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ABSTRACT 

Minimally invasive surgery often makes use of endoscopes with an angled lens. When using such an 
endoscope, the on-screen image tends to rotate wildly, which may confuse the surgeon. A low-impact 
way of solving this problem is by using computer vision techniques to track the rotation of the incoming 
footage and then counterrotating the image. Such an approach has already been proposed in the 
literature, but it has never been examined whether it is possible to integrate such an algorithm into a 
state-of-the-art Digital Operating Room environment, where minimal latency is required. In this paper, 
we compare three different ways of implementing a counterrotation algorithm on the hardware that is 
available in the NUCLeUS Digital Operating Room of the company eSaturnus. 
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1. INTRODUCTION 

Minimally invasive surgery is a type of surgery where small incisions are made in order to 
operate at a remote location in the patient’s body. These incisions make room for the required 
instruments, as well as an endoscope which acts as the surgeon’s eyes during the procedure. 
The endoscope is commonly equipped with an angled lens (typically set at 30 degrees, see 
figure 1), in order to enable the surgeon to get a broader view. Moreover, this also makes it 
possible to look behind objects by turning the endoscope, thus revealing perspectives which 
would be concealed with a normal endoscope. While this extra information provides a 
significant benefit to the surgeon, the angled lens is also a source of confusion and 
disorientation, since the act of rotating the endoscope also rotates the on-screen image 
(Breedvel, 1997). For certain kinds of procedures, this confusion can be avoided by placing a 
small amount of water into, e.g., the abdominal cavity in order to provide the surgeon with a 



IADIS International Journal on Computer Science and Information Systems 

120 

reference “horizon”. In situations where this is not possible, the surgeon may choose to use an 
endoscope that allows its lens to be rotated independently of the endoscope itself (see figure 
1). A downside of this solution, however, is that the movement required to turn only the lens 
while keeping the endoscope steady is quite cumbersome and often requires both hands of the 
operator, while also restricting camera movement. 
 

 

Figure 1. The endoscope lens rotates freely on the camera attachment 

A more promising approach is to solve this problem by postprocessing the video footage 
coming from the endoscope. Such postprocessing may consist of automatically  
counter-rotating the output of the endoscope, or of drawing a virtual “horizon” on screen, 
which informs the surgeon of the current rotation of the image. In both cases, the core problem 
is that of determining the current rotation angle. Generally speaking, there are two ways of 
doing this: either by using some kind of hardware gravity sensor (Höller et al., 2009), or by 
using the images captured by the endoscope. While the use of a gravity sensor has the 
advantage of being drift free, an obvious disadvantage is that it requires a special endoscope 
equipped with such a sensor. In addition, gravity sensor endoscopes do not work if they are 
held above the patient, looking down. 

By contrast, the image-based approach has the advantage that counter-rotation can be 
implemented entirely in software. Indeed, by tracking the translation between consecutive 
frames of the video feed, the orientation of the video can be automatically determined. Such 
an approach has already been investigated (Moll et al., 2009), but—to the best of our 
knowledge—it has never been implemented in a system used for live surgery. One of the main 
problems that need to be tackled in order to make this possible is that the video feed needs to 
be rendered at minimum latency. Indeed, for the hand-eye coordination of the surgeon, latency 
is a crucial parameter (Rayman et al., 2005). A recent study found that a latency above 130ms 
has detrimental effects on surgeon’s performance (Kumcu et al., 2013). 

The company eSATURNUS has developed a state-of-the-art digital operating room 
environment, called NUCLeUSTM, which operates at extremely low latency: it streams 
1080p60 video with a latency of <16ms, i.e., less than one frame. In this paper, we investigate 
how a video-based rotation tracking algorithm can be successfully integrated in this system. 
To do this, we have to tackle the unique challenge of combining high-framerate,  
high-resolution images with the requirement of ultra-low latency. We investigate the 
implementation of the algorithm on embedded hardware as a method for coping with these 
challenges. 

This research has resulted in the development of a prototype, that can be seen in action at: 
http://www.youtube.com/watch?v=2tMk0u0yWc0. Figure 2 shows a screenshot of this video. 
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Figure 2. The prototype in action 

The remainder of this paper is organized as follows. In section 2, we lay out the algorithm 
we used for our implementation, while section 3 explains how the algorithm is implemented 
on resource constrained hardware. Finally, section 4 discusses results in terms of performance 
and accuracy. 

