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B
ACKGROUND: Obesity-induced inlammation 
contributes to the development of type 2 diabetes, 

metabolic syndrome, and cardiovascular disease.

CONTENT: The last decade has seen a sharp increase in 

our appreciation for the macrophage as a critical regulator 

of metabolic status in obesity. Activation of adipose tissue 

(AT) macrophages within fat depots is coupled with the 
development of obesity-induced proinlammatory state 
and insulin resistance (IR). The activation of classically 
activated M1 macrophages at the expense of anti-

inlammatory Mβ macrophages has been causally linked 
to the development of AT inlammation and metabolic 
syndrome, a pathophysiological state aptly termed as ‘meta-

inlammation’. It is recognized that several proinlammatory 
cytokines, including interleukin (IL)-1ȕ, are implicated in 
disrupting insulin signaling. Our developing appreciation 

of links among obesity, inlammation and cardiovascular 

disease will require multiple complementary approaches to 

leverage new concepts into translatable outcomes. Careful 

characterization of human patients, particularly analysis of 

AT distribution, will be needed to stratify subjects that are 

most likely obese/metabolically healthy from those that are 

obese/metabolically unhealthy.

SUMMARY: It has been suggested that individuals with 

the condition known as metabolically healthy obese (MHO) 
may not have the same increased risk for the development of 

metabolic abnormalities as their non-metabolically healthy 

counterparts. A complications-centric model for the medical 

management of obesity emphasizes the identiication and 
staging of complications, and treatment paradigm directed 

at patients who would gain the most beneit from weight 
loss.
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Obesity has increased rapidly and the consequence was 

explosion of health-related problems including insulin 

resistance (IR), type β diabetes, coronary artery disease, 
fatty liver disease, some cancers and degenerative diseases.

(1-γ) Unfortunately the life style modiication was not 
effective in ighting obesity.(4) Regarding to those fact, 
therefore the most attention is on the understanding of 

molecular links between obesity and chronic metabolic 

diseases especially low grade inlammation that mediated 

by innate and adaptive immune cells.(5-10)
 Adipose Tissue (AT) is a complex endocrine tissue 
that contains multiple cell types, including adipocytes and 

adipocyte precursors, vascular cells, immune cells and 

neuronal cells, which all contribute to the inlammatory 
response during obesity.(11) Nutritional excess promotes 
adipocyte expansion, resulting in adipocyte dysfunction. 

Adipocytes subsequently secrete adipokines, cytokines and 

chemokines, such as leptin, resistin, tumor necrosis factor 

(TNF)-α, interleukin (IL)-6, and monocyte chemoattractant 
protein (MCP)-1, those induce the accumulation of immune 
cells in AT, and the ongoing inlammation causes IR. 

Abstract

Introduction
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AT Expandability Hypothesis

(1β,1γ) In the course of obesity, almost the entire spectrum 
of immune cells becomes apparent within the AT.(1β) 
Macrophages are abundantly present in AT.

 Resident macrophages in lean AT have an anti-

inlammatory Mβ-like phenotype characterized by the 
surface expression of cluster of differentiation (CD)β06 and 
macrophage galactose-type C lectin 1 (MGL-1), produces 
anti-inlammatory mediators such as IL-10, and play a 
critical role in the maintenance of AT insulin sensitivity.(14) 
During obesity, the majority of macrophages recruited have a 

proinlammatory M1 proile characterized by the expression 
of CD11c, inducible nitric oxide synthase (iNOS), TNF-α, 
and IL-6 and reside in crown-like structures that surround 
necrotic adipocytes.(14)
 Besides the classical M1 and M2 macrophages, 

the obese AT contains a mixed macrophage population, 

that expresses both CD11c and CDβ06 which also has 
a proinlammatory phenotype that promotes AT ibrosis 
and IR.(15) Neutrophils are recruited to the AT within 
one week after the start of a high-fat diet (HFD), albeit 
in low numbers. Genetic deiciency and pharmacologic 
inhibition of neutrophil elastase improve glucose tolerance 

and insulin sensitivity by the reduced neutrophil elastase-

mediated degradation of insulin receptor substrate (IRS)-1 
and ameliorate AT inlammation due to decreased Toll-like 
receptor (TLR)-4-dependent expression of proinlammatory 
mediators in AT macrophages (ATM).(16)
 T-cells constitute ~10% of the stromal vascular 

fraction (SVF) of lean AT, with CD4+ T cells outnumbering 

CD8+ T-cells. Approximately 50% of these CD4+ cells are 

antiinlammatory regulatory T-cells (Tregs), whereas T 
helper (Th)1 CD4+ cells and Th2 CD4+ cells are present in 

equal numbers. During the development of diet-induced 

obesity, the number of AT T-cells increases as does 

the CD8+/CD4+ T-cell ratio, while at the same time the 

percentage of Tregs decreases dramatically.(17-19) This 
change in T-cell subsets is mediated by the expression of 

signal transducer and activator of transcription γ (STATγ).
(β0) CD8+ cells seem to precede macrophage iniltration 
and promote the recruitment of ATM by secreting MCP-

1, MCP-3 and regulated on activation, normal T cell 

expressed and secreted.(β1) In later stages of obesity, 
both CD4+ and CD8+ T-cells are crucial in the recruitment 

and M1 polarization of macrophages through interferon 

(IFN)-Ȗ.(17,β1) B-cells are recruited to obese AT and 
increased B-cell activation is observed in obese subjects. 

