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ABSTRACT

Minimally invasive surgery often makes use of emtpgs with an angled lens. When using such an
endoscope, the on-screen image tends to rotatéyywittich may confuse the surgeon. A low-impact
way of solving this problem is by using computesion techniques to track the rotation of the inacani
footage and then counterrotating the image. Suchamroach has already been proposed in the
literature, but it has never been examined wheithisr possible to integrate such an algorithm iato
state-of-the-art Digital Operating Room environmeritere minimal latency is required. In this paper,
we compare three different ways of implementingoanterrotation algorithm on the hardware that is
available in the NUCLeUS Digital Operating Room of tompany eSaturnus.
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1. INTRODUCTION

Minimally invasive surgery is a type of surgery wiesmall incisions are made in order to
operate at a remote location in the patient’s bdtigse incisions make room for the required
instruments, as well as an endoscope which actseasurgeon’s eyes during the procedure.
The endoscope is commonly equipped with an angled (typically set at 30 degrees, see
figure 1), in order to enable the surgeon to gbtaader view. Moreover, this also makes it
possible to look behind objects by turning the estdpe, thus revealing perspectives which
would be concealed with a normal endoscope. WHhils éxtra information provides a

significant benefit to the surgeon, the angled lémsalso a source of confusion and

disorientation, since the act of rotating the ewdpe also rotates the on-screen image
(Breedvel, 1997). For certain kinds of procedutkis, confusion can be avoided by placing a
small amount of water into, e.g., the abdominalityan order to provide the surgeon with a
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reference “horizon”. In situations where this ig possible, the surgeon may choose to use an
endoscope that allows its lens to be rotated inodgmtly of the endoscope itself (see figure
1). A downside of this solution, however, is tHa¢ tmovement required to turn only the lens
while keeping the endoscope steady is quite curob@sand often requires both hands of the
operator, while also restricting camera movement.

-« Rotates

Sl

Figure 1. The endoscope lens rotates freely orgdheera attachment

A more promising approach is to solve this probleynpostprocessing the video footage
coming from the endoscope. Such postprocessing roagsist of automatically
counter-rotating the output of the endoscope, odrafving a virtual “horizon” on screen,
which informs the surgeon of the current rotatiéthe image. In both cases, the core problem
is that of determining the current rotation angkenerally speaking, there are two ways of
doing this: either by using some kind of hardwaraviy sensor (Hdller et al., 2009), or by
using the images captured by the endoscope. Whdeuse of a gravity sensor has the
advantage of being drift free, an obvious disadsgatis that it requires a special endoscope
equipped with such a sensor. In addition, gravityser endoscopes do not work if they are
held above the patient, looking down.

By contrast, the image-based approach has the td@arhat counter-rotation can be
implemented entirely in software. Indeed, by tragkihe translation between consecutive
frames of the video feed, the orientation of theéew can be automatically determined. Such
an approach has already been investigated (Mokl.et2009), but—to the best of our
knowledge—it has never been implemented in a systged for live surgery. One of the main
problems that need to be tackled in order to mhlsepossible is that the video feed needs to
be rendered at minimum latency. Indeed, for thedkaye coordination of the surgeon, latency
is a crucial parameter (Rayman et al., 2005). &mestudy found that a latency above 130ms
has detrimental effects on surgeon’s performaneenéu et al., 2013).

The company eSATURNUS has developed a state-ofuthaligital operating room
environment, called NUCLeUY, which operates at extremely low latency: it stmea
1080p60 video with a latency of <16ms, i.e., lé@mntone frame. In this paper, we investigate
how a video-based rotation tracking algorithm canshccessfully integrated in this system.
To do this, we have to tackle the unique challerafe combining high-framerate,
high-resolution images with the requirement of aflbw latency. We investigate the
implementation of the algorithm on embedded hardwas a method for coping with these
challenges.