2. ROTATION COMPENSATION 

The requirement for ultra-low latency forces us to consider a relatively simple approach to 
computing the rotation of the video. For this reason, we avoid feature matching techniques, 
such as SIFT (Lowe, 1999) or SURF (Bay et al., 2006), and have chosen to use a tracking 
algorithm instead. 

 

Figure 3. The tracking approach 
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The general idea of such a tracking approach is illustrated in figure 
this figure shows two consecutive frames of the incoming video. A number of distinctive 
points in the image (also called “corners”) are ex
subsequent frames. From the movement of the corners from one frame to the next, the rotation 
angle between the two frames can be calculated. This angle can then be used to rotate the 
frame back to the reference ori
right-hand side of this figure.

To implement this approach, we have chosen to use a KLT tracker (Lucas and Kanade, 
1981; Tomasi and Kanade, 1991). 
We will first clarify how these different parts work together, and why they are needed, before 
we explain each part in detail.

Processing starts when the operator enables the rotati
pressing a button on the endoscope, while holding it level. At that point, the system takes the 
most recent frame of the stream and applies the corner detection algorithm. Once the corners 
have been extracted, the system ca
over the course of the video, the system may lose track of some of the original corners. Once 
the number of tracked corners drops below a certain threshold
figure 4), the corner detection algorithm is again applied and the process continues.
Meanwhile the corners are used to calculate the homography which is used to calculate the 
rotation angle. This angle then passes through a Kalman and moving average filter which 
gives us the final rotation angle.

2.1 Detecting Corners

To detect corners in the endoscopy images, we use Harris corners
which are known to produce good results for video footage
between consecutive frames (Schmid et al., 2000). We have also tried Shi and Tomasi’s “Good 
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The general idea of such a tracking approach is illustrated in figure 3. The left
this figure shows two consecutive frames of the incoming video. A number of distinctive 
points in the image (also called “corners”) are extracted and these are then tracked across 
subsequent frames. From the movement of the corners from one frame to the next, the rotation 
angle between the two frames can be calculated. This angle can then be used to rotate the 
frame back to the reference orientation. The resulting “straight” frames are shown on the 

hand side of this figure. 
To implement this approach, we have chosen to use a KLT tracker (Lucas and Kanade, 

1981; Tomasi and Kanade, 1991). The general structure of this algorithm is shown
how these different parts work together, and why they are needed, before 

explain each part in detail. 

Figure 4. Overview of the algorithm 

Processing starts when the operator enables the rotation compensation. This is done by 
pressing a button on the endoscope, while holding it level. At that point, the system takes the 
most recent frame of the stream and applies the corner detection algorithm. Once the corners 
have been extracted, the system can start tracking them through the next frames. However, 
over the course of the video, the system may lose track of some of the original corners. Once 
the number of tracked corners drops below a certain threshold (“need redetection” step in 

orner detection algorithm is again applied and the process continues.
Meanwhile the corners are used to calculate the homography which is used to calculate the 
rotation angle. This angle then passes through a Kalman and moving average filter which 

the final rotation angle. We now discuss each of these components in more detail.

Corners 

To detect corners in the endoscopy images, we use Harris corners (Harris and Stephens, 1988), 
which are known to produce good results for video footage in which there are small changes 
between consecutive frames (Schmid et al., 2000). We have also tried Shi and Tomasi’s “Good 

. The left-hand side of 
this figure shows two consecutive frames of the incoming video. A number of distinctive 

tracted and these are then tracked across 
subsequent frames. From the movement of the corners from one frame to the next, the rotation 
angle between the two frames can be calculated. This angle can then be used to rotate the 

entation. The resulting “straight” frames are shown on the  

To implement this approach, we have chosen to use a KLT tracker (Lucas and Kanade, 
of this algorithm is shown in figure 4. 

how these different parts work together, and why they are needed, before 

on compensation. This is done by 
pressing a button on the endoscope, while holding it level. At that point, the system takes the 
most recent frame of the stream and applies the corner detection algorithm. Once the corners 

n start tracking them through the next frames. However, 
over the course of the video, the system may lose track of some of the original corners. Once 

(“need redetection” step in 
orner detection algorithm is again applied and the process continues. 

Meanwhile the corners are used to calculate the homography which is used to calculate the 
rotation angle. This angle then passes through a Kalman and moving average filter which 

We now discuss each of these components in more detail. 

