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B
ACKGROUND: The strong inverse association 
of plasma levels of high-density lipoprotein 
(HDL) cholesterol with coronary heart disease 

(CHD) found in human epidemiological studies led to the 
development of the ‘HDL cholesterol hypothesis’, which 
posits that intervention to raise HDL cholesterol will result 
in reduced risk of CHD.  A number of recent developments 
have brought the potential protective role of HDL into 
question. Several clinical trials of agents that substantially 
raise HDL-C have been demonstrated to not reduce CHD 
event rates.

CONTENT: For decades, HDL and HDL-cholesterol 
(HDL-C) levels were viewed as synonymous, and 
modulation of HDL-C levels by drug therapy held great 
promise for the prevention and treatment of cardiovascular 
disease. Nevertheless, recent failures of drugs that raise 
HDL-C to reduce cardiovascular risk and the now greater 
understanding of the complexity of HDL composition and 
biology have prompted researchers in the ield to redeine 
HDL. As such, the focus of HDL has now started to shift 
away from a cholesterol-centric view toward HDL particle 
number, subclasses, and other alternative metrics of HDL. 
Many of the recently discovered functions of HDL are, 
in fact, not strictly conferred by its ability to promote 
cholesterol lux but by the other molecules it transports, 
including a diverse set of proteins, small RNAs, hormones, 
carotenoids, vitamins, and bioactive lipids. Based on HDL’s 
ability to interact with almost all cells and deliver fat-
soluble cargo, HDL has the remarkable capacity to affect a 
wide variety of endocrine-like systems.

SUMMARY: There is a signiicant need to redeine HDL 
and its beneit. HDL transports a diverse set of functional 

L
ATAR BELAKANG: Penelitian epidemik pada 
manusia menunjukkan hubungan terbalik yang 
kuat antara kolesterol high-density lipoprotein 

(HDL) plasma dengan penyakit jantung coroner (PJK). 
Hal ini memicu perkembangan “hipotesis kolesterol HDL” 
yang menyatakan bahwa peningkatan kadar HDL dapat 
mengurangi risiko PJK. Banyak perkembangan saat ini yang 
mempertanyakan potensi proteksi HDL. Beberapa uji klinis 
menunjukkan bahwa peningkatan kolesterol HDL secara 
substansial ternyata tidak mengurangi laju kejadian PJK.

ISI: Selama beberapa dekade, kadar HDL dan kolesterol HDL 
dianggap sama, dan terapi obat yang dapat meningkatkan 
kadar kolesterol HDL diharapkan dapat digunakan untuk 
mencegah dan mengobati penyakit kardiovaskular. Namun, 
kegagalan obat peningkat kadar kolesterol HDL dalam 
mengurangi risiko kardiovaskular, ditambah dengan 
pemahaman yang lebih baik mengenai kompleksitas 
komposisi dan biologi HDL, menuntut para peneliti untuk 
mendeinisikan ulang HDL. Dengan demikian, fokus 
HDL saat ini bergeser dari kolesterol menuju ke jumlah 
partikel HDL, subklas dan metriks HDL lainnya. Beberapa 
penemuan akhir-akhir ini menunjukkan fakta bahwa 
fungsi HDL sesungguhnya bukan meningkatkan keluaran 
kolesterol melainkan melalui molekul lain yang dibawa, 
HDL membawa bermacam protein yang berlainan, small 

RNA, hormon, karotenoid, vitamin, dan lemak bioaktif. 
Berdasarkan kemampuan HDL untuk berinteraksi dengan 
hampir semua sel dan mengantarkan muatan larut lemak, 
HDL memiliki kapasitas luar biasa untuk mempengaruhi 
sebagian besar sistim dalam tubuh yang menyerupai 
endokrin.

RINGKASAN: Perlu deinisi ulang mengenai HDL dan 
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Introduction
increasingly been questioned. In fact, it has been argued that 
low HDL-C may only represent a marker for proatherogenic 
risk factors, rather than HDL being a mediator protecting 
against atherogenesis.(11) Such a conclusion neglects the 
structural and functional heterogeneity of HDL, which is 
neither relected by the nonfunctional clinical biomarker 
HDL-C nor has yet been targeted by randomized controlled 
trials (7,9,12,13) or Mendelian randomization studies 
(14,15).
 Several well-documented functions of HDL and 
apolipoprotein AI (ApoA-I) report the potential to protect 
against CVD. The most extensively studied was the ability 
of HDLs to promote eflux of cholesterol from macrophages 
in the artery wall.(16) HDL inhibits vascular inlammation 
(17,18), and has antioxidant (17) and antithrombotic (19) 
properties. HDL also enhances endothelial function (20), 
promotes endothelial repair (21,22), increases angiogenesis 
(23), suppresses the production and mobilization of 
monocytes and neutrophils from bone marrow (24), and have 
recently been reported to have antidiabetic property (25,26). 
Which of these HDL functions are clinically important 
is not known. Nor is it known which HDL component(s) 
or subpopulations are responsible for these potentially 
cardioprotective properties. Until we know which HDL 
components and subpopulations relate to speciic potentially 
cardioprotective functions and until we have much more 
information about the effects of HDL-raising therapies on 
HDL composition, HDL subpopulation distribution, and 
HDL function, it will be dificult to predict how any speciic 
HDL-targeted therapy will impact on human cardiovascular 
risk.(10)

proteins, including many binding proteins. HDL transports 
and deliver vitamins, carotenoids, and other small 
molecules. Moreover, HDL transports hormones, steroids 
and bile acids, and can modulate multiple endocrine 
pathways. HDLs also transport and deliver microRNAs to 
recipient cells and control gene expression. Likewise, HDLs 
carry bioactive lipids and can activate signaling cascades 
and receptors that control endothelial apoptosis, migration, 
survival and activation. Many of HDL’s alternative non-
cholesterol cargo likely confer many of HDL’s alternative 
functions. 

