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BOUNDARY ELEMENT METHOD APPLICATION TO HEAT AND
MASS TRANSFER DURING GROWTH OF BIOLOGICAL TISSUE

Growth of biological tissue is considered in the present paper. A mathematical model based on
metabolism intensity conception is proposed. The proposed mathematical model gives an opportunity
to consider multicomponent environmental media and to analyze an influence of every component on
the growth process, based on its influence on metabolism process, known from some experimental
research. As a result, the growth process is described as parabolic initial-boundary-value problem in
domain with moving boundary. Since the growth process is, generally speaking, enough slow, the
special methods, developed for slow phase transition calculation and based on small parameter method
are applied to the problem. Using mentioned approach it is managed to build analytical solutions in
one-dimensional (in space) case and numerical solutions are obtained in two- and in three-dimensional
cases with additional application of boundary element method.
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PaccmoTpenb! mponecchl pocTa Guosornyeckux tkaneii. [lpenosxkena MmateMaTnieckasi Moaenb
HAa OCHOBEe KOHIENUUH HHTEHCHBHOCTH MeTa00Ju3Ma, [aloliasi BO3MOXKHOCTb pPaccMaTPUBATh
MHOTOKOMIIOHEHTHYI0 OKPY:KAIONIYI0 CpeAy M aHAJU3HPOBATHL BJUSHHE KAXKI0ro U3 KOMIIOHEHTOB Ha
npoueccbl pocta. IIpomecchl pocTa ommcaHbl NPU NMOMOLIM Napadoianyeckoll KpaeBoll 3agaum B
001acTH ¢ MOABM:KHON rpanuueil. /1 peuleHHsi TaHHOW 3aJayd NPHMEHEH CHEeNMAJIbHBIA MeTOJ,
panee pa3padoTaHHBII 1715 3a1a4 0 Me/lJIeHHOM (a30BOM mepexoe M OCHOBAHHBII HAa MeTode MaJIOro
napamerpa. C mNOMOIIBI0 TAaKOro MOAXO0AAa BO3MOKHO CTPOMTH AHAJIUTHYECKHE pelleHust IJIs
OIHOMEPHBIX MO MPOCTPAHCTBY CJIyYaeB H MOJIYYATh YHCIEHHBIE PEeLIeHHsI ¢ HCMOIb30BaHHEM METOAA
TPAHUYHBIX 3JIEMEHTOB /JIsl IBYMEPHBIX M TPEXMEPHBIX CJIyYaeB.

KioueBble ciioBa: pocT OHONOTHYECKOW TKaHU, METa0OIHM3M, TEIUIOMAcCOOOMEH, METOJ Maloro
rapaMeTpa, MeTo ]l TPAaHUYHBIX JTIEMEHTOB.

Po3rasinyTo mpouecd pocty 0io1oriyHMX TKaHMH. 3aNPOMOHOBAHO MAaTeMATHYHY MOJe/]b Ha
OCHOBi KOHUenuii iHTEHCHMBHOCTI MeTafodi3My, LIO0 [Ja€ 3MOry PpO3[VIAAATH 0araTOKOMIIOHEHTHe
HABKOJIMIIHE CepeOBHINE if aHATI3yBaTH BIUIMB KOKHOTO 3 KOMIIOHEHTIB Ha mpouecu pocty. Ilponecn
POCTY ONHCAaHO 32 AONOMOrol0 napadosiyHoi KpaiioBoi 3agaui B o0Jacti 3 pyxomow mexew. Jas
PO3B’sI3aHHS aHOI 3aJa4i 3aCTOCOBAHO clewiaJbHUIi MeTol, paHime po3polJieHuil s 3aJa4 Npo
noBiiIbHMIL ¢a3oBuii nepexixy Ta 3acHOBaHMI Ha MeTodi Masoro napamerpa. Takuii migxig
YMOKJIMBJIIOE AHAJITHYHI PO3B’A3KH /UISI OJHOBHUMIPHHMX 32 NPOCTOPOM BHIAAKIB Ta OTPHUMYBaTH
YHCJI0BI PO3B’A3KH i3 32CTOCYBAHHAM MeTOAY IPAHUYHMX €JeMeHTIB /Il IBOBUMIPHUX i TPMBUMipHHX
BHNAJKIB.

Kuouosi cioBa: pict 6i010Ti9HOT TKAaHUHH, META00ITi3M, TETNIOMAacO0OMiH, METO]] MaJIOTO MapameTpa,
METO/] FPAaHUYHHX EJICMEHTIB.

