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BACKGROUND: The average lifespan of humans 
is increasing, and with it the percentage of people 
entering the 65 and older age group is growing 

rapidly and will continue to do so in the next 20 years. 
Within this age group, cardiovascular disease will remain 
the leading cause of death, and the cost associated with 
treatment will continue to increase. Aging is an inevitable 
part of life and unfortunately poses the largest risk factor for 
cardiovascular disease.

CONTENT: We provide an overview of some of the 
molecular mechanisms involved in regulating lifespan 
and health, including mitochondria, telomeres, stem cells, 
sirtuins, Adenosine Monophosphate-activated Protein 
Kinase, Mammalian Target of Rapamycin and Insulin-like 
Growth Factor 1. We also provide future perspectives of 
lifespan and health, which are intimately linked fields.

SUMMARY: Aging remains the biggest non-modifiable risk 
factor for cardiovascular disease. The biological, structural 
and mechanical changes in senescent cardiovascular 
system are thought to contribute in increasing incidence 
of cardiovascular disease in aging. Understanding the 
mechanisms contributing to such changes is therefore 
crucial for both prevention and development of treatment 
for cardiovascular diseases.

KEYWORDS: cardiovascular aging, mitochondria, 
telomeres, Sirtuin, stem cells

Indones Biomed J. 2013; 5(3): 139-50

LATAR BELAKANG: Rata-rata usia harapan 
hidup manusia terus meningkat, hingga 20 tahun 
ke depan jumlah persentase manusia yang berusia 

lebih dari 65 tahun akan terus bertambah. Pada kelompok 
usia ini, penyakit kardiovaskular merupakan penyebab 
kematian yang utama, dan biaya pengobatannya juga akan 
terus meningkat. Penuaan merupakan bagian yang tidak 
dapat dihindari dalam hidup dan sayangnya merupakan 
faktor risiko terbesar untuk penyakit kardiovaskular.

ISI: Kami akan membahas beberapa mekanisme molekular 
yang terlibat dalam pengaturan proses penuaan dan 
kesehatan, meliputi mitokondria, telomer, sel punca, sirtuin, 
Adenosine Monophosphate-activated Protein Kinase, 
Mammalian Target of Rapamycin, dan Insulin-like Growth 
Factor 1. Kami juga membahas pandangan ke depan 
mengenai proses penuaan dan kesehatan yang keduanya 
saling terkait. 

RINGKASAN: Proses penuaan merupakan faktor risiko 
utama yang tidak dapat dimodifikasi untuk penyakit 
kardiovaskular. Perubahan biologis, struktural, dan mekanis 
pada proses penuaan sistem kardiovaskular memiliki 
peran pada peningkatan kejadian penyakit kardiovaskular 
pada usia lanjut. Memahami mekanisme molekular yang 
berperan pada perubahan tersebut sangatlah penting, baik 
untuk pencegahan maupun pengembangan terapi penyakit 
kardiovaskular.