Experimental studies have indicated that B-cells from obese 

mice secrete more proinlammatory (IFN-Ȗ, IL-6, and IL-
8) and less anti-inlammatory (IL-5 and IL-10) cytokines.
(ββ) Additionally, during obesity, B-cells are directly or 

indirectly activated through lipid-induced TLR signaling 

or through T-cell-dependent mechanisms, respectively, 

to produce immunoglobulin Gβc (auto) antibodies that 
promote AT inlammation and IR.(11)
 A major obstacle to effective obesity treatment is that 

lost weight tends to be regained over time.(βγ) Although 
the mechanisms underlying recovery of lost weight are 

incompletely understood, a large literature proposes that 

body fat stores are subject to homeostatic regulation, 

and that the process occurs in obese as well as normal-

weight individuals. Caloric restriction for a period of time 

showed gradually weight lost in most individuals, but then 

inexorably recovered. This effect involves the capacity of 

the brain to sense the reduction of body energy stores and 

activate responses to compensate for this deicit. In simple 
terms, voluntary weight loss triggers increases appetite 

and energy eficiency, such that both sides of the energy 
balance equation shift in favor of weight gain.(β4,β5)  
From this perspective, obesity can be viewed as a disorder 

in which the biologically defended level of body fat mass 

is increased. Recent indings implicate inlammation in  
hypothalamic areas for body weight control in this process. 

These evidences suggests that obesity activates a complex 

immunological mechanisms involving a delicate interaction 

between both innate and adaptive immune systems.(11)

Anatomically, AT can be divided into truncal or peripheral 

region. Truncal AT includes subcutaneous fat in thoracic and 

abdominal region and also intrathoracic and intraabdominal 

fat depots.(β6) Peripheral AT includes subcutaneous depots 
in upper and lower extremities. Whether accumulation of 

AT in a particular region contributes to increased risk of 

IR development and metabolic consequences or not is still 

controversial.(β7) There are also important adipose depots 
within the abdominal cavity, called visceral AT (VAT), and 
around other organs, for example, perirenal, epi- and peri-

cardial fats. Perfusion of VAT regulation is potentially very 
interesting in view of the relationships between VAT and 
adverse metabolic proile.(β8)
 VAT has increased metabolic activity, both lipogenesis 
and lipolysis, compared to other fat depots. Free fatty acid 

(FFA), product of lipolysis, can directly enter liver via 
portal circulation and lead to increased lipid synthesis, 

gluconeogenesis and IR, resulting in hyperlipidemia, glucose 

intolerance, hypertension, and ultimately atherosclerosis.

(β9) Excess FFAs can induce peripheral IR by inhibiting 
skeletal muscle uptake.(β6) However, if VAT was a major 
contributor to metabolic risk, in comparison to other fat 
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depots, it should be the main source of systemic FFA lux. 
Only small portion of total body fat, 15-18% in men and 

7-8% in women, is located in abdominal cavity.(γ0) VAT 
contributes to only 15% of the total systemic FFAs whereas 

the majority of FFAs are contributed by nonsplanchnic 

AT.(β6,γ1) This raises doubt over contribution of VAT to 
peripheral insulin sensitivity.

 However, we have to remember that elevated 

waist circumference does not always indicate increased 

visceral adiposity but instead can also indicate increased 

subcutaneous adiposity. Subcutaneous AT (SAT) represents 
about 85% of all body fat. Its primary metabolic role is to 

regulate storage and mobilization of lipid energy. It stores 

lipid in the form of triacylglycerol (TG), which can be 
mobilized, as required by other tissues, in the form of non-

esteriied fatty acids (NEFA). Neither TG nor NEFA are 
soluble to any extent in water, and their transport to and 

out of the tissue requires special transport mechanisms and 

adequate blood low. SAT blood low is therefore tightly 
linked to the tissue’s metabolic function.(β8)
 Obesity is associated with impaired lipid storage 

capacity in SAT. Lipid “spillover” which is occurs as a 
result leads to lipid deposition in VAT and, subsequently, the 
liver.(9,γβ) The excess fat triggers inlammatory pathways 
in VAT, and the propagation of inlammation signals from 
adipose into other metabolic tissues induces systemic IR, 

liver steatosis, and further progression of obesity, creating a 

vicious cycle.(9,γγ) We concluded that subcutaneous truncal 
fat plays a major role in obesity-related IR in comparison to 

intraperitoneal (visceral) or retroperitoneal fat.
 Simple explanation for stronger relationship between 

SAT and insulin sensitivity comes from larger volume 

of SAT mass. The subcutaneous abdominal fat mass is 

approximately twice more than intraperitoneal fat mass and 

total subcutaneous truncal fat mass can be 4-5 times larger 

than intraperitoneal fat mass.(γ4-γ6) Unger and Scherer 
proposed that lipotoxicity promote IR, hyperlipidemia, 

elevated abdominal fat, and hypertension, known as 

metabolic syndrome outriding the onset of type 2 diabetes 

mellitus onset in obese.(γ7-γ9)
 The underlying mechanism linking lipotoxic obesity 

with IR is widely believed to be impaired adipogenesis, 

which is manifested as the presence of enlarged subcutaneous 

adipocytes.(40) Larger adipocytes are thought to be close to 
a hypothesized critical volume where further expansion is no 