Introduction. Problem of biological tissue growth [8] became very actual at the
present stage of biological science development, because a lot of processes used in
agriculture and biotechnology are determined by growth of biological tissue. Beside of
that, problem of tumor growth is one of the most important in medicine [5; 8]. Two kinds
of circumstances determine the growth process, the first one is genetic properties of tissue
and the second one is environmental conditions, for example, nutrition, temperature and
so on. The genetic mechanism is an object of very intensive investigations at the present
stage, including mathematical modeling of genetics, and there are a lot of successes.
However, the level of investigation is very far from complete description of biological
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tissue growth on the base of genetic approach. As a result, most of investigations
concerning a biological growth are based on phenomenological approach, considering
biological tissues as a “black box” with experimentally determined properties. The
growth is one of such properties of biological tissue. Nevertheless similar approaches
have a lot of difficulties and disadvantages, in fact, they are only tool for solution of
many problems and base for mathematical modeling on non-cellular level. Nevertheless
the hard genetic determination of life cycle of any biological tissue, there is strong
dependence of the tissue life functions on environmental conditions. This dependency has
been known from an antiquity, and a lot of attempts were made to establish its general
quantitative description, but their results were restricted by multiple of particular
observations, conclusions and laws. The next step in this direction was mathematical
modelling of the biological processes. Full review of mathematical modeling in biological
sciences requires a separate investigations, which must be sufficiently more than the
present paper. Since the growth of biological tissue is the object of the present work,
consider specific features of the mathematical models of the given processes. General
simplifying assumptions must be made to formulate a mathematical model.

Any biological tissue consists of cells. Process of cell reproduction is caution of
multicellular tissue growth. The growth process consists of two parts: growth of
individual cells and fission of cells, that is the growth process has evidently discrete
behavior. Since cells are very small and number of them is very large, consideration of
each individual cell is impossible and therefore some averaging is necessary. As a rule
averaging process used in biology is similar to well-known continuos mechanics
approach. According to this approach a multicellular biological tissue is assumed as
continues media with distributed sources and some diffusive properties. In fact, cells
create a porous media, but pressure difference enough for filtration flow is very seldom
presence in the biological tissues, therefore transport phenomena in filtration flow can be
neglected and diffusive properties of biological tissue are provided by some other specific
mechanisms. Real transport phenomena in biological structures are very complex and
difficult for simulation therefore the only way to build a mathematical model is to assume
that transport phenomena has diffusive behavior and to use experimentally determined
diffusive properties of media.

First attempts to describe biological processes by chemical reactions took place in
first half of XIX century. As a result of almost two hundred years of science
development, the chemical mechanisms of life are quite clear for understanding at the
moment, but correspondent theory is very complex and sophisticated. Details of this
theory are not concerned the object of the present work. Note only, that there isn’t single
quantitative measure of metabolism, because a lot of chemical reactions mutually interact.
However the simplest way to formulate a mathematical model for metabolism process is
to introduce some numerical value called metabolism intensity and to assume, that any
chemical reaction and consequently heat and mass transfer process rate is determined by
(in the simplest case it is proportional to) metabolism intensity. As a rule, metabolism
intensity is connected by linear relation with velocity of tissue growth. This rule is almost
always right for simplest organisms, but metabolism of highest animals is more complex.
All mathematical models, which will be developed in the present paper below, will be
based on the assumption that there exist single value, described the metabolism intensity.
Of course, it is phenomenological approach and relation function connecting metabolism
intensity and consuming of nutrient substances (excrement production) must be
determined experimentally. An evident advantage of such mathematical models (so-

97



ISSN 2312 - 2897. Bicuuk Juinponerposcbkoro yHiBepcurery. Cepis:Mexanika. 2015. T.23. Ne5. Bum.19.

called one-parametrical models) is their flexibility and opportunity to take into account
different number of concentration fields on different level of consideration.

There are two possible mechanisms of biological tissue growth. The first one is the
surface growth and the second one is the volume growth. The kind of growth depends of
kinds of tissue. The intensive cell fission takes place in relatively thin layer near the tissue
surface in the case of surface growth. Cells situated inside the tissue have stable
metabolism without intensive fission in this case, then their total volume remains
constant. Reproduction of all cells takes place in the case of volume growth, although the
most intensive fission, as a rule, takes place near the surface.

All considered above mathematical models are reduced to initial-boundary-value
problems for system of diffusion equations with non-linear sources in moving boundary
domain. Motion of the domain boundary is caused by tissue growth.