KATA KUNCI: penuaan kardiovaskular, mitokondria, 
telomer, Sirtuin, sel punca
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Aging is inevitable. Yet for centuries people have tried to 
slow or stop it, from bathing in the blood of virgin girls to 
concocting an elixir of life. These days, anti-aging research 
is on a more scientific footing. And while we are no closer 
to finding the fountain of youth, humans for a variety of 
reasons are living longer than ever before.(1)
 The World Health Organization estimated that there 
were 650 million senior citizens in 2007 and the figure 
is predicted to triple in the next 50 years with about 80% 
of the elderly population living in developing countries.
(2) Both aging and disease result in the same outcome: 
the impairment of normal biological function. It would 
not, therefore, be a surprise if tissue dysfunction resulting 
from an aging mechanism eventually manifested itself as 
a disease. Therefore, understanding mechanisms of aging 
would help understand the processes which govern the 
development and progression of some diseases. This in turn 
would lead to the development of new therapeutic methods 
for disease treatment and, more importantly, prevention. 
 Cellular senescence is the irreversible growth arrest 
of individual mitotic cells, which as a consequence display 
a radically altered phenotype that is thought to impair tissue 
function and predispose tissues to disease development 
and/or progression as they gradually accumulate. When 
discussing the impact of senescent cells may have on 
aging and age-related disease, it is important to take into 
consideration factors which may result in the removal and 
replacement of senescent cells. These include apoptosis and 
the availability of stem cell reserves.(3)
 It is not clear to what extent both stem cells and 
somatic cells play in tissue regeneration, but the functional 
ability of stem cells appears to become impaired with 
age.(4) Stem cells express telomerase and are unlikely to 
become senescent in response to telomere shortening. Some 
of the changes observed during cellular senescence are 
likely to be cell-type specific. For example, in senescent 
vascular endothelial cells, endothelial Nitric Oxide Synthase 
(eNOS) activity has been found to be decreased.(5,6) Since 
Nitric Oxide (NO) is important in regulating vascular 
function, a decline in its production may have detrimental 
consequences. A reduction in NO production by eNOS, for 
example, has been suggested to be a significant risk factor for 
cardiovascular disease (CVD).(7) Aging of the vasculature 
results in increased arterial thickening and stiffness as well 
as dysfunctional endothelium. Clinically, these changes 
result in increased systolic pressure and present major risk 
factors for development of atherosclerosis, hypertension 

Introduction
and stroke, and arterial fibrillation.(8)
 Aging, although an unavoidable cardiovascular risk 
factor, may overcome all other risk factors collectively. 
Therefore, understanding fundamental mechanisms 
that dictate the pace of aging could lead to significant 
advancements into both preventative and therapeutic 
treatments of CVD.(9)

Aging and CVD
The most important determinant of cardiovascular health 
is a person’s age. By 2030, approximately 20% of the 
population will be aged 65 or older. In this age group, CVD 
will result in 40% of all deaths and rank as the leading cause. 
Furthermore, the cost to treat CVD will triple in that time.
(10,11) Hence, it remains vital that we understand why age is 
such a critical component of CVD etiology. However, until 
recently, the fields of CVD and molecular biology of aging 
have remained largely separate. Aging is associated with a 
progressive decline in numerous physiological processes, 
leading to an increased risk of health complications and 
disease. By delivering oxygenated blood to all tissues in 
the body, the health of the cardiovascular system is vital 
for health of every tissue and longevity of the organism as 
a whole. Aging has a remarkable effect on the heart and 
arterial system, leading to an increase in CVD including 
atherosclerosis, hypertension, myocardial infarction, and 
stroke.(12)
 A common feature of aging tissues is low-level chronic 
inflammation, termed sterile inflammation (indicating an 
absence of detectable pathogens) or inflammaging.(13-16) 
Chronic inflammation can drive pathology by at least two 
mechanisms. First, infiltrating immune cells can degrade 
tissues because they release reactive or toxic moieties. 
Second, inflammatory cytokines can provoke phenotypic 
changes that are independent of the immune system in 
nearby cells. For example, Interleukin-6 (IL-6) and IL-8 can 
stimulate angiogenesis, disrupt cell-cell communication, 
impede macrophage function, induce innate immune 
responses, and promote epithelial and endothelial cell 
migration and invasion.(17-23) This chronic inflammation 
may derive partly from an age-related metabolic dysfunction.
 Fat tissue, frequently the largest organ in humans, is 
at the nexus of mechanisms involved in longevity and age-
related metabolic dysfunction. Fat distribution and function 
change dramatically throughout life.(24) Cellular stress 
and preadipocyte overutilization with aging induce cellular 
senescence, leading to impaired adipogenesis, failure to 
sequester lipotoxic fatty acids, inflammatory cytokine and 
chemokine generation, and innate and adaptive immune 
response activation. These pro-inflammatory processes may 
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amplify each other and have systemic consequences.(24)
 Chronic inflammation may also derive in part from 
senescent cells: senescent cells secrete pro-inflammatory 
cytokines, chemokines, and proteases, termed the 
Senescence-associated Secretory Phenotype (SASP).
(25,26) SASP is primarily a DNA Damage Response 
(DDR).(27) The SASP, through the inflammatory, growth-
promoting, and remodeling factors that it produces, 
can potentially explain how senescent cells alter tissue 
microenvironments, attract immune cells, and, ironically, 
induce malignant phenotypes in nearby cells. Proteins that 
are associated with the SASP, such as Tumor Necrosis Factor 
alpha (TNF-α), IL-6, Matrix Metalloproteinases (MMPs), 
Monocyte Chemoattractant Protein-1 (MCP-1), and Insulin-
like Growth Factor Binding Proteins (IGFBPs), increase in 
multiple tissues with chronological aging(28), and occur in 
conjunction with sterile inflammation. This finding suggests 
that SASP is the main driver of age-related inflammation, at 
least in fat tissue under certain conditions. Thus, selective 
elimination of senescent cells or their effects might be a 
means to reduce age-related sterile chronic inflammation, 
enhance health span, and interrupt the link between aging 
and chronic disease.(29) Measuring cardiac-specific 
senescence, DNA damage, as well as levels of apoptosis 
and necrosis, coupled with fibrosis measurements in animal 
models of aging, will lead to a better understanding of the 
link between aging and CVD.(9)