KEYWORDS: HDL, ApoA1, RCT, ABCA1, ABCG1, 
miRNA, HDL Lipidome, HDL Proteome
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fungsinya. HDL mentransportasikan berbagai macam 
protein fungsional, meliputi beberapa protein pengikat. 
HDL membawa dan mengantar vitamin, karotenoid, dan 
molekul kecil lainnya. Lebih dari itu, HDL juga mengantar 
hormon, steroid dan asam empedu, dan dapat mengatur 
berbagai jalur endokrin. HDL juga mengantar microRNA 

ke sel penerima dan mengendalikan ekspresi gen. HDL 
mengangkut lemak bioaktif dan dapat mengaktifkan 
kaskade sinyal dan reseptor yang mengendalikan apoptosis, 
migrasi, pertahanan hidup dan aktivasi endotel. Beberapa 
muatan non kolesterol yang dibawa HDL tampaknya juga 
menambah fungsi alternatif HDL.

KATA KUNCI: HDL, ApoA1, RCT, ABCA1, ABCG1, 
miRNA, HDL Lipidome, HDL Proteome

In population studies, high-density lipoprotein cholesterol 
(HDL-C) is inversely related to the risk of myocardial 
infarction and death.(1-4) Of note, in patients fully treated 
according to current guidelines with intense statin therapy 
and low-density lipoprotein cholesterol (LDL-C) at target 
levels, HDL-C remains predictive of outcome for major 
adverse cardiovascular events.(5) HDL and HDL-C levels 
are often considered to be one and the same, referred to as 
“good” cholesterol, mainly due to the epidemiologically 
observed inverse association of HDL-C to cardiovascular 
disease (CVD) risk. As a consequence, billions of dollars 
and herculean effort were invested into HDL biology and 
pharmacological strategies to raise HDL-C levels for the 
prevention and treatment of CVD.(6) However, interventions 
that increase the concentration of HDL-C in humans have 
not yet been shown to translate into a reduction in clinical 
cardiovascular events. Indeed, recent human clinical trials 
investigating the effects of raising the level of HDL-C by 
treatment with cholesteryl ester transfer protein (CETP) 
inhibitors or with niacin failed to demonstrate any clinical 
cardiovascular beneit.(7-9)
 A reasonable assumption that has been made from 
these studies is that the cholesterol content of HDLs is 
not the factor that protects. Thus, while the concentration 
of HDL-C is generally an excellent marker of the HDL 
functions that do protect, it does not invariably relect their 
cardioprotective functions.(10) Thus, the pathogenic role 
and, hence, suitability of HDL as a therapeutic target has 
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 What has become apparent in the course of these 
sobering messages regarding HDL-C is that cholesterol-
based measures of HDL may only tell us part of the story. 
HDL is known to circulate in plasma as a heterogeneous 
cohort of particles, varying markedly in terms of size, shape, 
and composition of proteins and lipids. To what degree this 
inluences the relative functional properties of these particles 
and their ability to protect the artery wall remains unknown.
(27) Given that interventions that increase the concentration 
of HDL-C may not necessarily be accompanied by an 
enhancement of HDL function, it is clear that we need to 
understand much more about how HDL function relates to 
HDL subpopulation distribution and cardiovascular risk in 
order to develop rational HDL-based therapeutic strategies 
for preventing atherosclerosis. (10)

HDLs are typically deined as lipoprotein particles with 
buoyant densities from 1.063 to 1.21 g/mL and having 

ApoA-I as the major apolipoprotein species. It has become 
increasingly appreciated that the HDL population consists 
of a collection of particles with diverse sizes, structures, 
and composition and functional properties that are thought 
to inluence atheroprotectiveness. The compositional 
complexity relects not only multiple species of proteins 
and lipids but also other macromolecules (e.g., microRNA 
(miRNA)).(28)
 Reverse cholesterol transport is generally used to 
describe the transport of cholesterol by HDL from the 
vascular wall to the liver for excretion into bile as neutral 
sterol or bile acid.(29) de novo synthesis of HDL involves 
the secretion of ApoA-I by liver and small intestine into  
circulation, followed by a largely extracellular acquisition of 
phospholipids (PL) and cholesterol leading to the formation 
of nascent HDL. The early ApoA-I lipidation with free 
cholesterol (FC) and phosphatidylcholine (PC) occurs on 
its critical interaction with ATP-binding cassette sub-family 
A member 1 (ABCA1) and results in the formation of 
discoidal pre-β-HDL particles. ApoM is an HDL-associated 
apolipoprotein that affects HDL biogenesis by affecting 
nascent pre-β-HDL assembly through ABCA1.(30)