Phase transitions are well known from ancient times, because they are very
widespread as in nature, as in many technologies. Physical theory of phase
transformations on microscopic and macroscopic levels were developed and, as a result,
there are not sufficient unsolved questions, what can arise during solution of most of
applied heat and mass transfer problems including phase transition [11]. However, there
is not so good situation from the point of view of computational mathematics, because
phase transition problems contain specific kind of non-linearity connected with motion of
phase transition boundary, because the solution for the field, caused the phase
transformation, depends on the domain shape, but the domain shape depends on the
solution (as the boundary shape depends on it). And more than that it depends on history
of the field development. Since the considered non-linearity cannot be represented as
some function (excluding the simplest cases), different implicit linearizations are used for
solution of such problems. As a rule, time-stepping algorithms are used for numerical
solution of phase transition problems and the domain shape is fixed on the time step, that
is, there is an implicit splitting of the process by the field evolution and interphase
boundary motion. Thus such algorithms provide «jumping» domain shape and time step
must be enough small to guarantee small domain shape «jump» and high accuracy of the
field calculation. Both given requirements may be used as criteria of time step choosing
in dependence on particular problem. In any case, beside of additional time step
restriction, there is an additional error source, concerning the domain boundary motion.
Any full review of numerical methods of Stefan problem solution requires a special
investigation and cannot be included in restricted length of the present paper. However
the following general conclusion can be made: all mentioned numerical algorithms of
Stefan problem solution, based on finite element or finite difference approaches, are
rather directed to fast phase transformations, because under restricted time step they
require a lot of time steps for slow phase transformations. Then they are found non-
effective in the case of slow phase transformations.

The described situation in numerical method of Stefan problem solution is quite
natural, because fast phase transformations are base of most technological processes,
including phase transformations and attract serious interests in industrial designs. Slow
phase transitions often occur in natural processes. The quasi-stationary approximation
(called Leybenzon approximation in Russian literature) is used to apply for numerical
calculation of such processes [11]. However, number of similar works were very
restricted and they mostly were devoted to engineering design, nevertheless this approach
become popular in problems of freezing (meeting) of soil, for investigation of phase
transitions in solid body, in some evaporation (condensation) problems. The situation in
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numerical modelling of slow phase transition was sharply changed in connection with
three new problems. The first problem was simple attempt to build more accurate
mathematical models for environment processes, for example, in meteorology or soil
investigations. The second problem is phase transition in microgravity condition, which
became important with starting of intensive space exploration. And finally the third
problem was connected with attempts to obtain a material with minimal residual stresses,
what was important in material sciences. An experience of application of traditional finite
difference and finite element approach to the mentioned problems was rather
unsuccessful, nevertheless a lot of problems were solved, because their numerical
solution required huge computer resources and therefore their research opportunities were
strongly restricted. Beside of that, the traditional methods often could not provide
necessary accuracy of the numerical solution. On the other hand the quasi-stationary
approximation had difficulties too, because it is related to asymptotically slaw processes
and doesn’t take into account initial conditions. Beside of that, elliptical boundary-value
problems, which must be numerically solved at every time step of quasi-stationary
problem solution, are rather inconvenient for finite difference method. In addition, grid
rebuilding is necessary for quasi-stationary approximation at the every time step, as for
other time-stepping algorithms for full Stefan problems. As a result, using of quasi-
stationary approximation was very restricted last decades.

After the first original works of Y. P. Chuang and J. Szekely [6; 7] a lot of papers
were devoted to boundary element method application to Stefan problem. And certain
success had been achieved in this field, because there isn’t so strong restriction on time
step, connected with differential operator, and boundary element method more precisely
approximates the phase transition boundary and gives an opportunity to realise more
exact time integration algorithm. However general effectiveness of boundary element
method for parabolic problems is less than similar effectiveness of finite difference
method, what was shown in many paper, see, for example, [9]. Of course, using of some
special boundary element method algorithms can improve the situation, but any time-
stepping numerical method cannot completely solve the problem of slow phase transition.