(Harris and Stephens, 1988), 
in which there are small changes 

between consecutive frames (Schmid et al., 2000). We have also tried Shi and Tomasi’s “Good 
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features to track” (Shi and Tomasi, 1994), and found that they produce almost identical results 
on typical endoscopy footage (see figure 5). As suggested in the OpenCV manual, we track 
only corners that have a “quality level” of at least 0.01. On average, this results in about 170 
corners being tracked. 

2.2 Tracking 

We use a pyramidal implementation of the KLT tracker as described in (Bouguet, 2001). The 
implementation makes use of a scale space pyramid built on top of the original image. Each 
new layer is constructed by downscaling the previous layer by some constant factor. Feature 
tracking then commences at the top—i.e., lowest resolution—layer. These rough results are 
then gradually refined by descending in the pyramid. 

2.3 Calculate Transformation 

 

Figure 5. Comparison of the Harris en Shi-Tomasi corner detecton. The predicted angle is plotted relative 
to the elapsed time in the test video (footage from real endoscopic surgery). The output of both corner 

detectors is almost identical 

In this step, two point clouds—one from the previous frame and one from the current frame—
are compared to each other in order to calculate the transformation between the two frames. 
We calculate the homography between both clouds using OpenCV’s RANSAC (Fischler and 
Bolles, 1981) implementation which yields a transformation matrix of the form: 
 

� = �	ℎ�� ℎ�� ℎ��ℎ�� ℎ�� ℎ��ℎ�� ℎ�� ℎ��	 
 

For laparoscopy video, we can assume that this transformation is Euclidean (i.e., ℎ�� =ℎ�� = 0 and ℎ�� = 1). Therefore, we can extract the rotation angle as: 
 � = arctan2( ℎ��, ℎ��) 
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2.4 Interpolation of Estimated Angle 

Because our algorithm is run on a resource constrained system (see Section 3), the tracker may 
not be able to compute a rotation angle for each frame in the video, especially when dealing 
with 1080p60 video. Therefore, it may be necessary to drop a number of frames between 
successive estimations of the angle. To make sure that the video nevertheless rotates smoothly 
on the screen, we use a Kalman filter (see, e.g., [19]), in combination with a simple moving 
average filter, to interpolate between two successive updates.  

The details are as follows. We use a constant velocity motion model Kalman filter, 
assuming that the change in rotation angle is constant over time. Therefore, it uses the 
following linear model to predict the angle αt at any given time point t. 

����������� = �1 ��0 1 � �������	 
 

Here, δt is the time elapsed between time points t and t+1 (because the angle computation 
might have to skip frames, δt may not be constant). 

After making the new prediction αt+1, the Kalman model is then updated using a weighted 
average of αt+1 and the new measurement, i.e., the angle that was computed by the KLT 
tracker (the observation vector contains only the new angle). The weights depend on a process 
covariance matrix Q and a measurement covariance matrix R. We have empirically 
determined the following values for these matrices: 

� = 	 �1 00 77� � =	 �1 00 1� 
 
The high value for velocity in the process covariance matrix indicates that the predicted 

velocity is often off by a large margin, when the surgeon makes sudden movements. 
When frames have to be dropped, the Kalman filter may start to drift away from the real 

rotation angle. This can happen in particular when there are sudden camera movements that 
violate the Kalman filter’s assumption of a constant ��� . In such a case, the Kalman filter may 
have to perform a large correction when a new angle finally does arrive. This can give a jerky 
effect in the video. Therefore, we pass the resulting angle to a moving average filter which 
further smooths out the jerkiness. This filter keeps track of the last n samples (in our case, 
n=10) and is updated at a constant interval. Our implementation does this in a separate thread. 
The output of the moving average filter is used as the final result. 

3. IMPLEMENTATION 

The general architecture of the NUCLeUS Digital Operating Room is shown in figure 6. 
Video is captured by the source module, which transmits a direct, full HD feed to the receiver 
module, which decodes this feed and displays it on screen. There is also a secondary,  
lower-resolution SD feed, which can be used for other purposes, e.g., it can be streamed over 
the internet to medical staff to follow the procedure from a remote location. 
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This architecture provides us with different options for implementing the tracking 
algorithm: 

• REC: The computation of the angle happens entirely on the receiver module. 
• R&S: The KLT tracker runs on the source module, while the Kalman and moving 

average filters run on the receiver. 
• SRV: The angle computation happens on the separate compute server. 

 

 

Figure 6. System architecture 

We describe each option in more detail below. 