HDL Metabolism and Heterogeneity

Figure 1.  Pathways inluencing HDL cholesterol metabolism and lux and potential relationship to atherosclerosis.(31) (Adapted 
with permission from Nature Publishing Group).
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 In the circulation, nascent disc-shaped HDL is, under 
normal conditions, thought to mature into larger spherical 
HDL. This process entails acquisition of cholesteryl ester 
(CE) in its hydrophilic lipid core, a step made possible 
through lecithin cholesterol acyltransferase (LCAT). In 
the circulation, several proteins and enzymes modulate 
HDL. In humans, these include CETP, PL transfer protein 
(PLTP), hepatic lipase (LIPC), endothelial lipase (LIPG), 
and secreted phospholipase A2 (sPLA2).(32) CETP 
accommodates the transfer of CE from HDL to ApoB-
containing lipoproteins in exchange for triglycerides (TG). 
PLTP is crucial to HDL particle remodeling. PLTP facilitates 
the transfer of PL from TG-rich lipoprotein (TRL) to HDL 
with the formation of both larger and smaller particles, 
whereas it can also induce fusion of smaller HDL.(33,34) 
LIPC is involved in breaking-down HDL-TG and PL, 
thereby reducing HDL size and enhancing the dissociation 
of lipid-free/lipid-poor ApoA-I from larger HDL.(35) LIPG, 
a second lypolytic enzyme, is expressed in the liver, lung, 
kidney, and placenta. The enzyme has shown to exhibit 
more phospholipase activity than TG lipase activity with a 
major preference for HDL instead of TRL. sPLA2 is highly 
expressed in the liver, particularly during acute and chronic 
inlammatory states. This enzyme hydrolyzes the sn-2 ester 
bond of PL to release a lyso PL and a nonesteriied free fatty 

acid.(36)
 Proteins and enzymes that affect HDL metabolism 
through their impact on plasma TG lipolysis. These 
mostly affect the activity of lipoprotein lipase (LPL), the 
sole enzyme capable of hydrolyzing plasma TG in plasma 
TRL. LPL is synthesized and secreted by parenchymal 
cells in metabolically active muscle and adipose tissue. At 
these sites, surface lipid (FC and PL) and apolipoproteins 
resulting from TRL hydrolysis are conveyed from TRL to 
HDL.(35,37) For its catalytic activity, LPL needs apoC-II as 
cofactor, a small protein of 79 amino acids present on TRLs 
and HDL. ApoA-V can be considered as a modulator of LPL 
activity. ApoA-V (11q23) is expressed in the liver and the 
protein is secreted into plasma, where it associates with very 
low-density lipoprotein (VLDL), chylomicrons, and HDL. 
It seems to be a key modulator of plasma TG homeostasis 
but the molecular mechanisms are not fully understood.
(38,39) The LPL reaction is regulated in a spatiotemporal 
fashion by several inhibitory factors encoded by ApoC-III, 
angiopoietin-like 3 (ANGPTL3), and ANGPTL4, which all 
affect HDL metabolism. It has been suggested that ApoC-
III increases the catabolism of HDL and is involved in 
other relevant lipid metabolic functions.(40) Both encoded 
proteins can act as inhibitors of LPL activity by promoting, 
in different ways, the dissociation of the active LPL 

Figure 2.  Heterogeneity of HDL particles. (42) (Adapted with permission from Elsevier Ltd.).
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homodimer into inactive monomers. Scavenger receptor 
class B type I (SR-BI), as the main high-afinity receptor for 
HDL, enables the selective uptake of CE from circulating 
HDL via ApoA-I recognition. This occurs, however, 
without mediating the degradation of HDL, as is the case 
for LDL.(41) Plasma HDL particles are, however, highly 
heterogeneous in structure, composition and biological 
function.
 Such heterogeneity results from differences in the 
relative content of apolipoproteins and lipids in HDL.(42) 
A topic of considerable clinical and biological interest is 
whether speciic subfractions of HDL are more informative 
in assessing the beneits of a therapeutic intervention 
targeted to HDL.

HDL’s ability to participate in the reverse cholesterol 
transport (RCT) pathway is, likely an important part of its 
anti-atherogenic role. We are now beginning to realize the 
full breadth of HDL’s function and cargo; thus, there is a 
signiicant need to begin to rethink and possibly focus on 
these other aspects of HDL besides its role in transporting 
cholesterol. Although it is not clear what the new focus on 
HDL should be, we review here the latest indings related 
to the metabolome, transcriptome, lipidome, and proteome 
of HDL.
 Besides lipids, we know relatively little about the 
repertoire of small molecules circulating on HDL; however, 
this will likely be an emerging new ield for HDL research. 
As HDL is possibly rebranded as a general transporter of 
cargo between cells, a comprehensive characterization of 
HDL’s metabolome is warranted. Some of the best studied 
small metabolites carried by HDL are the fat-soluble 
vitamins.(43-46) A majority of α-tocopherol (vitamin E), for 
example, is transported in plasma by lipoproteins, including 
HDL, and delivered to recipient cells by way of lipoproteins. 
Most interestingly, HDL delivery of vitamin E to epithelial 
cells was found to be independent of SR-BI, as chemical 
inhibition of with basic lipid transport-1 (BLT-1) failed to 
reduce vitamin E delivery.(47) Conversely, endothelial cell 
uptake of HDL-vitamin E was found to be mediated by SR-
BI.(43,48) Vitamin E is an essential antioxidant vitamin, 
although the relevance of HDL-mediated vitamin E transfer 
between cells is currently unknown.
 Unlike vitamin E, most of vitamin D is believed 
to be bound to a speciic serum-binding protein. The 
vitamin D-binding protein, however, is routinely found in 