Let explain the conclusion made above. First of all, it is necessary to determine the
term «slow phase transition». As it will be shown below, velocity of phase transition is
described by dimensionless parameter called Stefan number. Usually the Stefan number
is interpreted as relation of thermal energy, spent in heating (cooling) of some phase, to
energy spent in phase transformation process, correspondingly. Authors of the present
work propose another treatment according to which the Stefan number is relation of two
times characterising heating (cooling) and phase transition, correspondingly. Nevertheless
the Stefan number is determined by the same formula, the last treatment is better, because
it clear explains several phenomena difficult for understanding, such as phase transition in
small drop surface, a phase transition near a state of phase equilibrium. The term «slow»
means that the Stefan number is small and therefore there are two different time scales in
the problem. The «fast» time is connected with the temperature field, and the «slow» time
describes the phase transformation process. Traditional methods based on field
discretization and time-stepping algorithm cannot overcome this difficulty because they
require a stepping of «fast» time, as a result, too many steps of «fast» time in necessary to
consider a process in «slows» time. More than that, even algorithms, based on different
transformation in time domain (such as integral transformation with respect to time, are
serial expansions) cannot provide desirable effectiveness. Only analytical or approximate
analytical approaches, which present a temperature field solution in explicit form, are
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suitable here, but an area of such method application is very restricted and, in fact, they
can be used only for some one-dimensional (in space) problems. Thus to create an
effective algorithm for the considered problem is necessary to move the «fast» time from
solution procedure. Asymptotic approaches give an opportunity to build a mathematical
model with required properties. The first work in this direction was paper [10], where the
small parameter method was applied to Stefan problem. However the proposed algorithm
had not become popular, by almost the same reasons, what quasi-stationary
approximation had not become popular. Beside of that, nevertheless the requirement of
Stefan number smallness took place in the paper [10], slow phase transitions were not
determined as a field of effective application of the developed method.

Boundary element method [1;4] has become powerful tool for numerical solution of
boundary-value problems. It is especially effective in comparison with traditional finite
difference method and finite element method for elliptical problems in domain of
complex geometrical shape. The main idea of the present paper, concerning the numerical
approach, is using of boundary element method for solution of elliptical boundary-value
problems, which arise for every approximation on every time step. As a result, an
effective computational algorithm is developed, because of well-known advantages of
boundary element method such as discretization only boundary alone and high accuracy
of computations.

Nevertheless there are a lot of problems, concerning a taking into account of the
initial conditions, infinite and semi-infinite domains, in the proposed method. However
high computational effectiveness for considered kind of problems makes it practically the
best for computational solution of given problems.

Governing equations. Let consider D; filled by some biological structures (in the
simplest case by homogeneous or non-differentiated cellular mass). Let restrict the
following consideration by the case of homogeneous cellular structures. The tissue in the
domain D; is porous media where cells form a frame and intercellular space is porosity.
Let assume that pores are filled by same liquid, which is complex solution of nutrient
substances and excrements of cells. There is an intensive heat and mass transfer between
the frame and the liquid in pores, what is very important specific feature of the described
structure. Let the domain D, is partially or completely surrounded by the domain D,,
filled by the same solution completely. In general case there may be a convective transfer
in the domain D, and filtration flow in the domain D;. Thus a general mathematical

model of heat and mass transfer processes is considered system is following:

oT;
gl + (Vf VI = aAT; + qr; » (1)
ac; —
atll +(Vf VG =dpACy +q;,  i=LN, (2)
aaiJr(Vc V)T = ar AT, (3)
T
agriz +(VcV)Cp =dppACp,  i=LN. (4

where 7, is temperature in the domain D; (the one-temperature model, assuming the
temperatures of frame and solution in pores are equal, is used here), V', is filtration
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velocity, a; is thermal diffusivity of porous media, qr, is heat source, concerning the

metabolism of cells, C;; is concentration of the i-th component in porous media, d;; is
diffusion coefficient of i-th component in the porous media, g;; is sourse (sink) of the
i-th component in porous media, concerning the metabolism of cells, 7, is temperature in
the domain D,, ¥, is flow velocity in the domain D,, a, is thermal diffusivity of
solution, C;, is concentration of i-th component in the domain D,, d;, is diffusion
coefficient of i-th component in the domain D,, N, number of components,

participating of heat and mass transfer process, < is time, A is Laplas operator.
Restrict the following consideration by the case:
Vi=0, (5)
what corresponds to conventional multicellular structure, formed by independent cells,
that is simple colony of one-cellular organisms in immovable fluid. Then

T,
—L =@ AT +qy, (7)

ot
% _ dyACy +q;.  i=LN, (8)

ot
ai = azATz, (9)
ot

Ciz _ diyAC;»,  i=1N. (10)

If the condition (6) is not realised, it could be better to not consider the system (3),
(4), but to take into acount a convective transfer using boundary conditions for equations
(7), (8). This assumption is quite proved, since the system (7), (8) describes enough slow
prosesses.