Mitochondria and Cardiovascular Aging
The prevalence of CVD increases dramatically with 
advancing age. More than 80% of cases of coronary artery 
disease and ~75% of cases of congestive heart failure are 
observed in geriatric patients.(30)
 Mitochondria plays important roles in a myriad of 
cellular processes including Adenosine Triphosphate (ATP) 
production via oxidative phosphorylation, biosynthetic 
pathways, cellular redox homeostasis, ion homeostasis, 
oxygen sensing, signaling, and regulation of programmed 
cell death. Mitochondrial dysfunction is central to theories 
of aging, because age-related changes of mitochondria are 
likely to impair a host of cellular physiological functions in 
parallel and contribute to the development of all common 
age-related diseases.(31) The evidence supporting the role 
of mitochondrial oxidative stress, mitochondrial damage and 
biogenesis as well as the crosstalk between mitochondria 
and cellular signaling in cardiac and vascular aging.
 Aging is known to be associated with mutations 
in genes of mitochondrial genome, which encodes key 
proteins of respiratory complex, including components of 
electron transport chain and ATP synthase complexes.(32) 

Considerable evidence has been published that with advanced 
age mitochondrial production of Reactive Oxygen Species 
(ROS) significantly increases both in the heart(33) and the 
vasculature(34). Age-dependent mitochondrial dysfunction 
is closely correlated with abnormal mitochondrial ROS 
production and detoxification.(35-37) Mitochondria-
derived ROS are likely to contribute to the development of 
chronic low-grade vascular inflammation in aging(34) by 
activating redox signaling pathways. Furthermore, recent 
studies suggest that mitochondria-derived ROS contribute 
to accelerated development of the senescent phenotype in 
endothelial cells (i.e., by activating Akt.(28) Endothelial 
cell senescence may impair  regenerative and angiogenic 
capacity of endothelium, its reactivity and promote 
progression of atherosclerosis by altering secretion of 
cytokines, growth factors, and proteases in vascular wall. 
Another potentially important link between mitochondrial 
oxidative stress and vascular aging is induction of apoptosis.
(38,39) Oxidative stress in aging is associated with an 
increased rate of endothelial apoptosis(40,41), which may 
contribute to microvascular rarefaction impairing the blood 
supply of  heart(42) and brain(43).
 The molecular mechanisms underlying age-
related increases in mitochondrial oxidative stress in 
the cardiovascular system are multifaceted and likely 
involve cell-autonomous effects, including a significant 
decline in reduced glutathione content (44), dysregulation 
of antioxidant defense mechanisms (e.g., peroxynitrite-
mediated nitration and inhibition of Manganese Superoxide 
Dismutase (MnSOD))(39), and a dysfunctional electron 
transport chain(45,46). Recent studies suggest that 
age-related changes in endocrine/paracrine regulatory 
mechanisms-including activation of the renin-angiotensin-
aldosterone system, adrenergic signaling, and an age-
related dysfunction of growth hormone/Insulin-like Growth 
Factor-1 (IGF-1) signaling also have an important role 
in promoting mitochondrial oxidative stress in the aged 
cardiovascular system.(31)
 In heart and the vasculature of young animals in 
response to increased production of mitochondria-derived 
ROS, an adaptive Nuclear Factor (NF)-E2-related factor 2 
(Nrf2)-driven antioxidant defense mechanism manifests, 
which upregulates Antioxidant Response Element (ARE)-
driven expression of detoxifying and antioxidant enzymes 
and the cystine/glutamate transporter involved in glutathione 
biosynthesis.(47,48) Recent findings demonstrate that in 
aging vessels increased production of ROS by mitochondria 
and other sources fails to activate Nrf2 resulting in increased 
cellular sensitivity to the deleterious effects of oxidative 
stressors.(47-49)
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Figure 1.  Summary of mitochondrial-targeted interventions and their therapeutic potential in aging.(31) (Adapted with permission 
from American Heart Association).