proteomic studies to be associated with HDL.(49,50) Most 
interestingly, vitamin D and vitamin D receptor modulators 
have been found to inhibit ApoA-I.(51,52)
 Retinol (vitamin A) is also likely transported in various 
forms on HDL. Similar to vitamin D, retinol associates 
with a binding protein, the plasma retinol-binding protein 
(PRBP), which has also been reported in multiple studies 
to be associated with HDL.(50) HDL also transports many 
carotenoids, which are lipophilic precursors for vitamin A. 
(46) Although HDL only transports a small percentage (of 
total plasma mass) of nonpolar carotenoids (e.g., lycopene, 
17%; a-carotene, 26%; and β-carotene, 22%), a large 
percentage of polar carotenoids are found on HDL (lutein, 
53%; cryptoxanthin, 39%).(53)
 One of the most widely studied carotenoid, 
β-carotene, has been found to inhibit atherosclerosis in 
hypercholesterolemic rabbits and is associated with HDL.
(54) HDL has also been found to transport ubiquinone (UQ) 
(coenzyme Q or coenzyme Q10) and may facilitate the 
intercellular transfer of UQ or dietary intake delivery of UQ 
to recipient cells.(55) Although the role of UQ in disease is 
not fully understood, HDL-mediated transport of UQ has 
been proposed to possibly help prevent heart failure, cancer, 
migraines, and hypertension.
 Currently, the functional relevance of the intercellular 
transfer of the HDL metabolome is not fully understood, nor 
have we likely identiied all the small molecules that can 
be transported by HDL. A comprehensive analysis of the 
HDL metabolome is warranted and will likely uncover other 
metabolites and homeostatic networks affected by HDL. 
 The lipids carried by HDL can be largely categorized 
as being either neutral hydrophobic lipids (CE and TG), 
which are carried in the core of HDL, or amphipathic lipids, 
such as cholesterol or PL, which are on the surface of HDL. 
(6)
 It is not cholesterol, however, but PL that quantitatively 
predominate in the HDL lipidome, accounting, together 
with sphingomyelin (SM), for 40-60 wt% of total lipid, with 
lesser proportions of CE (30-40%), TG (5-12%), and FC 
(5-10%). Structurally, individual HDL lipid classes fulill 
distinct functions; PL constitute the surface lipid monolayer 
of HDL, whereas CE and TG form the hydrophobic lipid 
core. Unesteriied sterols are predominantly located to the 
surface monolayer, partially penetrating the core.(56)
 Recently, it has been realized that some of the lipids 
carried by HDL can be transformed into potent bioactive 
molecules. For example, PC, the most common PL on HDL, 
is highly susceptible to oxidation, which after hydrolysis 
generates the highly reactive and damaging lyso-PC (LPC). 
(57,58)

HDL Metabolome, Lipidome and Proteome
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 SM, another common class of lipids on HDL, is a 
substrate for neutral sphingomyelinase-2 (nSMase2) in the 
ceramide signaling pathway.(59) SM can also be converted 
to lysosphingolipids, namely, sphingosylphosphorylcholine 
and lysosulfatide, which have been found to protect against 
endothelial apoptosis through activation of Akt signaling. 
Most interestingly, the Akt-signaling cascade is responsible 
for HDL-lipid suppression of apoptosis, as inhibition of Akt 
phosphorylation of BCl-2-associated death (BAD) promoter 
blocked the HDL-lipid effect.(60) Recent evidence suggests 
that the lysosphingolipid sphingosine-1-phosphate (S1P) 
may mediate many actions of HDL such as vasodilation, 
angiogenesis and endothelial barrier function, and protection 
against atherosclerosis and ischemia/reperfusion injury.
(61,62)
 High HDL levels do not always protect against 
CVD and there is accumulating evidence suggesting 
that simply increasing the circulating HDL-C does not 
necessarily confer cardiovascular beneits.(8,63) This leads 
to the hypothesis that the HDL in some patients may be 
dysfunctional and its other properties and compositions like 
S1P might be more important than its cholesterol cargo. 
(65)  Evidence suggests that HDL serves as an S1P signaling 
platform and likely mediates a multitude of cardiovascular 
effects, and therapeutic strategies involving HDL S1P 
hold much promise for the future. Recent applications of 
mass spectrometry technology have dramatically increased 
our understanding of the proteomic diversity of HDL. 
Depending on the method of HDL isolation, upwards of 85 
proteins have been identiied, and the list continues to grow. 
(66)
 HDL carries surprising constituents, such as members 
of the complement pathway, protease inhibitors involved 
in hemostasis, acute-phase response proteins, immune 
function mediators, and even metal-binding proteins. This 
compositional diversity its well with hundreds of studies 
demonstrating a wide functional pleiotrophy, including 

roles in lipid transport, oxidation, inlammation, hemostasis, 
and immunity. The recent studies of the HDL proteome have 
revealed that besides the “classic” proteins on HDL, such 
as ApoA-I, that largely serve a structural role in HDL or a 
role in its metabolism, HDL cargo includes other proteins 
that may have distinct biological effects and could account 
for some of the other functions of HDL besides cholesterol 
transport . Recently, we discovered that HDL also transports 
small RNAs, including miRNA, tRNA-derived RNA 
fragments (tRF), and RNase P-derived RNA fragments. 
(67) Outside of cholesterol eflux, HDL has many other 
beneicial functions, and unique miRNA, lipid, protein, and 
small molecule components likely mediate each, if not all of 
these functions, including cytoprotective, anti-thrombotic, 
anti-infectious, vasodilatory, and many other functions to be 
discovered.