Let prescribe boundary conditions for the systems (7), (8) and (9), (10). Note the
common boundary of the domain D; and D, as I" and reminder part as I7 and I,

correspondingly. The first kind boundary conditions can be presribed on the boundaries
I; and Ty:

B, =Tes (11)
Ci1|r1 = Cile> (12)
TZ|1"2 =Te> (13)
Ci2|r2 =Li2e (14)

or the second kind boundary condition

o7

}\‘1 a_l =dle> (15)
n T1
oC;
i = = gies (16)
n rl
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oT
Kza—z = 82> (17)
n l—~2
oC:;
di al2 =&i%es (18)
or the third boundary condition
h
M—| +a T‘—T =0, 19
15nr1 1[1rl le] (19)
oC:;
dil il +(Xl~1(ci1|r —Cilejzo, (20)
811 1—*1 1
o7, _
)\.ZEF +oc2(T2|r2 —Tzej—o, (21)
oC:;
di2 i2 +(Xl~2(ci2|r —Cizejzo, (22)
871 1—*2 2

where  Ti,.Ci1e. Tre.Ciner 81e- ile 826582 A€ known functions, all coefficients in

1
boundary conditions (11) — (22) are understood in conventional sense. Let consider
boundary conditions on the boundary I'. It is evident, that

Tl|r :TO|]"’ (23)
Cil|r = Ci2|r' (24)
It is possible to formulate the second condition as a forth kind boundary condition.
7“1% = }Lzai , (25)
an %) — g, %2 | (26)
on |F on |F

Conditions (25), (26) correspond to the case of cell fission in whole domain D, .
However, it is possible the situation, when the fission of cells takes place only on the
boundary T, then condition (25) is saved, but condition (26) must be replaced by
following condition:

dﬂ_&Cﬂ —dp il _ i@, (27)
on | on |p ot
here Z—n is velocity of the boundary T" propagation (velocity of biological structure
T

growth), y,; is “expenditure” coefficient of the i-th component during growth of

biological structure. Note that the condition (27) is not conventional Stefan condition
(nevertheless its form coincides with Stefan condition), because right hand part of the
condition (27) is determined by fission process, that is by parameters determining the
fission process such as the temperature, concentrations and possibly the histories,
therefore right hand part of the condition (27) is prescribed. It means that the given
problem is similar to phase transition problem under prescribed velocity of phase

102



ISSN 2312 - 2897. Bicuuk Juinponerposcbkoro yHiBepcurery. Cepis:Mexanika. 2015. T.23. Ne5. Bum.19.

boundary motion. The moving boundary velocity is determined in the considered problem
as a function of metabolism intensity.

The case, when cellular mass growth takes place in whole domain D; is more
complex then previous one. Consider a function describing metabolism intensity. As it is
noted earlier, metabolism intensity is assumed proportional to a cellular mass growth
(nevertheless the cell fission is very complex process with possibly enough large delay
time that is with sufficient influence of previous history of the process). Let metabolism
intensity function (7j,C;;) is defined, then correspondent source terms are following:

qi1 = %o, (28)
qr, =Aro. (29)
The function o is determined experimentally. The following fig. 1 — 10 show

possible dependencies of the function ® on temperature, concentrations of nutrient
substances and excrements:

; (’OI
Fig. 1 T Fig. 2 G

; O
Fig. 3 T Fig. 4 G

; (’OI
Fig. 5 T Fig. 6 G
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Fig. 7 Fig. 8 G

G

Fig. 9 Fig. 10

where ®; is function of influence of the i-th parameter on the metabolism velocity

function. It is evident, that
N+1

o=[]o: (30)
i=1

The cases, presented on the fig. 1 — 4, correspond to existence of clear optimum of
metabolism intensity. The cases 9 and 10 concern excrement concentration influence. As
it is noted earlier the growth of cellular mass is proportional to metabolism intensity

ds =AsO—X0Dg - (31)

Terms indicated by «0» in last relationship correspond to regular metabolism, which
is specific for tissues of highest animals.

Let consider a problem about motion of the boundary T" again, in particular, let
consider the case, when local volume change is determined by relation (31). The velocity
(deformation) field depends on mechanical links between cells. If cells are «free» in
intercellular solution the model of distributed sources in incompressible fluid can be
applied, according to which the velocity of the boundary T is determined as

Vilvo) =< [ay(xkpole i, @
Dy

where x; is arbitrary point of the curveline T".

If the cells are linked mechanically between themselves, to determine the motion of
the boundary T it is necessary to solve an elasto-plastic problem, as a rule, under large
strains. Consideration of such problems requires especial investigation and will not be
made in the present work.
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However, the another case is possible in biological structures, a biological structure
grows saving its shape in this case. Thus change of the structure volume can be referred
to the boundary T uniformly:

8Qp = J. qs (x)dx. (33)
Dy
The replacement of the boundary T is determined by the following relation:
3Q
8T = TDI (34)

here S is square of surface T" (length of curveline T in the plane case).