longer possible; therefore, excess lipid is shunted instead to 

nonATs (skeletal muscle, liver, heart, and pancreas), where 
it interferes with insulin signaling and causes tissue IR.(41) 
Enlarged adipocytes may also secrete chemoattractants 

or have localized hypoxia, which trigger macrophage 

iniltration and activate the inlammatory process in AT, 
thus worsening IR.(4β,4γ) AT containing primarily large 
adipocytes is more insulin resistant, as illustrated by reduced 

suppression of FFA production, resulting in elevated FFAs, 

which can directly activate inlammation via TLR.(44)
 With the assumption of equal metabolic activity in 

subcutaneous truncal and intraperitoneal fat, subcutaneous 

truncal fat should release more FFAs in systemic circulation 

and should have much larger impact on peripheral insulin 

sensitivity. As we mentioned earlier, major contributor of 

FFAs in systemic circulation is nonsplanchnic AT.(β7) 
In comparison to noninlamed subcutaneous abdominal 
adipose phenotype, inlamed phenotype, characterized 
by presence of macrophage in crown-like structures, was 

associated with systemic hyperinsulinemia, IR, impaired 

endothelium-dependent low-mediated vasodilatation, 
and elevated plasma high-sensitivity C-reactive protein 

(hsCRP) levels. Other investigators have also reported 
similar association between macrophage iniltration in SAT 
and IR, and low grade systemic inlammation.(4γ,45)
 Obese people who are “metabolically healthy” have 
greater adipogenesis (smaller subcutaneous fat cells) along 
with less visceral adiposity and hepatic lipid accumulation, 

decreased inlammation, and preserved insulin sensitivity 
compared with metabolically unhealthy obese.(46-48) It 
shows that individuals with larger fat cells would have less 

capacity to expand their SAT and would deposit more lipid 

into ectopic depots, thus worsening the metabolic response.

AT as An Immunologic Organ

Current approaches for the treatment of obesity, including 

diet and lifestyle changes, have not been pretty fruitful in 

curtailing the obesity epidemic.(49) Emerging evidence 
has stated that obesity is characterized by chronic and 

low-grade inlammation accompanied by macrophage 
accumulation in the AT, which eventually leads to metabolic 

diseases, including IR and type β diabetes mellitus .(50-5β) 
Increased ATM play crucial roles in the altered production 

of proinlammatory cytokines in the AT of obesity.(5γ) 
Improved understanding of the immunological processes 

that regulate obesity may yield new treatments for obesity-

associated disorders.

 Plenty of immune cells including B-cells, T-cells, 

macrophages, and neutrophils have been identiied in 
AT. Obesity inluences both the quantity and the nature 
of immune cell subtypes, that emerges as an active 

immunological organ capable of modifying whole-body 

metabolism through paracrine and endocrine mechanisms. 

AT is a large immunologically active organ during obesity 
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and displays hallmarks of both innate and adaptive immune 

response.(54)
 During obesity, AT mass increases by hyperplasia 

and hypertrophy, the latter being associated with activation 

of stress signaling pathways in adipocytes resulting cell 

death. For instance, hypertrophic adipocytes are under 

constant stress, as evidenced by increase in endoplasmic 

reticulum (ER) stress, hypoxic responses, release of FFAs 
and increased production of reactive oxygen species (ROS).
(5) Interestingly, immunohistochemical studies showed that 
the inlammatory macrophages expressing the dendritic cell 
marker CD11c circumscribe necrotic adipocytes (14,55), 
by that forming “crown-like” structures (56,57). Multiple 
studies during the past decade have identiied VAT as an 
important site of residence of leukocytes, including cells 

of the innate (macrophages and neutrophils) and adaptive 
immune system (T- and B-cells).(49,58,59) It is clear 
that AT is a major endocrine organ that controls energy 

homeostasis. In addition, the presence of a signiicant 
number of hematopoietic cells in AT suggests that immune 

cells may impart unique immunological properties to the 

AT.(49) For example, 1 g of enzymatically dispersed AT 
can contain up to 5 million SVF cells, and after exclusion 
of adipocytes, 50-65% of SVF cells are leukocytes.(60) 
Considering that in severe obesity in humans, the total fat 

content can constitute up to 50% of total body mass, AT thus 

represents an uncharacterized immunological organ. For 

such an immunological characterization, speciic cells in AT 
must be able to capture, process, present antigens to T cells 

and mount a functional immunological response. Morris, et 

al., further hypothesize that AT is immunologically aware 

by providing new evidence that ATMs serve as predominant 

antigen-presenting cells (APC) that are fully competent to 
control the antigen-speciic T-cell response in the AT of lean 
as well as obese mice.(61,6β)
 They provide evidence that HFD feeding increases 

major histocompatibility complex (MHC)-II expression 
on ATMs and that most of this expression was localized in 

the “crown-like structures” and “fat-associated lymphoid 
clusters” in the AT, the major sites of macrophage residence 
in AT. Furthermore, HFD feeding increases the expression 

of co-stimulatory molecules on the ATM.(61) In the absence 
of the co-stimulation signal, the successful interactions of 

MHC and T-cell receptor (TCR) are not suficient to induce 
a T-cell proliferation response and results in T-cell energy.