This research has resulted in the developmentpobtmtype, that can be seen in action at:
http://www.youtube.com/watch?v=2tMkOuOyWcO0. Fig@rshows a screenshot of this video.
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Figure 2. The prototype in action

The remainder of this paper is organized as folldwsection 2, we lay out the algorithm
we used for our implementation, while section 3laxs how the algorithm is implemented
on resource constrained hardware. Finally, se@idiscusses results in terms of performance
and accuracy.

2. ROTATION COMPENSATION

The requirement for ultra-low latency forces usctmsider a relatively simple approach to
computing the rotation of the video. For this regswe avoid feature matching techniques,
such as SIFT (Lowe, 1999) or SURF (Bay et al., 3086d have chosen to use a tracking
algorithm instead.

Figure 3. The tracking approach
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The general idea of such a tracking approachustithted in figure3. The lef-hand side of
this figure shows two consecutive frames of theoiming video. A humber of distincti
points in the image (also called “corners”) ardracted and these are then tracked ac
subsequent frames. From the movement of the cofirersone frame to the next, the rotat
angle between the two frames can be calculateds amhgle can then be used to rotate
frame back to the reference entation. The resulting “straight” frames are shown the
right-hand side of this figur

To implement this approach, we have chosen to ukéTatracker (Lucas and Kanad
1981; Tomasi and Kanade, 199The general structuraf this algorithm is show in figure 4.
We will first clarify how these different parts work together, and wheytare needed, befo
we explain each part in dete

New stream
Redetect
Detect corners e
\ / Calculate
homography
Track corners » (RANSAC) using
consecutive point
clouds
¥
Need Extract angle
redetection? ¥
Kalman + MA

rotaticn angle

Figure 4. Overview of the algorithm

Processing starts when the operator enables th&on compensation. This is done
pressing a button on the endoscope, while holditeyel. At that point, the system takes
most recent frame of the stream and applies theecatetection algorithm. Once the corr
have been extracted, the systern start tracking them through the next frames. Har
over the course of the video, the system may @k tof some of the original corners. Oi
the number of tracked corners drops below a cettai@shol (“need redetection” step
figure 4), the orner detection algorithm is again applied and firecess continue
Meanwhile the corners are used to calculate theoloaphy which is used to calculate
rotation angle. This angle then passes through lmda and moving average filter whi
gives ughe final rotation angl We now discuss each of these components in moad.

2.1 DetectingCorners

To detect corners in the endoscopy images, we asasktorner (Harris and Stephens, 198
which are known to produce good results for videatdge in which there are small chanc
between consecutive frames (Schmid et al., 2008)h&ve also tried Shi and Tomasi's “G¢
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features to track” (Shi and Tomasi, 1994), and fbtivat they produce almost identical results
on typical endoscopy footage (see figure 5). Aggested in the OpenCV manual, we track
only corners that have a “quality level” of at l[e@91. On average, this results in about 170
corners being tracked.

2.2 Tracking

We use a pyramidal implementation of the KLT tracke described in (Bouguet, 2001). The
implementation makes use of a scale space pyrauaiiddn top of the original image. Each
new layer is constructed by downscaling the previlayer by some constant factor. Feature
tracking then commences at the top—i.e., lowestluisn—Ilayer. These rough results are
then gradually refined by descending in the pyramid

2.3 Calculate Transformation

— Harris
60|

— Shi-Thomasi

Angles (°)

é 1‘0 1‘5 2I0
Time (s)
Figure 5. Comparison of the Harris en Shi-Tomasnepndetecton. The predicted angle is plotted ikedat

to the elapsed time in the test video (footage freah endoscopic surgery). The output of both aorne
detectors is almost identical

In this step, two point clouds—one from the pregidftame and one from the current frame—
are compared to each other in order to calculaertmsformation between the two frames.
We calculate the homography between both cloudsguSipenCV's RANSAC (Fischler and
Bolles, 1981) implementation which yields a tramsfation matrix of the form:

hi1 hyz  hys
T = h21 hzz h23
hs1 hsy hss

For laparoscopy video, we can assume that thisfivemation is Euclidean (i.ehg; =
hs;, = 0 andhs; = 1). Therefore, we can extract the rotation angle as:

a = arctanZ( h21' hzz)
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2.4 Interpolation of Estimated Angle