HDL possesses several antiatherogenic activities which 
involve cholesterol eflux from cells as well as anti-
oxidative, anti-inlammatory, cytoprotective, vasodilatory, 
anti-thrombotic and anti-infectious activities.(68,69) 
The eflux of cholesterol from a variety of cell types, 
including macrophages, to HDLs in the extracellular space 
is mediated by four distinct processes.(70). These are: i) 
the eflux of cholesterol to ApoA-I from cells expressing 
ABCA1 (71,72); ii) the eflux of cholesterol to HDLs from 
cells expressing ABCG1 (73,74); iii) the bidirectional 
exchange of cholesterol between HDLs and cell membranes 
expressing sSR-B1 (75,76); and iv) passive aqueous 
diffusion of cholesterol from cell membranes to HDLs (75).
 Several miRNAs, for example, miR33, miR122, 
and miR144, decrease the production of ABCA1 and 
hence reduce cholesterol eflux.(77-79) Thus, cholesterol 

Biological Activities of 

HDL Subpopulations

Figure 3.  Proposed direct vascular 

protective and potentially antiatherogenic 

effects of normal HDL.(5) (Adapted 
with permission from American Heart 
Association).
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eflux is determined by the extracellular concentration and 
composition of HDL particles as well as by the activity of ABC 
transporters. By inetuning cellular cholesterol homeostasis, 
cholesterol eflux by ApoA-I / ABCA1- and HDL-mediated 
eflux in concert with ABCG1 exerts important regulatory 
steps on many cellular functions, including proliferation 
and mobilization of hematopoietic stem cells (79). 
ABCG4–mediated cholesterol eflux to HDL regulates 
megakaryocyte proliferation.(80) Cholesterol eflux also 
regulates the inlammatory responses of monocytes and 
macrophages (81), expansion of lymphocytes (82), nitric 
oxide (NO) production by endothelial NO synthase (eNOS) 
(83), and insulin secretion from pancreatic β-cells (84).
 When comparing cholesterol eflux properties of 
HDL subpopulations, it is essential to keep in mind the 
concentration basis employed for such comparison. Thus, 
on the basis of PL content, small, dense HDLs more potently 
promote cholesterol eflux, whereas on a particle number 
basis, large HDLs are more effective.(85,86)
 HDLs possess antioxidant properties that have the 
capacity to inhibit the proatherogenic oxidative modiication 
of LDL.(87) The mechanism by which HDLs inhibit 
oxidation is uncertain. The most extensively studied aspect 
of this process involves activity of paraoxonase-1 (PON-1), 
which is transported in the plasma as a component of the HDL 
fraction.(88) ApoA-I (89), ApoA-II (89), ApoA-IV (90,91) 
and ApoE (92) all have antioxidant properties in vitro. Which 
of these apolipoproteins, if any, is also antioxidant in vivo 

is not known. HDL particles are also heterogeneous in their 
capacity to protect LDL from oxidative damage induced by 
one-electron oxidants such as free radicals. A non-uniform 
distribution of apolipoproteins, enzymes and lipids across 
the HDL particle spectrum could underlie this observation. 
There is evidence that the antioxidant activity of HDL 3 is 
superior to that of HDL 2.(42) It has also been reported that 
PL modulate the antioxidant properties of HDLs.(93)
 Inlammation plays a pivotal role in both the genesis 
and the instability of atherosclerotic plaques. HDLs have 
the capacity to inhibit this inlammation by multiple 
mechanisms. They inhibit the binding of monocytes to 
cultured endothelial cells in vitro.(87) They also reduce 
the cytokine induced expression of vascular cell adhesion 
molecule-1 (VCAM-1), intercellular adhesion molecule-1 
(ICAM-1), and E-selectin in cultured endothelial cells in a 
concentration dependent manner.(18) The ability of HDLs 
to inhibit inlammation in endothelial cells in vitro varies 
according to the PL composition of the particles (94), with 
their constituent apolipoproteins exhibiting much lower 
speciicity (95).