3.1 Using only the Receiver Module (REC) 

The receiver module contains a quad core processer and a Vivante GC2000 GPU, which 
supports the Embedded Profile (EP) of the OpenCL standard (Maghazeh et al., 2013). 
Compared to a traditional GPU, the Vivante GPU imposes a number of additional constraints, 
such as a limit on the number of instructions in a single kernel, limited cache sizes, limited 
amount of private memory and no real local memory. 

The REC approach uses this GPU to run the KLT tracker. When a new frame comes in, it 
is first downscaled to a resolution of 800x448px and then copied to GPU memory space. The 
GPU then calculates each level of the image pyramid of the frame, as well as its derivatives in 
both x and y directions, using the Scharr operator (Scharr, 2007). OpenCL’s float4 type is used 
as much as possible in order to benefit from the GPU’s vectorised instructions, which allow 4 
floating point computations to be carried out in a single operation. A row of the convolution 
mask consists of 5 floating point values. The first four entries of every row are stored in a 
float4, while the remaining entry is stored in a single float. Similarly, we read the first four 
pixels (with respect to the mask) of the image as a single float4 and do an element-wise 
multiplication with the vector of the mask. In this way, 16 bytes can be read at the same time 
and all of the floating point capabilities of the GPU are exploited. In all cases, a single work 
item is launched for every pixel in the output image. 

Once the image pyramid is computed, the actual tracking starts. We launch one workitem 
for each corner in the previous frame. On a typical desktop GPU, this would use only a 
fraction of the available compute units. However, since the Vivante GC2000 GPU only has 
four compute units, each capable of running four floating point operations at the same time, 
this parallelization strategy is able to keep the available hardware occupied. Inside the kernel, 
the displacement of each feature is calculated using the KL tracking algorithm. Once an 
updated position for the highest level of the pyramid is calculated, this position is refined on 
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the next level of the pyramid, using the position of the level above as a starting point. This is 
repeated until we reach the lowest level of the pyramid. 

Finally, we transfer the updated locations of the corners back to the CPU and use OpenCV 
to calculate the transformation between the current and previous point cloud. We then apply 
the Kalman and moving average filter. 

3.2 Using both the Receiver and the Source Module (R&S) 

This variant splits the computation over the receiver and source module: the source calculates 
the rotation angle and the receiver applies the Kalman and moving average filter. One 
advantage of using the source module to calculate the rotation angle is that we can make use 
of the already downscaled secondary video stream that is available on this module, while in 
the REC approach, the full HD stream still has to be downscaled on the receiver. Because the 
source module does not have a GPU, this implementation uses the OpenCV CPU version of 
the KLT algorithm instead of our own OpenCL EP implementation. The resulting angle is 
transmitted to the receiver module as part of the header of the image that is sent, so no 
additional communication delay is incurred. 

3.3 Compute Server (SRV) 

This approach performs the tracking on the separate desktop machine that gets the secondary 
SD feed. The resulting angle is sent to the receiver module, which uses it to rotate its direct 
HD feed and then renders the results on-screen. 

Because the angle and HD image arrive through different paths, they need not be 
synchronized: the receiver always uses the most recent angle it has received to rotate the most 
recent image. Because of this, the angle computation cannot increase the latency with which 
the video feed is rendered. If the angle computation is too slow, this will have as its only effect 
that the rotation will use an angle that is slightly off. The Kalman filter on the receiver module 
can compensate for this effect, while the additional moving average filter avoids jerkiness 
upon receiving a delayed angle. 

If the compute server is powerful enough to keep up with the framerate, however, no 
interpolation of the angle is necessary. In this case, the Kalman filter just smooths out sudden 
movements, at the expense of causing the rotation angle to lag slightly behind. 

4. RESULTS 

In this section, we first shortly describe a prototype we made, after that we evaluate our 
different implementations in terms of both performance and accuracy.  

4.1 Prototype 

To demonstrate the system described in this paper we also made a prototype to show at various 
events. This prototype won the best demo award at the 2015 BNAIC conferences in Hasselt, 
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Belgium (Van Ranst W. et. al., 2015). In the section, we will briefly illustrate this demo setup. 
Some of the experiments in section 4.2 are also done on this prototype. 

The algorithms used in the prototype are the same as those implemented in de Nucleus OR 
environment described earlier in this paper. We do however use different hardware. We use a 
single desktop machine to do all the processing and render the result on two displays. An 
overview of the setup is shown in figure 7. A special purpose capture card is used to capture 
video from the endoscope (over DVI) at low-latency. 