Because our algorithm is run on a resource congtlasystem (see Section 3), the tracker may
not be able to compute a rotation angle for eaaindrin the video, especially when dealing
with 1080p60 video. Therefore, it may be necessardrop a number of frames between
successive estimations of the angle. To make batehe video nevertheless rotates smoothly
on the screen, we use a Kalman filter (see, €1§]),[in combination with a simple moving
average filter, to interpolate between two suceesspdates.

The details are as follows. We use a constant itglonotion model Kalman filter,
assuming that the change in rotation angle is eohsbver time. Therefore, it uses the
following linear model to predict the angteat any given time point t.

[at+1] _ [1 6t] [at]
At+1 0 1iLae

Here,; is the time elapsed between time poingmdt+1 (because the angle computation
might have to skip frame&; may not be constant).

After making the new predictiom.,, the Kalman model is then updated using a weighted
average ofa..; and the new measurement, i.e., the angle thatomagputed by the KLT
tracker (the observation vector contains only tee angle). The weights depend on a process

covariance matrixQ and a measurement covariance matlx We have empirically
determined the following values for these matrices:

Q= [(1)1 737]
k= [0 1

The high value for velocity in the process covac@amatrix indicates that the predicted
velocity is often off by a large margin, when thegeon makes sudden movements.

When frames have to be dropped, the Kalman filtay start to drift away from the real
rotation angle. This can happen in particular wti@are are sudden camera movements that
violate the Kalman filter's assumption of a const@n In such a case, the Kalman filter may
have to perform a large correction when a new afigidly does arrive. This can give a jerky
effect in the video. Therefore, we pass the rasyilingle to a moving average filter which
further smooths out the jerkiness. This filter keémack of the lash samples (in our case,
n=10) and is updated at a constant interval. Our implaiation does this in a separate thread.
The output of the moving average filter is usethasfinal result.

3. IMPLEMENTATION

The general architecture of the NUCLeUS Digital épieg Room is shown in figure 6.
Video is captured by the source module, which tratssa direct, full HD feed to the receiver
module, which decodes this feed and displays itsoreen. There is also a secondary,
lower-resolution SD feed, which can be used foepthurposes, e.g., it can be streamed over
the internet to medical staff to follow the procezlfrom a remote location.
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This architecture provides us with different opsofior implementing the tracking
algorithm:
» REC: The computation of the angle happens entarlthe receiver module.
* R&S: The KLT tracker runs on the source module,levithe Kalman and moving
average filters run on the receiver.
» SRV: The angle computation happens on the sepemaipute server.

HD ,
Source Receiver

= (o)

Figure 6. System architecture

We describe each option in more detail below.

3.1 Using only the Receiver Module (REC)

The receiver module contains a quad core procemsgéra Vivante GC2000 GPU, which
supports the Embedded Profile (EP) of the OpenGindstrd (Maghazeh et al., 2013).
Compared to a traditional GPU, the Vivante GPU isg®a number of additional constraints,
such as a limit on the number of instructions isiregle kernel, limited cache sizes, limited
amount of private memory and no real local memory.

The REC approach uses this GPU to run the KLT #ad’hen a new frame comes in, it
is first downscaled to a resolution of 800x448p# &men copied to GPU memory space. The
GPU then calculates each level of the image pyrarhttie frame, as well as its derivatives in
both x and y directions, using the Scharr operg&@oharr, 2007). OpenCL'’s float4 type is used
as much as possible in order to benefit from th&J&Rectorised instructions, which allow 4
floating point computations to be carried out isimagle operation. A row of the convolution
mask consists of 5 floating point values. The fimir entries of every row are stored in a
float4, while the remaining entry is stored in agse float. Similarly, we read the first four
pixels (with respect to the mask) of the image asingle float4 and do an element-wise
multiplication with the vector of the mask. In thisy, 16 bytes can be read at the same time
and all of the floating point capabilities of thé>G are exploited. In all cases, a single work
item is launched for every pixel in the output iraag