 Protein that is induced both in vitro (96) and in vivo (97) 
by rHDLs is the antioxidant protein 3 β-hydroxysteroid-Δ24 
reductase (also known as 24-dehydrocholesterol reductase 
or DHCR24). Silencing DHCR24 expression in endothelial 
cells not only increases nuclear factor κB (NF-κB) activation 
and VCAM-1 protein levels in both nonactivated and TNF-
α-activated endothelial cells, but it is also associated with a 
loss of the anti-inlammatory effects of rHDLs.(96) 
 The potential heterogeneity of HDL anti-inlammatory 
activity remains poorly characterised. Small, dense, protein-
rich HDL3 has been reported to be superior to large, light, 
lipid-rich HDL2 in terms of capacity to inhibit VCAM-
1 expression in endothelial cells on the basis of both 
ApoA-I and total cholesterol (98), consistent with the 
potent antioxidative activity of small, dense HDL3 (99). 
HDL from healthy subjects can exert several protective 
effects in the vasculature and, in particular, on endothelial 
cells. Of note, HDL from healthy subjects stimulates NO 
release from human aortic endothelial cells in culture 
and increases the expression of eNOS.(100-103) HDLs 
display cytoprotective activity, an effect attributed to 
ApoA-I, ApoE and HDL-associated lysosphingolipids 
and observed as a prevention of endothelial cell apoptosis 
elicited by growth factor withdrawal and other agents.(104) 
This antiatherogenic activity is paralleled by the ability of 
HDL to stimulate endothelial cell migration and survival, 
an effect potentially mediated by S1P.(105) HDLs inhibit 
thrombosis by attenuating expression of tissue factor 
and selectins, by downregulating thrombin generation 
via the protein C pathway, and by directly and indirectly 
blunting platelet activation.(19) Inhibition of platelet 
activation is also dependent on SR-B1.(106,107) HDLs 
enhance endothelial repair by two distinct mechanisms. 
They stimulate endothelial cell migration from healthy to 
damaged endothelium via the SR-B1-mediated activation 
of Rac GTPase in a process involving activation of Src 
kinases, phosphatidyl inositol 3 kinase (PI3K), and p44/42 
mitogen-activated protein kinases.(21) In addition, HDLs 
can promote endothelial repair in vivo by enhancing the 
engraftment of endothelial progenitor cells into areas of 
damaged endothelium.(22)
 Studies conducted in mice have shown that 
suppression of the cholesterol eflux promoted by ABCA1 
and ABCG1 in bone marrow cells leads to hematopoietic 
stem cell proliferation and mobilization.(24) Importantly, 
HDL particles can progressively lose normal biological 
activities and acquire altered properties as a result of 
alterations in HDL composition, structure and metabolism, 
which are characteristic of dyslipidemia, insulin resistance, 
inlammation, infection and CVD.(68)
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HDL has the potential to protect against atherosclerosis by 
multiple mechanisms, including the removal of cholesterol 
from macrophages in the arterial wall in the irst step of 
the reverse cholesterol transport pathway.(108) HDL also 
inhibit vascular inlammation and oxidation, enhance 
endothelial repair, and improve endothelial function.
(97,109) Endothelial injury and dysfunction (ED) represent 
a link between cardiovascular risk factors promoting 
hypertension and atherosclerosis, the leading cause of death 
in western populations. HDL is considered anti-atherogenic 
and known to prevent ED.(110)
 HDL-C has direct effects on numerous cell types that 
inluence cardiovascular and metabolic health. These include 
endothelial cells, vascular smooth-muscle cells, leukocytes, 
platelets, adipocytes, skeletal muscle myocytes, and 
pancreatic β cells. The effects of HDL or ApoA-I, its major 
apolipoprotein, occur through the modulation of intracellular 
calcium, oxygen-derived free-radical production, numerous 
kinases, and enzymes, including eNOS. ApoA-I and HDL 
also inluence gene expression, particularly genes encoding 
mediators of inlammation in vascular cells. In many 
paradigms, the change in intracellular signaling occurs as 
a result of cholesterol eflux, with the cholesterol acceptor 
methyl -β-cyclodextrin often invoking responses identical to 
HDL or ApoA-I. The ABCA1, ABCG1 and SRBI frequently 
participate in the cellular responses.(111)
 HDL has been suggested to protect endothelial cell 
functions by prevention of oxidation of LDL and its adverse 
endothelial effects. Moreover, HDL from healthy subjects 
can directly stimulate endothelial cell production of NO 
and anti-inlammatory, anti-apoptotic, and anti-thrombotic 
effects as well as endothelial repair processes (101,112-
114). Hessler, Robertson, and Chisolm (115) reported early 
on that HDL protects against LDL-induced cytotoxicity on 
endothelial cells. HDL was demonstrated to prevent copper-
induced LDL oxidation or LDL oxidation by cultured 
endothelial cells.(116-118) HDL is a major carrier of lipid 
peroxidation products (119-120) which are thought to play 
a role in the initiation and progression of atherosclerotic 
vascular disease.(121) HDL can directly inhibit oxidation 
of LDL via transfer of oxidation products from LDL to 
HDL.(119) A study by Navab et al.(122) demonstrated that 
ApoA-I binds to and removes lipid hydroperoxides of LDL 
in vitro and in vivo.
 ApoE has been shown to have allele-speciic anti-
oxidant activity.(123) ApoE-II can stimulate endothelial 

NO release and has anti-inlammatory activities.(124) In 
contrast, ApoE-IV has been described as pro-inlammatory. 
(125) It has also been reported that HDL-associated Apo-J 
can inhibit LDL oxidation by artery wall cells.(126) In 
addition, ApoA-IV has been demonstrated to exert anti-
oxidant, anti-inlammatory, and anti-atherosclerotic actions 
in vivo.(91,127,128)
 Notably, HDL also carries antioxidant enzymes 
that may be involved in prevention of lipid oxidation or 
degradation of lipid hydroperoxides such as PON1, LCAT, 
and platelet-activating factor acetylhydrolase (PAF-AH). 
In particular, PON1 has been suggested to be an important 
regulator of the potential anti-atherogenic capacity of HDL.
(129,130) endothelial NO (eNO) plays a crucial role in the 
regulation of vascular tone and structure. eNOS-derived 
NO has been shown to exert a variety of atheroprotective 
effects in the vasculature, such as anti-inlammatory and 
anti-thrombotic effects.(131) Reduced eNO bioavailability 
has therefore been suggested to promote initiation and 
progression of atherosclerosis (131). Accumulating 
evidence suggests that HDL can directly stimulate eNOS-
mediated NO production via endothelial SR-BI.(101)
 HDL binding to SR-BI initiates tyrosine kinase Src-
mediated activation of PI3K, which in turn activates Akt 
and MAPK/extracellular signal-regulated kinase (Erk) 
pathway.(132) Activation of endothelial Akt by HDL 
stimulates phosphorylation of eNOS at serine residue 1177 
(112,132), which is known to be an important regulatory 
mechanism leading to eNOS activation.(133) HDL is 
thought to contribute to atheroprotection as an anti-
inlammatory through, for example, antioxidant properties 
of its enzymatic and non-enzymatic components, the ability 
to remove normal and toxic lipid species from cells, and 
the dampening of Toll-like receptor (TLR) signaling by 
regulating plasma membrane cholesterol content.(134-
136) The anti-inlammatory effects of HDL included 
changes in the balance between M1 and M2 macrophages.
(28) How HDL contributes to a reduction in M1 or an 
enhancement in M2 polarization may depend on a number 
of its properties. As noted, there is growing evidence that it 
or ApoA-I may limit TLR responsiveness to inlammatory 
stimuli (by regulating plasma membrane cholesterol 
content and microenvironments), and there is more recent 
evidence indicating that it can promote the phosphorylation 
of STAT6, an integral signaling component of the M2 
polarization pathway.(135-140) Furthermore HDL reduced 
eNO availability via TLR-2 leading to impaired endothelial 
repair, and increased proinlammatory activation. These 
data demonstrate how symmetric dimethylarginine (SDMA) 
can modify the HDL particle to mimic a damage-associated 
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molecular pattern that activates TLR-2 via TLR-1- or TLR-
6-coreceptor-independent pathway, linking abnormal HDL 
to innate immunity, ED, and hypertension.(110)
 In pathological studies of coronary atherosclerotic 
plaque erosion, thrombi were observed in direct contact 
with the intima in areas with absent endothelium likely 
promoting disease progression.(141) Endothelial cell 
apoptosis has therefore been suggested to contribute 
importantly to the pathophysiology of coronary disease.
(142-144) The capacity of HDL to attenuate endothelial cell 
apoptosis may therefore represent a potentially important 
anti-atherogenic property of HDL.(60,145-147)