(6γ) These data again suggest that HFD feeding imparts 
immunological properties to AT by supporting macrophage-

T-cell interactions (Figure 1).(6β)
 VAT is a major site for such chronic inlammatory 
responses and ATMs perform important roles, such as the 

production of inlammatory cytokines.(56,64) In general, 
macrophages exhibit marked functional heterogeneity 

and local microenvironments inluence their activation 
status and functions.(65,66) Th1 cytokines, such as IFN-Ȗ, 
induce classical activation of M1 macrophages, which 

produce inlammatory mediators. Thβ cytokines, such as 
IL-4 and IL-13, induce the alternative activation of M2 

macrophages, which mediate anti-inlammatory responses. 
M1 ATMs produce inlammatory cytokines, such as TNF-α 
and IL-6, which are involved in the induction of IR. The 
majority of ATM in lean individuals, however, exhibit an 

anti-inlammatory Mβ polarity. These ATMs reportedly 
play several roles in mantaining and improving insulin 

sensitivity.(67-7β)
 In a recent review, Sun, et al., stated that at least four 

factors may trigger an increase in the number of M1 ATM 

in VAT according to the progress of obesity, those are: 

Figure 1. Hypothetical model of macrophage–T-cell interactions in AT during obesity.
(6β) (Adapted with permission from American Diabetes Association).

adipocyte death, chemotactic regulation, 

fatty-acid lux and AT hypoxia.(7γ) The 
oxygen partial pressure in AT is reported 

to decrease with obesity in both humans 

and rodents.(74-78) Several studies have 
suggested that hypoxia is involved in 

the remodelling process, which includes 

inlammatory and ibrotic changes 
in obese ATs.(79-8β) While hypoxia 
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in adipocytes is involved in the ibrotic remodelling of 
AT, hypoxia in macrophages has been implicated in 

inlammatory changes. However, exactly how, and by what 
mechanisms, hypoxia affects the characteristics of M1 and 

Mβ ATMs in AT from obese mice and leads to inlammation 
has not been fully addressed to date.(8γ)
 Persistent state of inlammation known to be responsible 
for obesity metabolic dysfunction, as triggered by some 

immunoreceptors that sense metabolic stress signals. Over 

the past few years, inlammasomes have emerged as central 
regulators of the immune response in obesity-mediated 

inlammation.(60,84-89) Inlammasomes are multiprotein 
platforms which orchestrate the activation and secretion of 

IL-1ȕ and IL-18 in response to both pathogen- and danger-
associated signals.(90-9β) Structurally, inlammasomes 
consist of a sensor (an non-obese diabetic-like receptor 
(NLR) or absent in melanoma (AIM)β molecule), the adaptor 
adipose-derived stem cells (ASC) and caspase-1.(9β) Many 
NLR molecules, including NLRP1, NLRP3 and NLRC4, 

have been shown to promote caspase-1 activation and 

downstream release of IL-1ȕ and IL-18 after inlammasome 
formation.(9β) Interestingly, a lot of groups have identiied 
important roles for inlammasomes in both the induction 
and perpetuation of obesity-driven inlammation. Obesity 
has been shown to trigger inlammasome activation and IL-
1ȕ secretion in many metabolic organs (Figure β).(49)
 Activation of the NLRPγ inlammasome results the 
cleaving of the pro-caspase-1 zymogen to active caspase-1. 

Caspase-1 acts post-transcriptionally as a cysteine protease 

that cleaves pro-IL1ȕ and pro-IL18 into their active forms, 
leading to their secretion. The NLRPγ inlammasome is able 
to sense FFAs (88), ATP (9γ), ceramides (60), glucotoxicity 
(94), cholesterol (87), amyloid-ȕ (95,96), and urate crystals 
(97). Interestingly the active inlammasome complex is 
secreted or released during pyroptosis and functional in the 

extracellular space, producing IL-1ȕ.(98,99)

 Rather than simple inlammatory disease, obesity and 
metabolic syndrome represent derangements in macrophage 

activation with concomitant loss of metabolic coordination. 

As such, the sequelae of obesity are as much products of 

the loss of positive macrophage inluences as the presence 
of deleterious inlammation. The therapeutic implications of 
this conclusion are profound because they recommend that 

pharmacologic targeting of macrophage activation, rather 

than purely inlammation, might be eficacious in treating 
this global epidemic.(100)

Figure 2. Inlammasomes fuel 
obesity-induced inlammation. 
In the lean state, M2 

macrophages and Treg cells help 

restrain inlammation in AT and 
maintain metabolic homeostasis.

(49) Mf: Macrophage, Eos: 

Eosinophil, IAPP: Islet amyloid 

polypeptide, CCL2: Chemokine 

(C-C motif) ligand β. (Adapted 
with permission from Nature 

Publishing Group). 