 Mitochondria are highly dynamic organelles, and 
dysregulation of mitochondrial turnover is likely one of 
the intrinsic causes of mitochondrial dysfunction, which 
contributes to dysregulation of cell metabolism, oxidative 
stress, and altered signal transduction during the aging 
process.(50) The removal of dysfunctional mitochondria 
through autophagy is crucial for the maintenance of cell 
viability.(51) The efficiency of this process declines with 
advancing age, which may be critically involved in heart 
senescence and in age-related CVD.(52,53) Regardless of 
the mechanism(s) primarily responsible for mitochondrial 
decay during aging, mitochondrial quality control is 
essential for the preservation of cardiomyocyte homeostasis. 
This task is accomplished through the complex coordination 
of several processes.(54)
 Mitophagy is a highly selective process that can 
promote the elimination of dysfunctional or unnecessary 
mitochondria. The loss of mitochondrial membrane 
potential (Δym) represents a major trigger of mitophagy.
(55) Although the molecular regulation of mitophagy 
has not yet been completely elucidated, the Mammalian 
Target of Rapamycin (mTOR)/Adenosine Monophosphate 
(AMP)-activated Protein Kinase (AMPK) pathway is 
proposed to be a major checkpoint.(56) AMPK, in addition 
to stimulating mitochondrial removal through autophagy, 
enhances activity of Sirtuin-1 (SIRT1) and its downstream 
target Peroxisome Proliferator-activated Receptor gamma 
Coactivator-1 alpha (PGC-1a), resulting in stimulation of 
mitochondrial biogenesis.(57) Hence, through the activity 
of AMPK, mitophagy and mitochondrial biogenesis are 
coordinately regulated, maintaining a healthy and functional 
pool of mitochondria in the cell.(58)

 Aging is associated with impaired mitochondrial 
biogenesis and reduced mitochondrial mass in the vascular 
endothelial and smooth muscle cells.(46,59,60) Available 
evidence suggests that in the aged vasculature, because of 
an increased production of ROS and downregulation and 
uncoupling of eNOS, the bioavailability of NO is significantly 
decreased(61), which results in a downregulation of 
PGC-1a and consequential dysregulation of constituents 
of the electron transport chain and other mitochondrial 
proteins(46). It is likely that decreased NO bioavailability is 
causally linked to dysfunction of mitochondrial biogenesis in 
other organs as well during aging.(60,62) Aging-associated 
phenotypes have been linked not only to mitochondrial 
dysfunction but also to aberrant mitochondrial biogenesis 
caused by impaired retrograde signaling regulated by 
nuclear genes and factors dependent on mitochondrial 
metabolism (e.g., ATP, Ca2+, ROS, NO, Nicotinamide 
Adenine Dinucleotide (NAD)+/NADH).(63) Pathways that 
improve mitochondrial function, attenuate mitochondrial 
oxidative stress, and regulate mitochondrial biogenesis 
have recently emerged as potential therapeutic targets for 
prevention of the development of age-related CVD.
 The important role of mitochondrial oxidative stress 
and mitochondrial dysfunction in age-related cardiovascular 
pathologies is evident, and we are at the beginning of an 
exciting phase of research on understanding the genetic 
and epigenetic mechanisms underlying the mitochondrial 
alterations that occur with age.(31)