Recent studies provided convincing evidence that 
inlammation generates dysfunctional or even pro-
atherogenic forms of HDL by promoting PL depletion and 
enrichment with pro-inlammatory proteins such as serum 
amyloid A (SAA), ApoC-III or complement component 3 
(C3).(148-151) HDL loses potential anti-atherosclerotic 
properties in patients with chronic inlammatory disorders 
such as the anti-PL syndrome (152), systemic lupus 
erythematosus and rheumatoid arthritis (153), scleroderma 
(154), the metabolic syndrome (155), diabetes (156,157), 
and coronary disease (100,158,159). Notably, in a study of 

189 patients with chronic kidney disease on hemodialysis, 
an impaired anti-inlamatory capacity of HDL was correlated 
with a poor clinical outcome.(160)
 HDL from coronary artery disease (CAD) subjects 
is dysfunctional. In fact, HDL from many CAD patients 
was actually proinlammatory, thus increasing monocyte 
chemotaxis in response to LDL, unlike the HDL from healthy 
controls that reduced monocyte chemotaxis. There are 
many possible alterations between this dysfunctional HDL 
and normal functional HDL.(161) These pro-inlammatory 
HDL particles have been termed “dysfunctional” HDL. 
The heterogeneity of the vascular effects of HDL may be 
attributed to changes in the HDL-associated proteome and 
lipids, i.e., post-translational protein modiications and 
changes in the amount and type of proteins and lipids bound 
to the HDL particle. In particular, HDL is susceptible to 
oxidation / modiication in vitro by a variety of oxidants, 
such as metal ions, peroxyl and hydroxyl radicals, aldehydes, 
various myeloperoxidase (MPO)-generated oxidants, 
lipoxygenase, phospholipase A2, elastase, nonenzymatic 
glycation, and homocysteinylation.(162)
 Inlammation induces major changes in HDL levels 
and composition. Mediators of inlammation such as tumor 
necrosis factor (TNF)-α and interleukin (IL)-6 induce 
expression of serum amyloid A (163) and sPLA2-IIA (164), 
which dramatically alter HDL apolipoprotein content and 
levels, respectively. Acute phase SAA in the plasma is 
associated with HDL, where it can comprise the major 
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Figure 4. HDL dysfunction impairs reverse cholesterol transport.(171) (Adapted with permission from American Heart Association).



26

The Indonesian Biomedical Journal, Vol.6, No.1, April 2014, p.17-32 ISSN: 2085-3297

apolipoprotein.(165) The increase in sPLA2-IIA activity 
results in hydrolysis of HDL surface PL and a decrease in 
HDL particle size.(166) The presence of SAA on HDL holds 
the potential to impact both the CE transfer and the ApoA-I 
liberating ability of CETP. sPLA2-IIA could also impact the 
latter action of CETP as ApoA-I was shown to dissociate 
more readily from CETP-remodeled reconstituted HDL 
after hydrolysis by bee venom phospholipase A2.(167)
 Post-translational modiication of ApoA-I can directly 
lead to HDL dysfunction. HDL from diabetic subjects can 
have glycated ApoA-I with altered lipid-binding activity, 
and incubation of HDL with glucose impaired its anti-
inlammatory and antioxidant activities.(168,169)
 One of the best studied modiications of ApoA-I 
is mediated by MPO, a leukocyte-derived heme protein 
abundant in neutrophils, monocytes, and a subset of tissue 
macrophages. Part of the innate immune host defense 
system, MPO uses H2O2 to generate an array of reactive 
oxidant and free radical species that are antimicrobial, such 
as hypochlorous acid (HOCl). These same species can also 
foster spurious oxidative injury to normal tissues as well, 
such as within atherosclerotic plaque, where MPO has been 
shown to promote both protein modiications and initiate 
lipid peroxidation. Once released from activated leukocytes, 
in the circulation and within lesions, MPO has been shown 
to bind to HDL. This tight binding, which has been mapped 
to helix 8 region of ApoA-I, likely accounts for the selective 
oxidative targeting of ApoA-I within HDL for modiication 
by MPO-generated oxidants.(170) These and other recent 
observations support a role for MPO serving as an enzymatic 
catalyst for site-speciic modiication of ApoA-I and HDL, 
leading to functional impairment within the artery wall. 
Indeed, HDL isolated from human atherosclerotic plaque 
has been shown to coimmunoprecipitate with MPO.(171)
 Subsequent studies have revealed that MPO-induced 
modiication of ApoA-I/HDL inhibits additional HDL 
functions. For example, oxidative modiication of ApoA-I 
Tyr166 through MPO-catalyzed nitrating and chlorinating 
pathways is linked to functional impairment of HDL 
binding to LCAT activation and activity.(172) Similarly, 
oxidation of ApoA-I Met148 also impairs LCAT activation 
(173). HDL exposure to MPO or HOCl results in the loss 
of anti-apototic and anti-inlammatory activities of HDL, 
and speciically the loss of SR-B1–binding activity, while 
increasing its proinlammatory activities, such as endothelial 
cell NF-kB activation and VCAM-1 expression.(156)
 Taken together, plasma HDL-C levels are likely not 
an appropriate marker of vascular effects of HDLs, and 
therefore do not represent a reliable therapeutic target.
Inlammation is proposed to impair HDL function and RCT. 