Adipocyte Remodeling

Obesity is characterized by the accumulation of fat 

mass and is often associated with AT dysfunction.(101) 
Expansion of AT can be achieved by hyperplasia (increase 
in adipocyte number) or hypertrophy (increase in adipocyte 
size) or the combination of both.(10β,10γ) AT can 
respond rapidly and dynamically to alterations in nutrient 

deprivation and excess through adipocyte hypertrophy 

and hyperplasia, thereby fulilling its major role in whole 
body energy homeostasis.(7γ) AT remodeling is an 
ongoing process that is pathologically accelerated in the 

obese state, and thus, features such as reduced angiogenic 

remodeling, extracellular matrix (ECM) overproduction, a 
heightened state of immune cell iniltration and subsequent 
proinlammatory responses prevail in many obese fat-
pads.(104) However, not all AT expansion is necessarily 
associated with pathological changes. The concept of  

“metabolically healthy obese (MHO)” suggests that some 
individuals can preserve systemic insulin sensitivity on the 

basis of “healthy” AT expansion (105), bypassing all of the 
aforementioned pathological consequences associated with 

obesity (γ7), thereby also avoiding the obesity-associated 
lipotoxic side effects.
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 In β007, Saltiel and colleagues proposed a model of 
“phenotypic switching” that captured the very essence by 
which enhanced ATM iniltration exacerbates the milieu of 
obesity-related inlammation.(14)  Their model emphasized 
that obesity is accompanied by a transformation in the 

polarized states of macrophages, from an antiinlammatory 
“alternatively activated” Mβ form which primarily 
accumulates during negative energy balance (109), to a more 
proinlammatory “classically activated” M1 form (110). The 
M1 population demonstrates a positive correlation with IR 

and dominates in states of overnutrition by targeting FFA-

mediated increases in proinlammatory responses.(110,111) 
The polarization of resident macrophages will go toward 

an M2 status in lean states, presented by the expression 

of F4/80, CD301, IL-10, and arginase 1 expression as its 

hallmark (14), and iNOS activity inhibition.(11β) Thus 
adipocyte normal function during the increasing AT 

mass will be preserved by promoting tissue repair and 

angiogenesis.(11γ,114) Conversely, M1 macrophages, 
induced by lipopolysaccharide and the Th1 cytokine IFN-Ȗ, 
express a repertoire of proinlammatory factors, which 
include F4/80, CD11c, TNF-α, IL-6, iNOS, and C-C motif 
chemokine receptor β (CCRβ).(14,110)
 Taken together, these studies suggest that a delicate 

balance of polarized populations of macrophages is 

necessary to maintain adequate adipocyte function. 

Identifying factors that quench inlammatory signals in AT 
through modiication of ATMs to retain an Mβ polarization, 
or by triggering the phenotypic switch from M1 to M2, may 

be beneicial to preserve adequate adipocyte function and 
insulin action in an obese.(7γ)
 An important distinction needs to be established 

between healthy fat pad expansion and pathological fat 

pad expansion (Figure γ).  The healthy expansion as 
an enlargement of the fat pad mass through enhanced 

recruitment of adipocyte precursor cells that are 

differentiated into small adipocytes, along with the 

recruitment of other stromal cell types with appropriate 

ratios, and subsequent vascularization, minimal induction of 

ECM and minimal inlammation. In contrast, pathological 
expansion of AT can be described by rapid growth of the fat 

pad through enlargement of existing fat cells, a high degree 

of macrophage iniltration, limited vessel development, 
and massive ibrosis.(115) Such pathological expansion 
is associated with chronic inlammation, which ultimately 
results in the development of systemic IR.(7γ)
 Adipocytes are enmeshed in a dense network of 

ECM.(116,117) The ECM not only functions to provide 
mechanical support for a fat pad, but also regulates the 

physiological and pathological events of AT remodeling 

 The remodeling capacity of AT through hypertrophy 

and hyperplasia is physiologically important to respond to 

alterations in energy balance. The pathological acceleration 

of AT remodeling in the obese state is associated with 

countless of effects such as hypoxia, cell death, altered 

adipokine proile, and inlammation and contributes to 
the clinical adverse consequences of obesity.(7γ,106) 
Particularly AT inlammation is regarded as a major 
pathological factor.(56,64) In β00γ, two independent 
articles in the Journal of the Clinical Investigation 

highlighted the iniltration of macrophages into expanding 
AT as an important physiological phenomenon.(56,64) 
While not only opening up a newfound fundamental role 

for the macrophage in metabolism, these reports also fueled 

the publication of numerous additional papers, thus irmly 
establishing the phenomenon of a macrophage-orchestrated 

inlammatory response co-existing with obesity-induced IR. 
Supporting this hypothesis, large clusters of macrophage-

related inlammatory genes were identiied as signiicantly 
altered in obese AT.(64,7γ)
 In order to expand health and properly, adipocytes 

need a well coordination between the oxygen diffusion 

limit and promptly many cell types responses, including 

endothelial precursor cells, immune cells and preadipocytes. 

(7γ) A master regulator of hypoxia and oxygen homeostasis 
is hypoxia-inducible factors (HIF)-1. Several important 
hypoxia-associated genes, such as leptin and vascular 

endothelial growth factor (VEGF), are directly regulated 
by HIF-1.(107) As a transcription factor, HIF-1 functions 
as a heterodimer, consisting of an oxygen sensitive HIF-

1α subunit and a constitutively expressed HIF-1ȕ subunit. 
While HIF-1α synthesis is O

2 
independent, its degradation 

is enhanced under normoxic conditions.(108) As such, O
2 

can mediate the prolyl hydroxylation of HIF-1α, which 
subsequently facilitates ubiquitination by ubiquitin E3 ligase. 