Telomeres and Cardiovascular Aging
Hypothesized molecular mechanisms for aging in modern 
biology have abounded. These have included stem cell 
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failure, mitochondrial dysfunction, genotoxic stress, and 
epigenetic changes. Recent cumulative evidence points 
to telomere shortening as sufficient to provoke all these 
mechanisms. The manifestations of telomere-mediated 
disease, especially in adults, can be subtle and are often 
indistinguishable from the slow, gradual functional decline 
that is a hallmark of aging. The compelling clinical evidence 
therefore points to telomere shortening itself as being 
sufficient, or perhaps more broadly representing forms of 
genotoxic stress that contribute to age-related changes.(64)
 Telomeres define the ends of linear chromosomes. 
They are made up of repetitive DNA sequences that are 
bound by specialized proteins. The human telomeric DNA 
sequence is a tandem repeat of TTAGGG that extends 
several kilobases.(65-67) The telomere-binding complex of 
proteins, known as shelterin, together with telomere DNA, 
functions as a dynamic unit that protects chromosome ends 
from being recognized as broken DNA, thus preventing 
their degradation and participation in fusion events.(68) 
Telomeres are therefore essential for the maintenance of 
genomic integrity. Telomerase is the specialized polymerase 
that synthesizes new telomere repeats.(69,70) It offsets the 
shortening that normally occurs with cell division since 
the replication machinery does not copy fully to the ends. 
Telomerase has two essential core components, Telomerase 
Reverse Transcriptase (TERT) and Telomerase RNA (TR), 
the latter of which provides the template for telomere 
repeat addition.(71-73) Telomeres have long been linked 
to processes of cellular aging. Telomere length shortens 
with age and predicts the onset of replicative senescence. 
When telomeres become critically short, they become 
dysfunctional and activate a DNA damage response that 
resembles double-strand breaks.(74) The resulting signaling 
cascade provokes apoptosis and/or a permanent cell cycle 
arrest that, until recently, has been considered the primary 
functional consequence of senescence.(64)
 Cumulative studies in humans with telomere 
maintenance disorders and telomerase knock-out mice have 
demonstrated that short telomeres precipitate functional 
decline in different tissues, including the cardiovascular 
system.(75) Mechanistically, telomere dysfunction-driven 
tissue compromise is thought to be secondary to the activation 
of DNA damage signaling pathways that converge on p53, a 
central executor of the DNA damage response pathway.(76) 
p53 activation induces senescent and apoptosis pathways, 
particularly in stem cell and progenitor compartments of 
highly regenerative organs. The elimination of stem and 
progenitor cells is thought to be the driving force in the 
development of tissue defects.(77)
 Telomere dysfunction-activated p53 directly leads 

to mitochondrial and metabolic compromise through 
the repression of the master regulators of mitochondrial 
biogenesis and function, PGC-1a and PGC-1b.(78) Given 
that an accelerated rate of telomere shortening may be 
expected from the increased cellular turnover associated 
to inflammation occurring in atherosclerosis, and from the 
action of several cardiovascular risk factors (e.g., oxidative 
stress, hypertension, diabetes, smoking, psychological 
stress), telomere exhaustion may be a surrogate marker of 
CVD.(79)