This may be of pathophysiological signiicance because 
attenuation of RCT might contribute to atherosclerosis in 
chronic inlammatory states, including metabolic syndrome 
and type 2 Diabetes Mellitus.(161)
 Tests for HDL function or biomarkers associated with 
dysfunctional HDL may be useful for identifying subjects 
at risk for CAD. For example, plasma MPO levels are 
positively associated with CAD and the risk of a subsequent 
major adverse cardiac event.(174,175) Similarly, the level 
of ApoA-I chlorotyrosine, detected by mass spectrometry, 
is also a predictor of CVD. Although this assay may be for a 
potential means of quantifying dysfunctional HDL levels, it 
is not suitable for routine clinical use.(170)

The hypothesis that HDL-C directly confers biological 
protection against atherosclerosis has, as of yet, never been 
proved and, as a consequence, HDL-C has been argued to 
be merely a CVD biomarker rather than an active player 
in atherogenesis. This notion has gained support because 
therapies with an established HDL-C increasing effect were 
shown not to result in the anticipated decrease in CVD 
risk. In particular, 3 large outcome trials were prematurely 
terminated for futility (Athero-thrombosis Intervention 
in Metabolic Syndrome with Low HDL/High TG: Impact 
on Global Health Out-comes [AIM-HIGH] trial (8), Heart 
Protection Study 2-Treatment of HDL to Reduce the 
Incidence of Vascular Events [HPS2-THRIVE] study (176), 
the Dalcetrapib CVD Outcome Study [DAL-OUTCOMES]
(9)), despite signiicant HDL-C increases. In addition, data 
from Mendelian randomization studies have shown that 
common variants that raise HDL-C levels are not associated 
with a proportionally lower CVD risk.
 Simply increasing the amount of circulating HDL-
cholesterol does not reduce the risk of coronary heart 
disease (CHD) events, CHD deaths, or total deaths.(177) 
Heinecke (178) has noted that HDL-cholesterol does not 
deine the proteins associated with HDL and suggests that 
the HDL proteome is a marker, and perhaps a mediator, of 
CHD. Zheng et al. (179) reported that ApoA-I, the major 
protein in HDL, is a selective target for myeloperoxidase-
catalyzed oxidation, which results in impairment of the 
ability of HDL to promote cholesterol eflux. Singh et al. 

(170) suggested that HDL could be a therapeutic target by 
modifying its lipid and protein cargo to improve its anti-
inlammatory properties. 
 Although it may be premature to suggest at this 
time, the noncholesterol cargo of HDL may ultimately 
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be more closely linked to its beneicial anti-atherogenic 
properties and may confer many of HDL’s beneits outside 
of CVD. In support of this theory, HDL particle number 
has recently been found to be a better indicator of CVD 
risk than HDL-C levels.(180) Although this may be due to 
the increased ability of more HDL particles for removing 
excess cholesterol, increasing HDL particle numbers may 
also affect other functions of HDL and its ability to transport 
other cargo. Therapeutic strategies to increase HDL particle 
number may turn out to be better in reducing cardiovascular 
events than simply increasing HDL-C. One method that has 
been reported to modify the lipid and protein cargo of HDL 
involves treatment with apolipoprotein mimetic peptides. 
(181)

Conclusion

There has been a recent move toward the view that an 
accurate assessment of HDL function is likely to provide 
a more informative assessment of cardiovascular risk 
than simply measuring HDL-C levels. This has led to 
considerable progress in recent years in understanding 
known and identifying new cardioprotective functions 
of HDLs. There is also a growing awareness that simply 
measuring HDL-C levels may be less informative than a 
direct assessment of speciic HDL functions. To complicate 
matters even further, it is also possible that at least some of 
the known functions of HDL may be speciic to particular 
subsets of HDL particles.
 Perhaps it is time for us to change the way we look 
at HDL and move from a cholesterol-based to a particle-
based world. This requires considerable ongoing validation 
and testing in the clinical trial setting; however, by doing 
this, we may ultimately get one step closer to a setting in 
which functional HDL takes center stage. It may be time to 
rethink the HDL-C hypothesis, not necessarily to replace it, 
but to expand the role of HDL beyond that of cholesterol to 
incorporate some of the recent indings on the importance of 
the other cargo of HDL in CVD.
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