This ligase contains a von Hippel-Lindau tumor-suppressor 

protein, which speciically recognizes the hydroxylated form 
of  HIF-1α and targets it for ubiquitination and degradation.
 As the result of this aberrant HIF-mediated 

transcriptional program, the ECM in white AT (WAT) 
accumulates ibrillar collagens. The upregulation of ECM 
then causes local ibrosis, and that hypoxia-induced ibrosis 
in AT may be a key factor that ultimately stimulates the local 

inlammatory responses. Although adipocyte is the key player 
orchestrating local changes in the microenvironment, much 

evidence also points toward pivotal role for macrophages in 

such remodeling events. Resident ATMs display remarkable 

heterogeneity in their activities and functions (65), largely 
relecting the complex events occurring in AT during 
metabolic and immune perturbations (7γ).
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through a variety of signaling pathways.(118) During AT 
expansion, the ECM actively remodels to accommodate the 

growth. Several ECM components are upregulated during 

fat mass expansion in states of obesity.(119,1β0) AT ibrosis, 
with its associated reduced plasticity, is therefore a key 

hallmark of the metabolically dysfunctional AT. Collagen 

VI, for example, is a collagen complex that is highly 
enriched in the ECM of AT.(118) Studies demonstrated that 
the weakening of the ECM that surrounds AT by elimination 

of collagen VI leads to improved survival rates of adipocytes 
and improvements in metabolism.(118)  Others have further 
reported correlations between elevated collagen VI levels, 
hyperglycemia and IR.(1β0,1β1)
 Metabolism and immunity are two fundamental 

systems. The presence of immune cells, such as 

macrophages, in metabolic tissues, suggests dynamic, on-

going crosstalk between these two regulatory systems.(57) 
The complex events that must occur in order for an organ 

such as AT to rapidly remodel and either release or accept 

a large number of calorically dense lipids that have the 

potential to be potently cytotoxic. A well-orchestrated set 

of interactions between a number of critical cell types has 

to take place in a deined chronological order, with many 
pathological changes that can occur during that process.

Figure 3. Healthy and 

unhealthy AT expansion. 

A: Healthy AT expansion 

consists of an enlargement 

of AT through effective 

recruitment of adipogenic 

precursor cells to the 

adipogenic program, 

along with an adequate 

angiogenic response and 

appropriate remodeling of 

the ECM. There are strong 

individual differences with 

respect to the potential 

for AT expansion. B: In 

contrast, pathological 

AT expansion consists of 

massive enlargement of 

existing adipocytes, limited 

angiogenesis, and ensuing 

hypoxia.(7γ) (Adapted with 
permission from American 

Society for Clinical 

Investigation).

Adiposopathy and Adipocyte Dysfunction

The problems associated with obesity develop initially as a 

problem related to energy storage, thereby placing WAT at 

the front lines. In addition to energy storage, WAT also acts 

to buffer postprandial amount of circulating fatty acids, so 

excessive lipid won’t be accumulated in peripheral tissue 

(1β1), and most prominent energy-storing cells in WAT, 
adipocytes, secrete hormones called adipokines that affect a 

diverse array of local and systemic functions. WAT consists 

of a SVF comprised of preadipocytes, endothelial cells, 
ibroblasts, macrophages, monocytes, and lymphocytes, 
which also holds important metabolic and immunological 

roles.(1ββ)
 Adiposity is excessive AT. Those with adiposity are 

characterized as being overweight or obese. Obesity is 

described as an independent risk factor for cardiovascular 

disease (CVD).(1βγ) Adiposity is pathological to the 
cardiovascular system through excessive fat-mass 

mechanisms and through adipocyte and AT dysfunction.

(1β4) Adiposopathy (or “sick fat”) is deined as pathologic 
AT anatomic/functional disturbances promoted by positive 

caloric balance in genetically and environmentally 

susceptible individuals that result in adverse endocrine and 

immune responses that may directly promote CVD, and may 
cause or worsen metabolic disease. Because many of these 

metabolic diseases are major CVD risk factors (e.g., type 2 

diabetes mellitus, high blood pressure, and dyslipidemia), 
adiposopathy also indirectly increases CVD risk.(1β5-1β8)
 AT is a loose ibrous connective tissue packed with 
many cells (called "adipocytes") surrounded by collagen, 
nerves, and blood vessels that are specialized for storage of 

triglycerides more commonly referred to as "fats".(1βγ) AT’s 
supporting framework contains SVF cells, which include 
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mechanism determining the individual risk to develop 

metabolic and cardiovascular comorbidities.(1β9,1γ1,1γ9-
141) AT dysfunction may develop under conditions of 
continuous positive energy balance in patients with an 

impaired expandability of SAT.(14β) It has been recently 
proved that SAT has a higher capacity to expand its capillary 

network than VAT. With increasing fat accumulation, this 
capacity decreases.(14γ) The decrease in SAT angiogenesis 
correlates with IR and suggests that impaired stem cell 

vascularization capacity may contribute to metabolic 

diseases.(14γ)
 SAT and VAT are often described as two intrinsically 
different organs, with different genetic lineages, whose 

accumulation promotes different, if not opposing health 

consequences.(144) Peripheral SAT is often described 
as ‘protective’.(145) Meanwhile, VAT is often described 
as ‘pathologic’ (i.e. a ‘unique pathogenic fat depot’).
(146) However, both SAT and VAT have ‘protective’ and 
‘pathologic’ properties.(147) From an organ standpoint, 
SAT, VAT, and other fat depots are globally increased during 
positive caloric balance.(145) From a cellular standpoint, 
adipocyte size may be globally regulated, independent of 

the variations in body fat distribution.(148) This supports 
the interconnectivity and interdependency of body fat depots 

