

' 1 '( ) ( ) 0   A P PA PB R B P Q  (2.8)

where ' 0 R R  and ' 0 Q Q  are weighted matrices for input and state. The regulator 

minimizes the quadratic cost function ' '

0

( ) ( )


 J u x Qx u Ru dt , then the optimal linear 

feedback gain K : 
1 '( )K R B P  (2.9)
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By fixing R  and selecting upper hand a common Lyapunov matrix P , we can design 
new stable closed loop matrices ( ) C

j j j jA A B K  which stabilize all switched systems iCS  

applied to closed loop matrices C
jA  with any switching signal sequence. 

For simplicity, we set R I , and the closed-loop common Lyapunov P I , the 
equations (2.8) and (2.9) become: 

' ' 0   j j j j jA A B B Q  (2.10)

and 
'j jK B  (2.11)

Then, the close loop matrices are 
' C

j j j jA A B B  (2.12)

Lemma 2.2: The switched linear systems iCS  for stable closed loop matrices C
jA  can 

guarantee the global asymptotical stability for any switched linear systems with any switching 
signal sequence if there exists solution for the control matrices 0jB  and the positive 

symmetric matrices ' 0 j jQ Q  in the associated Riccati equation (2.10). 

Proof: As indicated in Lemma 2.1, the switched systems iCS  for stable closed loop 

matrices C
jA  can guarantee the global asymptotical stability if there exists a positive 

symmetric definite matrix (common Lyapunov matrix) ' 0 P P  and positive symmetric 

definite matrices ' 0 j jQ Q  such that '  C C
j j jA P PA Q , j . Since we set the common 

Lyapunov matrix P I  for all stable closed loop matrices C
jA ,  the negative time derivative 

( ) 0
iV x  then becomes  ' 0 C C

j jA A . From (2.12), we have: 
' ' ' ' ' '( ) 2       C C

j j j j j j j j j j j jA A A B B A B B A A B B  (2.13)

Replace ' '  j j j j jA A B B Q  from equation (2.10) to equation (2.13) , we have: 
' ' 0    C C

j j j j jA A Q B B  (2.14)

So that for any positive Lyapunov function '( ) ( ) ( )iV x x t Px t  of the stable closed loop 

matrices C
jA , we have always a negative time derivative ( ) 0

iV x  in (2.14), and the system is 

stable with any switched linear systems and with any switching signal sequence iCS . 

Example 2.2: This example is taken in [2]. Consider a switched linear system iCS  
composed of four unstable matrices: 

21

1 2

2 1

 
   

A , 22

1 1

1 1

 
   

A , 23

1 2

2 1

  
    

A , and 24

1 1

1 1

  
    

A  (2.15)

Solving the Reccati equations in (2.8) with ' R R I , and a common Lyapunov matrix 
' P P I , we find out the solution for the corresponding control matrices 0jB  in (2.10) 

as: 

21

0.9557 0.4551

0.4551 0.9557

  
    

B , 22

0.4804 0.0204

0.0204 0.4804

 
   

B ,  

23

0.9557 0.4551

0.4551 0.9557

 
   

B , and 24

0.4804 0.0204

0.0204 0.4804

  
    

B  

(2.14)
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and the corresponding positive symmetric matrices ' 0 j jQ Q , 

21

3.1349 3.1232

3.1232 3.1349

 
   

Q , 22

2.2354 2.0231

2.0231 2.2354

 
   

Q ,  

23

0.9557 0.4551

0.4551 0.9557

  
    

Q , and 24

3.1349 2.0231

2.0231 2.2354

 
  
 

Q  

(2.14)

And then, the lemma 2.2 is hold, the switched linear systems iCS  applied to stable 

closed loop matrices C
jA  are stable with any switched linear systems and with any switching 

signal sequence. 
For stable open loop matrices in which we cannot find out a common Lyapunov matrix 

as shown in example 2.1 with 11 12 13 14{ , , , } New
jA A A A A , we can also re-design new stable 

closed loop matrices that assure stability for any switched linear systems with any switching 
signal sequence of iCS :  