Dependencies, presented on fig. 1 — 10, and formalism, defined by the relationship
(30), have universal nature and can be applied to any biological systems. However, more
sophisticated metabolism processes are intrinsic for tissues of highest animals. If for
simplest organisms linear dependence of growth velocity on metabolism intensity defined
by relationship (31) is intrinsic, a tissue existence during an enough long time without
growth, but under non-zero metabolism intensity, restricted by some limits, is possible for
more complex multicellular organisms.

Other specific feature of metabolism processes in multicellular organisms is
possibility of death of part of cells, without metabolism stopping. A death of cells of the
simplest organisms is possible too, however there is possible practically stopping of
metabolism without death of cells in the simplest organisms, what is completely
impossible for multicellular one. Cell death in the case of multicellular organisms can be
determined by several criteria:

1) metabolism intensity is less than the first critical level (but more than the second
one) during enough long time (a cell doesn’t perish due to starvation, but stops fission
and dies as a result of old age);

2) metabolism intensity is less than the second critical level (a cell dies due to
starvation);

3) concentration of some nutrient substance is less than the first critical level (but
more than the second one) during enough long time (see fig. 5);

4) concentration of some nutrient substance is less than the second critical level;

5) excrement concentration is more than the first critical level (but is less than the
second one) during enough long time (see fig. 10);

6) excrement concentration is more than the second critical level (see fig. 9);

7) presence of some poison, concentration of which is more than the first critical
level (but is less than the second one) during enough long time;

8) pressure of some poison, concentration of which is more than the second critical
level (mortal concentration) (see fig. 9);

9) external attack (mechanical, electrical, and radioactive);

10) death of cells due to action of immune system of the organism.

One-dimensional case. Consider a one-dimensional case. The governing equations
in this case are

o,  o°T
ERrY
T ox

+ (]Tl , (35)
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2
8Czl :dl'l a C;ll +ql'1, i=1,N, (36)
ot ox
oT,  0°T,
“i2 _ ) 37
ot a axz ( )
i _g, _8Cl-22 . i=LN. (38)
ot ox

Let prescribe boundary conditions. As earlier, one from three main boundary
conditions can be prescribe, for example, the first kind boundary condition:

Tl|x:x1 = Tles (39)
Ci1|x:xl = Cile>
T2|x:x2 =T (40)

Ci2|x:x2 = Cizes

or the second kind boundary condition:
!
ox
oCy
ox

o7,
A —=
2 ox
g 0Cjy
" ox
or the third kind boundary condition:

,. T
Ox

={le> (41)

X=X

dy

={Yile>
X=X

=9e> (42)

X=X

=dYi2e>
X=X

vay(Rl,_, ~Tie | =0, @)

X=X

+ ail(ci1|x:xl - ile) =0,

oC;
d: il
il o

x:xl
o,

A —=
2 ox

0Ci»

+(12(T2|x:x2 _T2€):0’ (44)

X=Xy

+ ai2(ci2|x:x2 - CiZej =0.

d:

1

X=X9
Let consider boundary conditions on the growth boundary x=y :

gl (45)

ey =Toley

Ci1|x:y = Ci2|x:y'
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The following conditions correspond to case cell fission in whole domain D; :

A on =%y o ) (46)
ox |,— y OX |,— v
d; Xu - 2 o) (47)
ox | — v ox |- v

The last condition must be replaced by following condition for the case, when cell
fission takes place only on the tissue boundary:

%ul dip | _ Xi &

ox |p ox |p ot

Let consider as the simplest example one-dimensional (in space) one phase Stefan
problem, which is described by the following equation:

dj (48)

oc  o*C
Pl (49)
with the boundary conditions:
dp=Ce, (50)
C|FPAtA —opto (51)
oC
—| =q,, (52)
OX |
oC oy
d—| =y—=, 53
Ox | x ot 3)

where T, is the boundary of phase transformation, y is its coordinate.
C-Cy

Let transform the problem into dimensionless form. Let C= is the
Cn_Ck
dimensionless concentration, Xx* :? is dimensionless coordinate, F=% is the some
/

dimensionless number similar to number of Fourier in the theory of a thermal conduction.
Then the dimensionless form of the initial equation is

— =
o€ _oc¢C . (54)
oF  ox*

and dimensionless form of boundary conditions

c\r =C,, (55)
Cl. =Cpu, (56)
d aC
T(C=C) =] =de. (57)
X r
86; _ oY ) (58)
aX N 6TS[
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d(C” _Ck)t is dimensionless time, concerning motion of the boundary,

where T, =
A Xlz

St= % is Stefan number.