and adipocytes, wherein AT’s pathogenic potential might 

best be based upon the global assessments of AT function 

or dysfunction, rather than assigning the binary ‘protective’ 

and ‘pathologic’ labeling, depot-by-depot, adipocyte-by-

adipocyte.(147)
 The inability to store excess calories in “healthy” 
subcutaneous fat depots may represent a critical node 

in the development of subsequent ectopic fat deposition 

in visceral depots, the liver and other cell types (Figure 
4).(1γ0,140,149) This may initiate several mechanisms 
including adipocyte hypertrophy, hypoxia in AT, several AT 

stresses, autophagy and inlammation which are activated 
either as a sequence or in parallel, ultimately leading to AT 

dysfunction.(150) Increased visceral adiposity often shares 
common pathologic processes leading to the adiposopathic 

accumulation of other fat depots, as well as lipotoxic fatty 

iniltration of nonadipose organs.
 Central obesity is a clinical marker for adiposopathy. 

Increased waist circumference, relecting increased VAT 
as a surrogate marker for SAT dysfunction, and a shared 

pathogenic fat accumulation process and fatty iniltration of 
nonadipose body organs. AT has long been recognized as 

the body’s largest pool of free cholesterol. Through multiple 

release and uptake pathways, the adipocyte establishes 

a communication between its free cholesterol depot and 

the blood cholesterol pool and in turn maintains cellular 

mesenchymal cells, ibroblasts, preadipocytes, endothelial 
precursor cells, smooth muscle cells, blood cells, and 

immune cells.(1β9) In addition to how fat is stored and where 
fat is stored, other determinants of the pathogenic potential 

of expanding AT include the interdependent physiologic 

processes of angiogenesis and ECM remodeling.(1β4) If 
an increase in fat storage results in excessive adipocyte 

enlargement, then adipocyte hypertrophy may contribute 

to intracellular hypoxia.(1γ0,1γ1) Additionally, when fat 
accumulation outpaces angiogenesis, then a relative lack 

of blood low may result in both cellular and AT hypoxia.
(74,1γβ) As with other body tissues (e.g., heart), cellular 
and tissue adipose hypoxia contributes to cellular and 

organ dysfunction (1γβ), contributes to proinlammatory 
responses, and all may contribute to the onset or worsening 

of metabolic disease (1γγ).
 Hypoxic AT has unique alterations that are likely 

contributors toward the link of obesity with its comorbidities. 

Fibrosis is a hallmark of metabolically dysfunctional AT. 

Adipocytes are surrounded by a network of ECM proteins 

that serve as mechanical support and that respond to 

different signaling events.(117) Maintaining a high degree 
of lexibility of the ECM allows AT to expand in a healthy 
manner, without adverse metabolic consequences. Over the 

course of the development of obesity, increased interstitial 

ibrosis in WAT may decrease ECM lexibility and reduce 
the tissue plasticity, which ultimately leads to adipocyte 

dysfunction. Of note, abnormal collagen deposition, a 

hallmark of ibrosis development in AT, is tightly associated 
with tissue inlammation characterized by iniltration of 
macrophages and many other immune cells.(7γ) Thus, 
ibrosis is increasingly appreciated as a major player in AT 
dysfunction.(1γ4)
 “Sick” adipocytes termed to the disrupted 
physiological function of fat-cell organelles characterized 

by increased markers of intracellular ER stress and 

mitochondrial dysfunction associated with inlammation, 
cellular dysfunction, and metabolic disease due to excessive 

adipocyte hypertrophy.(1γ1,1γ5-1γ7) The endoplasmic 
reticulum is a membrane system of folded sacs and 

interconnected channels that serves as a site for protein and 

lipid synthesis, also transport proteins and carbohydrates so 

the normal cellular functions can take place. Mitochondria 

are membrane-enclosed organelles that contain enzymes 

responsible for transforming nutrients into cellular energy 

through the production of adenosine triphosphate. Increased 

markers of adipocyte mitochondrial stress are associated 

with obesity,  IR, and type β diabetes mellitus.(1γ8)
 AT dysfunction belongs to the early abnormalities in 

the development of obesity and seems to be an important 
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cholesterol homeostasis.(151) Interestingly, cholesterol 
accumulated within lipid droplets increases proportionally 

to the triglyseride content (15β,15γ), whereas a decrease 
in plasma membrane cholesterol has been reported in 

hypertrophied adipocytes (154), implying that altered 
cholesterol distribution is a feature of adipocyte hypertrophy 

per se. Subsequently, several lines of evidence further 

support the role of cholesterol imbalance on adipocyte 

dysfunction in the state of obese (155,156).

Figure 4. Model for the development of AT 

dysfunction. With continued overeating and a 

positive energy balance fat accumulation increases. 

The majority of patients with obesity exhibit an 

impaired expandability of SAT which may initiate 

a sequence of pathogenic factors causing impaired 

AT function.(149) SC: Subcutaneous, FTO: Fat-
mass and obesity associated, MC4R: Melanocortin 4 

receptor, DGAT2: Diacylglycerol O-acyltransferase 

2, SREBP1c: Sterol regulatory element-binding 

protein 1c, CIDEA: Cell death-inducing DFFA-like 

effector a, LYPLAL1: Lysophospholipase-like 1, 
MSRA: Methionine sulfoxide reductase A, TFAP2B: 

Transcription factor activating enhancer binding 

protein-2 beta, Fgfr2c: Fibroblast growth factor 

receptor 2c, NF-kB: Nuclear factor kappa-beta, ATF3: 

Activating transcripsion factor 3; ERK: Extracellular 

regulated kinase, p38MAPK: p38 mitogen-activated 

protein kinase, JNK: c-Jun NH2-terminal kinase, Atg: 

Authophagy related, LC3A: light chain 3A, IKK: 

IkB  kinase. (Adapted with permission from Elsevier, 
Ltd.).