11

0.4583 0.4859

0.3141 0.2007

  
   

CA , 12

1.2513 1.000

1.000 1.2513

  
   

CA ,  

13

2.2509 0.9996

0.9996 2.2509

 
   

CA , 14

0.5503 0.5912

0.9088 0.3208

  
    

CA  

(2.15)

 
3. Linear Quadratic State Feedback Design for Discrete-Time Case 

In this section, we consider the discrete time switched linear systems 

( , )( 1) ( )  x kx k A x k  (3.1)

where ( ) nx k   is the state vector, ( , )x k  is a switching rule defined by 

( , ) : {1,2,..., } n
ix k N   , and   denotes nonnegative integers. Therefore, the 

switched system is composed of discrete time combination of: 
:   ( 1) ( ) i iCS x k A x k  for {1,2,..., } ii N  (3.2)

Similarly, we assume that iCS  are uncertain polytopic type described as 

1


jN

i ij j
j

A A  for {1,2,..., } jj N  (3.3)

where jN  are the number of the extreme points of the polytope (constant matrices) 

1 2{ , ,..., }
jj NA A A A  and the weighting factors 1 2{ , ,..., }

ji i i iN     belongs to 

1

: 1



jN

i ij
j

  , 0ij   (3.4)

As indicated in [1], even if each of matrices jA  and all switched systems iCS  are 

globally stable with their eigenvalues 0 1 iip , there can exist a switching sequence that 

destabilizes the close-loop dynamics. For all given stable matrices jA , the stability of the 

switched systems iCS  is guaranteed if we can find out a common Lyapunove matrix P . 

Lemma 3.1: The switched linear systems iCS  for stable polytopic uncertainties jA  can 

guarantee the global asymptotical stability for any switched linear systems with any switching 
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signal sequence if there exists a common positive symmetric definite matrix ' 0 P P  and a 

scalar 0  such that 

'

0 0,   

0

 
    
  

j

j

P PA

A P P j

I



 
. 

Proof: Since we assume that all matrices jA  are stable and the state update equations for 

the linear switched systems (3.3) are 
1

( 1) ( ) ( ) ( )


   
jN

i ij j
j

x k A x k A x k  . For the stable 

discrete time systems, we always have the Lyapunov function decreasing '( ) ( ) ( )iV k x k Px k  

and ( 1) ( ) 0  i iV k V k , and the system is stable for any switched systems with any 

switching signal sequence since they share a common Lyapunov matrix ' 0 P P : 
 

'

'

1 1

( 1) ( ) 0 0
 

   
             

   
 

j jN N

i i ij j ij j j j
j j

V k V k A x P A x xPx A PA P   (3.5)

By adding a scalar 0  in equation (3.5), we have ' 0  i iP A PA I , or 
' 1 1( ) ( ) ( ) ( ) 0   i iP A P P PA I   . And using Schur complement, this equation is equivalent 

to the LMI in lemma 3.1. 
Hence, the common Lyapunov matrix in lemma 3.1 is the solution to the following LMI: 

0, 0
min
 P 

 , subject to 

'

0 0,   

0

 
    
  

j

j

P PA

A P P j

I



 
. 

The assumption that all matrices jA  are stable (their eigenvalues 0 1 iip ) seems 

usually unrealistic. How can we deal with unstable discrete systems or stable discrete systems 
but in which there is not a common Lyapunov matrix?. 

For stabilizing all switched linear systems with any switching signal sequence, we 
investigate the design of a closed loop quadratic feedback regulator for these unstable 
matrices. The regulator computes the optimal input that minimizes the objective function in 

quadratic form at each sampling time  
0

( ) ( ) ( ) ( ) ( )




     
i

J k x k i Qx k i u k i Ru k i  by a 

linear feedback control law ( 1) ( ) u k Ku k  for the closed loop stable state feedback 

( 1) ( ) ( )  j jx k A x k B u k , in which Q  and R  are symmetric positive weighting matrices. 