Sirtuin, Class O of Forkhead Box Transcription Factors 
(FOXO) and Cardiovascular Aging
Age is one of the major risk factors associated with CVD. 
Part of this complex phenomenon is the deterioration of 
tissues that constitute heart and its associated vasculature. 
Aging results in a progressive functional and structural 
decline in multiple organs, and in particular, has profound 
effects on heart and arterial system. Age-related cardiac 
and vascular changes include impaired endothelial 
function and intimal proliferation(80), increased 
arterial stiffness(8,81-85), left ventricular (LV) diastolic 
dysfunction(12,86,87), LV pathological hypertrophy(88), 
diminished LV systolic reverse capacity(12,87), decreased 
heart rate variability(89-91), and a reduction in maximal 
heart rate(92). Furthermore, as a consequence of aging, the 
interaction between the heart and arterial system is altered 
to preserve ventricle–arterial homeostasis.
 Sirtuins post-translationally modulate the function of 
many cellular proteins that undergo reversible acetylation-
deacetylation cycles, affecting physiological responses 
that have implications for treating diseases of aging.(93) 
Sirtuin proteins bolster stress resistance of mammalian 
cells by virtue of their abilities to remodel metabolism, 
alter inflammatory responses, and enhance the ability to 
cope with oxidative species. Because many of these same 
pathways are pathologically altered in the aged, activation 
of sirtuins represents a feasible means for attenuating age-
related CVD.(94)
 In mammals there are seven members of the sirtuin 
family, SIRT1-7, of which SIRT1 has become the most 
well-studied protein. The expression level of SIRT1 
increases upon calories restriction (CR) in several rodent 
and human tissues, such as white adipose, liver, skeletal 
muscle, brain and kidney.(95-98) SIRT1 activates PGC-
1a by deacetylation of lysine residues(99,100), which 
results in increased mitochondriogenesis(99,101). A 
decline in mitochondrial function with age is thought 
to be a contributing factor to insulin resistance and age-
related cancers.(102,103) Interestingly, CR elicits similar 
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improvements in mitochondrial function.(104-107) 
Therefore, it is possible that a small-molecule activator of 
SIRT1 may activate some of the same pathways that are 
modified by CR and could be a therapy for diseases of aging.
 Two different enzymatic activities have been reported 
for the sirtuins: an Adenosine Diphosphate (ADP)-ribosyl 
transferase(108,109), and/or a deacetylase activity(110-112). 
The most important and well-studied protein of this family, 
SIRT1, is an NAD+-dependent deacetylase.(113) The 
deacetylation reaction removes an acetyl group from the 
lysine side chains of a protein substrate while cleaving 
NAD+ in the process to generate the deacetylated protein 
2′-O-acetyl-ADP-ribose and nicotinamide. Overexpression 
or activation of SIRT1 has been shown to modulate 
mitochondrial biogenesis, metabolic rate, insulin sensitivity, 
glucose and lipid metabolism.(114-119) When there is a 
limiting supply of fuel substrates to produce the required 
amount of ATP, concentrations of NAD are elevated. As 
SIRT1 activity is increased by elevated NAD levels, it 
may therefore act as a sensor of cellular NAD+/NADH 
levels, contributing to the adaptive changes in the activity 
of transcription factors, co-activators or co-repressors (for 
example, nuclear receptor interacting protein 1 (NRIP1), 
peroxisome proliferate-activated receptor-a (PPAR-a) and 
PGC-1a that have key roles in metabolic adaptations to 
nutrient availability.
 SIRT1 activation can improve cardiac function 
through effects on multiple pathways including improved 
vasorelaxation (possibly through K-channel inhibition), 
anti-inflammatory activity on macrophages and foam-cell 
formation. This is in addition to increased scavenging of 
ROS, increased NO synthase activity, reduced platelet 