Then the initial equation can be written as
_ y—
0C =9°C L, (59)
Oty ox*?

As a rule, growth of biological tissue is rather slowly, therefore it is expedient to try
to apply solution method, developed for slow phase transition calculation, to the
considered problem. The mentioned approach is based on small parameter method,
according to which the problem solution will be searched in form of series:

Clxt)=C(xt)+ 38T (x0). (60)
k=1
Let's substitute representations (60) in initial formulation of the problem (49) — (53),
we shall receive:

— 6{%5:"5}

~0 w — 220
519 1510 3 sk ck = oC sl +q, (61)
ot ot 7 ox*? ox*?
0 o« k 2.0 2k
Stac + ZStk“a—C _9 6;2 + Y4 9 (iz +q, (62)
ot g ot oxX = oxX
240
T iq-0, 63)
ox*
241 AA0 A2 i-1
o’ct _oc? 2’ct_ac™! (64)
ox*2 ot ax*? ot
The general solution of the equation (63) is
C= a1x+b1, (65)
C= qux+ arx+by, (if g(x)#0). (67)

Let x; is the coordinate of the left-hand edge, x, is the coordinate of the right edge,
and y is the coordinate of moving phase transition boundary. Let boundary-values of the
functions are known:

108



ISSN 2312 - 2897. Bicuuk Juinponerposcbkoro yHiBepcurery. Cepis:Mexanika. 2015. T.23. Ne5. Bum.19.

dq_, dG,

d;
dx dx

=V, (68)
where V7 =¥(C) is velocity of phase transition boundary propagation, which one depends

on function of a metabolism. The function of a metabolism is determined through
concentrations of nutrient substances.

Let's consider the elementary case, if the velocity of promoting of boundary of linear
growth of a cell is by a stationary value:

V=v(C) (69)

Then we shall write a set of equations:

arxy +b] = ﬁ,
arx, +by +0(x2)= /5,
ay+by =ayy+by +0(y) (70)
dlal—dzaz—dzg =V.
dx =y
Let dzg =h, then having decided (solved) a system (70), we can find
Xly=y

coefficients aj,ay,b;,b,:

fi=fr=00)+ Ol )+ (7 +doh)y =) -

az_ d 11 (71)
y+72(x1—Y)—x2
1
1 fi= o= 0)+ Ol )+ (7 + oy =) -
a]:d— V+d2 h+ d L B (72)
! y+d—2(x1—y)—x2
1
fi= £ =00+ Qa4 (7 + dah)y—x) -
h=fi="H Vady| bt y LI (3
I D (3 y)-
Yy (0= y)-x,
1
fl—f2—Q(y)+Q(x2)+(V+d2h)(y—x1)di
by = fr-0lx2)-x; y L. (74)
y+d—?(x1—y)—x2
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Let's consider a case, if the velocity of promoting of boundary of linear growth
(increase) linearly depends on concentration:

V =kC. (75)

Then we shall note a set of equations:
ax1+b = f1,
aryx, +by +0(x2)= /5,
ay+b = ayy+by +0(y) (76)
diay —dyay - dz% = k(ay +by).
x=y
Having decided (solved) this system, we shall discover coefficients a;,b;,a,,b, :
dQ | fi+/,=0x)+00)
dX y—x

dl—k(y—x1)+M
y—X2

(77)

a1=d2

do

A htf-0x)rol) oy

a =(d1—ky+kXI)dX (x +y)d _d_ﬁ_d_)Q(' (78)
dl—k(y—x1)+ly_7x22 2

Wi it r-0lxr)+O1Y)
by = fi—xd, e
dl—k(y—x1)+;_7xzz

(79)

do

“E ot fit f2-0(xn)+00)

by = f=x2| 2(dy —ky-+ k) 4X e iR Y
dy = k(y —x )+ S

y—X3

Boundary element method application. The above-developed algorithm cannot be
directly applied to the two-dimensional and three-dimensional problems because
boundary-value problems for partial differential equations arise in the mentioned cases
instead boundary-value problems for ordinary differential equations as above. Thus two-
and three-dimensional cases require some numerical method for solution of elliptic
boundary-value problems in moving boundary domain. The most powerful tool for such
problems is boundary element method [6; 8], which requires a reformulation of the
considered problems as boundary integral equations.