The regulator allows to change from unstable open loop update ( 1) ( )  jx k A x k  into some 

stable closed loop update ( 1) ( ) ( ) ( )    C
j j j jx k A B K x k A x k . 

Lemma 3.2: The switched linear systems iCS  for stable closed loop matrices C
jA  can 

guarantee the global asymptotical stability for any switched linear systems with any switching 
signal sequence if there exists solution for a common positive symmetric Lyapunov matrix 
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' 1  LP P P , positive symmetric matrices ' 0 Q Q , ' 0 R R , and matrice 1 0 j jK Y  

and 0jB  satisfying an LMI 

' ' 1/ 2 '

1/ 2

( ) ( )

0 0
0

( ) 0 0

( ) 0 0

  
    
 
  

j j j j j

j L

j j j L

j

R Y A Y B Y Q

Y P

A Y B P

Y Q I

, j . 

Proof: Suppose there exists a Lyapunov function ( )V x  with (0) 0V  and 
'( ( )) ( ) ( )V x k x k Px k  with Lyapunov matrix ' 0 P P . The system will be stable if the 

Lyapunov function is decreasing, that is, ( ( 1)) ( ( )) 0  V x k V x k . Suppose 
'( 1) ( ) ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )        i iV k V k x k Px k x k Px k x k Qx k u k Ru k , k  (3.6)

Then, we have ' '( ) ( ) 0     j j j j j j j jP A B K P A B K Q K RK . Set 1LP P  and 
1j jK Y , the above equation can be  transformed as 

' 1 ' 1 1/ 2 ' 1 1/ 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0         j L j j j j L j j j j jR Y P Y A Y B P A Y B Y Q I Y Q  (3.7)

Using the Schur complement, equation 3.7 is equivalent to the LMI in lemma 3.2. The 
system becomes stable for any switched linear systems iCS  and with any switching signal 

sequence since all stable closed loop state feedback ( ) C
j j j jA A B K  share one common 

Lyapunov matrix, the solution of the LMI in lemma 3.2. 
Example 3.2: This example is taken in [12]. Consider the following set of uncertain 

discrete models with model 1: 
0.90 0.80 0.20

( 1) ( ) ( )
0.30 0.80 0.20

   
     

   
x k x k u k  and model 2: 

0.85 0.75 0.10
( 1) ( ) ( )

0.35 0.75 0.10

   
     

   
x k x k u k . Applied the linear quadratic feedback as 

described in [12] with the weighted matrices as stated in lemma 3.2: 
1 0

0 1

 
  
 

Q  and  1R  . 

Solved directly with LMIs, we can find out a common Lyapunov mantrix for this set: 
3.3611 0.2859

0
0.2859 1.2163

 
  
 

P . Then this closed loop hybrid system is global asymptotical stable 

for any switched linear systems with any switching signal sequence. 
 
4. Conclusions 

In this paper, we have considered the replacement of unstable linear switched systems 
for polytopic uncertainties via their closed loop linear quadratic state feedback regulator. For 
both continuous time and discrete time linear switched systems, if there exists solution for the 
closed loop state feedback, the switched linear systems always guarantee the global 
asymptotical stability for any switched linear systems with any switching signal sequence. 

There are several important issues which should be studied in the future work. First, we 
set the closed loop common Lyapunov matrix P I  in equation (2.10) and find solution of 
input matrices jB  for the stable closed loop matrices ' C

j j j jA A B B . Then, problems are 

still open for general case to find both variable matrices  P  and jR . For discrete time 

switched linear systems, the stabilizability condition (3.7) is directly derived from the 
Lyapunov function (3.6). We can also solve the solution for the state feedback gain K  and 
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the Lyapunov matrix P  via the associated discrete time Riccati equation using linear 
quadratic regulator design for discrete time systems. Feasible solution of the state feedback 
design with sufficient conditions that guarantees the parameter dependent Lyapunov function 
is also needed further studies. 
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