aggregation, angiogenesis activity and anti-apoptosis 
activity.(120-129) As an example, SIRT1 regulates the 
activity of PGC-1a, a central factor in controlling energy 
state and contractile function in cardiac muscle.(130)
 SIRT1-induced angiogenic activity is probably 
mediated via FOXO transcription factors that regulate 
blood vessel endothelial development.(131,132) The 
interaction between SIRT1 and FOXO proteins also leads 
to cardioprotection in a p53-dependent manner against 
a number of different stressors.(133,134) Indeed, SIRT1 
expression is elevated during vascular development, 
whereas loss of its activity leads to limited blood vessel 
sprouting, defective blood vessel formation and attenuated 
ischaemia-induced neovascularization.
 One of the intermediates in insulin/IGF-1 signaling 
cascade is activation of serine/threonine kinase Akt/Protein 
Kinase B (PKB) and Serum/Glucocorticoid-regulated 
Kinase (SGK).(135) From the standpoint of aging, the most 
important Akt and SGK substrates appear to be FOXOs.
(136,137) Akt and SGK-mediated phosphorylation of 
FOXOs results in FOXO sequestration in the cytoplasm. 
Mutations that decrease signaling though the insulin/IGF-1 
signalling pathway reduce the phosphorylation of FOXOs, 
resulting in nuclear translocation.(138,139) In the nucleus, 
FOXOs modulate the expression of genes that increase 
lifespan.(140-142) Thus, IGF-1 signaling is likely to promote 
a chronic aging-promoting effect on cardiomyocytes. 
These sensitizing effects of growth factor signaling genes 
in various mammalian cell types may be mediated in part 
by the inactivation of FOXO forkhead stress resistance 
transcription factors regulate cellular protection in part by 
modulating the expression of antioxidant enzymes such as 

Figure 2. Multiple target organs in which SIRT1 
activators can potentially have effects to treat diseases 
of aging . (93) (Adapted with permission from Nature 
Publishing Group).
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Superoxide Dismutase-2 (SOD2).(144)
 The metabolic effects of FOXO1 vary with the tissue, 
but they generally antagonize the actions of insulin.(144-
149) FOXO1 activity itself is negatively regulated by insulin 
through Akt phosphorylation, which causes it to translocate 
to the cytoplasm from the nucleus. Whether altered 
FOXO1 levels or activity can affect lifespan in mammals 
has not been reported.(150) The integration of individual 
FOXO and sirtuin family members into various aspects 
of vessel growth, maintenance, and function provides new 
perspectives on disease mechanisms of aging, the most 
important risk factor for medical maladies of the vascular 
system.(151)

Nutrients and Cardiovascular Aging
CR, a 20% to 40% reduction in calorie intake, which reduces 
the levels of IGF-1 and other growth factors, has been 
consistently shown to increase life span and to prevent the 
development of age-associated cardiovascular functional 
and structural changes in several model organisms.(152-
159) In particular, CR has been shown to improve arterial 
flow-mediated vasodilation(160,161) and to delay the 
development of atherosclerotic lesions in rodents(154). 
CR significantly ameliorates LV diastolic function of the 
aging heart and reduces arterial stiffness.(153,156,157,160) 
Moreover, long-term CR has been shown to improve 
autonomic function and, in particular, to increase the high-
frequency component of the heart rate variability spectra, 
a marker for parasympathetic activity in rats.(158) Finally, 
long-term CR has a powerful effect in preventing/delaying 
the age-related increase in the severity of cardiomyopathy 
in rodents as well as in monkeys.(159,162,163)
 CR, defined as a reduction in food intake without 
malnutrition, is a robust anti-aging intervention and the 
most powerful physiological inducer of macroautophagy.
(164) The modulation of the autophagic response 
represents a primary mechanism underlying the lifespan-
extending properties of CR.(165-167) There are a number 
of hypotheses regarding the mechanisms by which CR 
mediates its beneficial effects on aging in lower organisms 
that could have relevance to slowing cardiovascular aging in 
humans. These include a decrease in chronic inflammation, 
a reduction in the levels of various hormones and growth 
factors, an increased resistance to oxidative stress, as well 
as the potentiation of antioxidant defense mechanisms.(168)
 The original idea that CR works passively by 
suppressing metabolic rate or reducing damage caused by 
ROS is being replaced by a fundamentally different model 
in which CR triggers an active defense response that evolved 
to promote survival during harsh conditions. At the center of 