Once the image pyramid is computed, the actuakimgcstarts. We launch one workitem
for each corner in the previous frame. On a typiesktop GPU, this would use only a
fraction of the available compute units. Howevéncs the Vivante GC2000 GPU only has
four compute units, each capable of running fooatfhg point operations at the same time,
this parallelization strategy is able to keep thailable hardware occupied. Inside the kernel,
the displacement of each feature is calculatedguiie KL tracking algorithm. Once an
updated position for the highest level of the pyichia calculated, this position is refined on
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the next level of the pyramid, using the positidrite level above as a starting point. This is
repeated until we reach the lowest level of theapyd.

Finally, we transfer the updated locations of theners back to the CPU and use OpenCV
to calculate the transformation between the curagt previous point cloud. We then apply
the Kalman and moving average filter.

3.2 Using both the Receiver and the Source Modul&&S)

This variant splits the computation over the reeeand source module: the source calculates
the rotation angle and the receiver applies themigal and moving average filter. One
advantage of using the source module to calculeedtation angle is that we can make use
of the already downscaled secondary video streamishavailable on this module, while in
the REC approach, the full HD stream still has éodownscaled on the receiver. Because the
source module does not have a GPU, this implementases the OpenCV CPU version of
the KLT algorithm instead of our own OpenCL EP impEkntation. The resulting angle is
transmitted to the receiver module as part of thader of the image that is sent, so no
additional communication delay is incurred.

3.3 Compute Server (SRV)

This approach performs the tracking on the sepates&top machine that gets the secondary
SD feed. The resulting angle is sent to the receivedule, which uses it to rotate its direct
HD feed and then renders the results on-screen.

Because the angle and HD image arrive through rdifte paths, they need not be
synchronized: the receiver always uses the moshteangle it has received to rotate the most
recent image. Because of this, the angle computatmnot increase the latency with which
the video feed is rendered. If the angle computaidoo slow, this will have as its only effect
that the rotation will use an angle that is sligttff. The Kalman filter on the receiver module
can compensate for this effect, while the addifianaving average filter avoids jerkiness
upon receiving a delayed angle.

If the compute server is powerful enough to keepwith the framerate, however, no
interpolation of the angle is necessary. In thisecdhe Kalman filter just smooths out sudden
movements, at the expense of causing the rotatigle @o lag slightly behind.

4. RESULTS

In this section, we first shortly describe a prgp@ we made, after that we evaluate our
different implementations in terms of both perfonoa and accuracy.

4.1 Prototype

To demonstrate the system described in this papealso made a prototype to show at various
events. This prototype won the best demo awartiea015 BNAIC conferences in Hasselt,

126



AUTOMATIC ENDODOSCOPIC IMAGE ORIENTATION STABILISATION WTH
ULTRA-LOW-LATENCY

Belgium (Van Ranst W. et. al., 2015). In the settiwe will briefly illustrate this demo setup.
Some of the experiments in section 4.2 are alse dorthis prototype.

The algorithms used in the prototype are the sasnbase implemented in de Nucleus OR
environment described earlier in this paper. Wehdwever use different hardware. We use a
single desktop machine to do all the processing remder the result on two displays. An
overview of the setup is shown in figure 7. A spégiurpose capture card is used to capture
video from the endoscope (over DVI) at low-latency.

ovi Low latency Desklap
D Endoscope capture card machine
. Rotated /
Original Horizon
VAN L\

Figure 7. Overview of the demo setup

The first display shows the original video comingnfi the endoscope, and the second
shows the tracked corners, the rotated video fietiteohorizon projection (shown in figure 8).
As a test subject for demonstration purposes, waddhat using a bell pepper demonstrates
our algorithm very well.