Let consider the initial boundary value problem (7) — (27). Small parameter method
application to this problem is, generally speaking, similar to above one-dimensional case
application (see, for example, [2; 3]). Restrict the following consideration by plane case
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and by zero approximation of small parameter method, what corresponds to very small
value of the Stefan number analog. Thus

ar =10, (81)
a)

ACY =-4iL 1N, (82)
dj

ATZO = 0, (83)

ACY =0, i=1N. (84)

Boundary conditions for the system (81) — (84) coincide with boundary conditions
for the initial system. Let apply methods of potential theory to the system (81) — (84).

1(x0 ) (xg) = [ @o (. xo)a ds— ITOMCJH [oo(x, xo)—dxdy, (85)
r on r on D a

ocy o .
1(x0)CH (x0) = [ o x50 ) =L 5 Las—[ch 290(x.x0) XO)dSJF j@o(x,xo)—qlldxdy, (86)
n on dy

I I D
1(x0 )73 (x0) = [ oolx, xo)aa ds— | TOMG’ (87)
r r n
2 2
ac oo (x,
Ao )chlon)= J ool v) 2as— [ ey olaly g
I " I "

Here the function ¢q(x,x) is well-known fundamental solution of Laplace equation,
which is in plane case

I 1
o (x,x0)=~—In

N R i
and function y is determined by the observation point position:
0,(x0)$D,(x0)§E I

1(x0)=41/2,(xg) el
1,()(0)6 D.

The system (85) — (88) can be easy solved by conventional boundary element
method. A specific feature of the problem is boundary condition on the boundary
I'=T;NT,, that is boundary of growth. If the forth kind boundary conditions are
prescribe on the T" (volume growth), then correspondent integral equations are simply
coupled on the curve-line I'. If correspondent fluxes on the curve-line I' are
discontinuous, then the gap value on previous time step is used.
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A quite natural problem of calculation of last domain integrals in equations (85), (86)
arise during the numerical solution. As a rule, it leads to serious computational
difficulties, however since the time scale of growth process is enough large and the
source terms in the initial equations (81), (82) are understood as averaged in time, the
considered source terms are often constant with respect to space variables. The case of
constant source is considered in the present work. The domain integrals can be easy
transformed in this case

. 8
J 00 (x.x0)gdxdy=g [div gradrdxdy=g [ ds, (89)
n
D, D, I
r2
where A, =@, thatis ¢; = —g—(lnr—l).
T

The results of numerical calculations of model problems of growth of one-cell
organism colony are shown in fig. 11, 12 and in tab. 1, 2.

Table 1
Mass of growing biological structure shown in fig. 11

Time (h) Mass of biological structure
0 0,28378030
0,28792960
0,29541710
0,30700770
0,32328381
0,34431560
0,37013320
0,40161840

N WIN|F-

Fig. 11. Growth of biological structure, nitritions are going into the domain
from above and from below
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Table 2
Mass of growing biological structure shown in fig. 12

Time (h) Mass of biological structure
0 0,28751980
0,30294060
0,32969960
0,36981910
0,42709790
0,50863440
0,63095590

(G| |W N~

Growth in direction of maximum concentration of nutrition is evident in both cases.
Note only that the structure shown in fig. 11 and 12 initially were the same structure and
only nutrition concentrations were different.

Fig. 12. Growth of biological structure, nitritions are going into the domain
from left and from below

Conclusions. The main idea of the present paper is to develop a computational
method for the problem of biological structure growth, based on the fact that biological
growth is relatively very slow process. Considered circumstance leads to asymptotic
analysis based on smallness of relation of correspondent time scales. Nevertheless the
problem was formulated in quite general form, as a result of asymptotic analysis by small
parameter method it is managed to build an analytical solution in one-dimensional case
and to propose effective boundary element algorithm for numerical solution.

Calculations of specific biological structures did not concern the aim of the present
work. However the examples of calculations of special model problems show workability
and effectiveness of the proposed method.

The next stage of investigation concerning applications of the developed approach to
the specific biological problems will be object of following papers, however it will
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require an improvement of dependencies, presented in fig. 1 — 10. The following
development of the model which can lead to taking into account of filtration flow inside
the biological structure, convective effects in surrounding fluids, complex source fields,
will require only some computational changes, but will not change the algorithm in
general.

There is a quite natural question about applicability of the algorithm to the very
important problem of tumor growth. The answer remains unclear at the moment, because
it is unclear can the used metabolism model describe a tumor growth process or not.
However there is not any mathematical insuperable hindrance, but only biological.
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