this response are so-called “longevity regulatory” pathways, 
which include IGF-1, mTOR, AMPK and NAD+-dependent 
deacetylases (sirtuins).(9)
 Many of the fundamental molecular processes involved 
in CR-mediated protection of the cardiovascular system are 
known. CR increases mitochondrial function while reducing 
oxidative stress in vasculature, in part by inducing expression 
of the Nfr2 stress response transcription factor, which 
induces expression of nicotinamide adenine dinucleotide 
phosphate-oxidase (NADPH): Quinone Oxidoreductase 
1, Heme Oxygenase 1, and Glutathione S Transferase.
(169-171) CR also reduces inflammation by suppressing 
the activity of vascular adhesion molecules, prostanoids, 
and inflammatory cytokines in both rodents(172) and 
humans(173). Endothelial function is enhanced and both 
atherosclerosis and arterial stiffness are reduced by CR in 
rodents.(174,175) With regard to cardiac function, CR delays 
the age-related decline in diastolic filling accompanied 
by reductions in inflammation, cardiomyopathy, cardiac 
fibrosis, and myocardial degeneration.(176)
 Coenzyme (Co)Q contributes to stabilize plasma 
membrane, regenerates antioxidants such as ascorbate and 
a-tocopherol, and regulates the extracellularly induced 
ceramide-dependent apoptosis pathway.(177,178) NAD(P)
H-dependent reductases act at the plasma membrane to 
regenerate CoQH2, contributing to maintain its antioxidant 
properties. As a whole, both CoQ and its reductases 
constitute a transplasma membrane antioxidant redox system 
responsible of the above described functions.(179-181) The 
upregulation of plasma membrane redox system that occurs 
during CR decreases the levels of oxidative stress in aged 
membranes.(182-185) CR modifies composition of fatty 
acid in plasma membrane, resulting in decreased oxidative 
damage including lipid peroxidation.(186,187) More 
importantly, plasma membrane redox activities and also the 
content of CoQ, which decline with age, are enhanced by 
CR, providing protection to phospholipids and preventing 
lipid peroxidation reaction progression.(182-185)
 The logical extension of this idea is that it should 
be possible to mimic the beneficial effects of dieting and 
exercise by tweaking the right pathways, using small 
molecules. Studies with “CR mimetics” such as resveratrol 
and metformin (which activate the SIRT1-AMPK system) or 
rapamycin (which inhibits mTOR), show that it is possible 
for a rodent to be obese and sedentary while maintaining 
the physiology of a lean animal.(114,188-191) Recent work 
has also identified a secreting hormone termed irisin, which, 
when increased, induces energy expenditure in the absence 
of exercise, positively influencing obesity and glucose 
homeostasis. However, the overall effect of irisin on CVD 
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remains largely unexplored.(192)
 Resveratrol has been shown to recapitulate the 
transcriptional profile and some of the physiological changes 
that develop under CR. Indeed, both CR and resveratrol 
supplementation inhibit gene expression profiles associated 
with cardiac aging in mice. In addition, resveratrol improved 
survival and reduced the prevalence of cardiac pathology in 
mice fed a high-calorie diet.(188,193)
 In general, CR may affect vascular health both by 
improving systemic risk factors for coronary artery disease 
(e.g., plasma lipid and glucose levels, blood pressure) 
and by modulating cellular functions and gene expression 
in endothelial and smooth muscle cells that create a 
microenvironment in the vascular wall, which does not 
favor atherogenesis (e.g., attenuation of ROS production, 
anti-inflammatory effects).(49)

Conclusion

Aging, although an unavoidable cardiovascular risk factor, 
may overcome all the other risk factors collectively. 
Therefore, understanding how aging mechanisms cause 
alterations to tissues and understanding the consequences 
of those alterations brings us one step closer to developing 
new therapeutic ways of treating and, more importantly, 
preventing the appearance of age-related CVD.
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