a) Visualization of tracked corners
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b) Horizon projection

¢) Rotated image

Figure 8. Different display modes in the prototype
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4.2 Performance
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Figure 9. Angles at different update rates
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Figure 10. Runtime comparison

If the computation of the rotation angle cannotpeeformed fast enough to keep up with
the framerate of the video, our approach is to drames from the angle computation. In this
way, we avoid increasing the latency with which théeo is rendered, but this obviously
comes at the cost of lowering the accuracy of thputed angle. Figure 9 examines the
effect of increasing the interval between two arggmputations on the accuracy of the angle.
The baseline corresponds to computing an angledoh frame of the 30fps video. We can
therefore achieve the baseline by computing eagleasithin 33ms. As the time needed for
each frame increases, we have to drop more frantt¢ha accuracy deteriorates. As figure 9
shows, we can go as low as 5fps and still havasoreble approximation of the baseline.

Figure 10 shows the performance of our algorithnttendifferent system configurations
discussed in section 3, measured over 40 trials.

The REC approach is infeasible, as it takes anageeof almost 28s per frame. The
Vivante GPU that is available on this module isréifiere clearly not powerful enough to
perform the required computation.
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Shifting the computation of the rotation angle b tsource module (R&S) provides a
significant improvement. This is due to the fadttthe source module’s CPU (an Intel atom
Z530) is more powerful than the processors thataaeglable on the receiver, as well as the
fact that we avoid having to downscale the videwdwHowever, the average computation
time of 0.43s means that we could still only corepRitangles per second. As we can see from
figure 9, this is an unacceptably poor approximaté the real rotation angle. Moreover, the
worst execution time for this approach was subgttytslower (0.89s) than the average.
Therefore, this approach has to be ruled out.

We can conclude that the approach with a sepacapute server (Intel Xeon E5-2630 in
our tests) is most feasible in this case. Whiledbenside of this approach is obvious—i.e.,
the need for additional hardware—the gain in rustimutweighs the cost for this
latency-sensitive application. Indeed, with an agerruntime of 11ms and a worst runtime of
28ms, this solution is able to keep track with 30&ps framerate of the video. Taking also into
account the network transfer of the low-resolutimage feed to this compute server and the
communication of the angle from the server to theeiver, the latency with which the
computed angle arrives at the receiver module gagmately between 50 and 100ms. This
slight lag in rotation angle is not noticeable magtice.

As discussed before, the video itself is rendeminfthe direct HD feed, so angle
computation does not affect its latency at all. ldoer, the GPU that is available on the
receiver module of NUCLeUS cannot actually coumtiate the HD video in 60fps. One
solution is to work with 1280x720@30fps video irmste The other is to simply render the
incoming HD feed as is, but to impose a “horizon"ibthat informs the surgeon of the current
rotation. We have implemented both approaches.

5. CONCLUSION

To cope with the disorientation arising from the w$ angled endoscopes, we have developed
an orientation stabilisation method, based on th& kacker (Lucas and Kanade, 1981;
Tomasi and Kanade, 1991), and examined how to rateghis into the NUCLeUS Digital
Operating Room. This state-of-the-art system aitma@aviding an ultra-low-latency solution,
which is important since research suggests thandgt is a key parameter for surgeon’s
performance. The aim of this paper is thereforeirneestigate methods of integrating
orientation stabilisation into this system withadtversely affecting this latency.

We have developed two embedded implementationbeoi_ T tracker: an OpenCL EP
implementation running on the GPU in the receivedaole and an implementation running
mainly on the CPU in the source module. Our expenital results demonstrate that neither of
these implementations is fast enough to allow ameable approximation of the rotation
angle. However, the IP-based architecture of NUCkedlso allows a third option, namely
that of running the bulk of the computation on pasate desktop machine. This option allows
the latency with which the video is rendered to aemunchanged, while the rotation angle
that is computed never lags more than a few frameémd.
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