 

 
Figure 7. Overview of the demo setup 

The first display shows the original video coming from the endoscope, and the second 
shows the tracked corners, the rotated video feet or the horizon projection (shown in figure 8). 
As a test subject for demonstration purposes, we found that using a bell pepper demonstrates 
our algorithm very well.  

 

 

a) Visualization of tracked corners 
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b) Horizon projection 

c) Rotated image 

Figure 8. Different display modes in the prototype 
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4.2 Performance 

 

Figure 9. Angles at different update rates                               

 

Figure 10. Runtime comparison 

If the computation of the rotation angle cannot be performed fast enough to keep up with 
the framerate of the video, our approach is to drop frames from the angle computation. In this 
way, we avoid increasing the latency with which the video is rendered, but this obviously 
comes at the cost of lowering the accuracy of the computed angle. Figure 9 examines the 
effect of increasing the interval between two angle computations on the accuracy of the angle. 
The baseline corresponds to computing an angle for each frame of the 30fps video. We can 
therefore achieve the baseline by computing each angle within 33ms. As the time needed for 
each frame increases, we have to drop more frames and the accuracy deteriorates. As figure 9 
shows, we can go as low as 5fps and still have a reasonable approximation of the baseline. 

Figure 10 shows the performance of our algorithm on the different system configurations 
discussed in section 3, measured over 40 trials. 

The REC approach is infeasible, as it takes an average of almost 28s per frame. The 
Vivante GPU that is available on this module is therefore clearly not powerful enough to 
perform the required computation. 
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Shifting the computation of the rotation angle to the source module (R&S) provides a 
significant improvement. This is due to the fact that the source module’s CPU (an Intel atom 
Z530) is more powerful than the processors that are available on the receiver, as well as the 
fact that we avoid having to downscale the video twice. However, the average computation 
time of 0.43s means that we could still only compute 2 angles per second. As we can see from 
figure 9, this is an unacceptably poor approximation of the real rotation angle. Moreover, the 
worst execution time for this approach was substantially slower (0.89s) than the average. 
Therefore, this approach has to be ruled out. 

We can conclude that the approach with a separate compute server (Intel Xeon E5-2630 in 
our tests) is most feasible in this case. While the downside of this approach is obvious—i.e., 
the need for additional hardware—the gain in runtime outweighs the cost for this  
latency-sensitive application. Indeed, with an average runtime of 11ms and a worst runtime of 
28ms, this solution is able to keep track with the 30fps framerate of the video. Taking also into 
account the network transfer of the low-resolution image feed to this compute server and the 
communication of the angle from the server to the receiver, the latency with which the 
computed angle arrives at the receiver module is approximately between 50 and 100ms. This 
slight lag in rotation angle is not noticeable in practice. 

As discussed before, the video itself is rendered from the direct HD feed, so angle 
computation does not affect its latency at all. However, the GPU that is available on the 
receiver module of NUCLeUS cannot actually counterrotate the HD video in 60fps. One 
solution is to work with 1280x720@30fps video instead. The other is to simply render the 
incoming HD feed as is, but to impose a “horizon” on it that informs the surgeon of the current 
rotation. We have implemented both approaches. 

5. CONCLUSION 

To cope with the disorientation arising from the use of angled endoscopes, we have developed 
an orientation stabilisation method, based on the KLT tracker (Lucas and Kanade, 1981; 
Tomasi and Kanade, 1991), and examined how to integrate this into the NUCLeUS Digital 
Operating Room. This state-of-the-art system aims at providing an ultra-low-latency solution, 
which is important since research suggests that latency is a key parameter for surgeon’s 
performance. The aim of this paper is therefore to investigate methods of integrating 
orientation stabilisation into this system without adversely affecting this latency. 

We have developed two embedded implementations of the KLT tracker: an OpenCL EP 
implementation running on the GPU in the receiver module and an implementation running 
mainly on the CPU in the source module. Our experimental results demonstrate that neither of 
these implementations is fast enough to allow a reasonable approximation of the rotation 
angle. However, the IP-based architecture of NUCLeUS also allows a third option, namely 
that of running the bulk of the computation on a separate desktop machine. This option allows 
the latency with which the video is rendered to remain unchanged, while the rotation angle 
that is computed never lags more than a few frames behind. 
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