Obesity is typically associated with increased risk of 

cardiovascular events. However, a subset of obese individuals 

does not present phenotypic traits that characterize increased 

cardiovascular risk, such as IR. The condition stated above 

has been called MHO. Indeed, 10-25% of obese individuals 

may not be impacted by metabolic abnormalities (157), 
which is a substantial number considering that obesity 

affects 300 million people worldwide. In a sub-analysis 

of the National Health and Nutrition Examination Surveys   

1999β004, 51.γ% of overweight adults and γ1.7% of obese 
adults were metabolically healthy as they showed either 

no or one metabolic syndrome trait.(158) The concept of 
healthy obesity challenges the notion that all overweight 

and obese individuals should be treated. Selecting such 

individuals for watchful surveillance could spare signiicant 
amounts of societal and economic resources.(159)
 The phenotype of the ‘metabolically obese but normal 

weight (MONW)’ individual, irst identiied by Ruderman 

"Metabolically Healthy" Obesity

and colleagues, and characterized by hyperinsulinemia, 

hyperglycemia, IR, impaired glucose tolerance, 

hypercholesterolemia and hypertriglyceridemia, but normal 

adipocyte volume and BMI, suggests that there must be 

genes and signal transduction pathways that ordinarily 

couple obesity to IR, and that these are deicient in certain 
individuals.(158,160) These characteristics in a lean 
individual mark a departure from common human patterns, 

in which metabolic disease is a consequence of weight gain. 

Yet, these phenotypes are very prevalent. For example, 
polycystic ovary syndrome (PCOS) has been diagnosed 
in up to 10% of one study of women of reproductive age 

(161) and MONW in 1β.7% of normal-weight subjects in a 
Korean study (16β). Elevated risk for CVD is seen among 
both MONW (16γ) and PCOS individuals (161), as well as 
elevated risk for hypertension, type 2 diabetes mellitus and 

other metabolic complications. Thus, metabolic dysfunction 

and CVD risk come in many sizes and shapes.(164)
 Although adipose depots all increase in volume with 

obesity, fat deposits in different anatomical regions show 

depot-associated levels of immune cell iniltration and 
inlammation, and thus differentially associate with disease. 
To generalize, SAT is more metabolically ‘protective’, 

meanwhile pericardial and other visceral depots are highly 

correlated with risk for obesity-associated disease, including 

coronary artery disease.(165-168) The MHO phenotype is 
strongly associated with a smaller visceral depot, although 

no necessarily with expanded subcutaneous; the clamped 

glucose infusion rate strongly correlates with visceral WAT 

area.(46) Population studies propose that propensity to 
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accumulate fat in central oFr peripheral depots has a strong 

genetic component (169,170), thus certain features of the 
MHO phenotype are likely to be heritable (171), including 
body fat distribution. AT depots which preferentially expand 

in metabolically unhealthy (inlammatory) responses 
include pericardial (epicardial and interstitial) and visceral 
depots. AT that preferentially expands in MHO individuals 

includes widespread subcutaneous depots (Figure 5).(17β)
 In humans, WAT ibrosis as measured by collagen VI 
expression is positively correlated with IR and inlammatory 
markers, such as the number of ATM.(17γ) The relationship 
between stress/ibrosis and unhealthy WAT supports a 
hypothesis that alleles of genes that encode different forms 

of collagen or enzymes that modify collagen, such as lysyl 

oxidase (174,175), correlate with the ability of WAT to 
expand and remodel in obesity while avoiding stress and 

remaining metabolically healthy. Adipocyte size per se 

in both omental and subcutaneous depots is also strongly 

negatively correlated with metabolic health (46,17γ), with 
smaller adipocytes and preserved insulin-sensitive glucose 

transport characteristic of MHO individuals, while some 

of them based on functional allelic variants of peroxisome 

proliferator-activated receptor (PPAR)-Ȗ, PPAR-g co-

activator (PGC)-1α, positive regulatory domain-containing 
16 (PRDM16) and other adipogenic transcriptional 
program could expanded subcutaneous WAT then increased 

adipogenesis.

 Not much clinical evidence has yet been assembled to 

support this idea, even though Patti, et al., noted in a study 

of Mexican-American subjects that expression of PGC-1α 

Figure 5. Role for immune cells in 

inlammatory response of MHO 
(insulin sensitive) and metabolically 
unhealthy (insulin resistant) obese 
AT. Blue = interleukin-10hi B cell, light 

blue = interleukin-10lo B cell, orange = 

T helper 1 cell, dark green = T helper 

17 cell, yellow = Tregs, purple oval = 
anti-inlammatory Mβ macrophages 
(Mβφ), pink oval = proinlammatory 
M1 macrophage (Mφ).(17β) (Adapted 
with permission from Lippincott 

William & Wilkins).

and PPARȖ-directed transcriptional networks are decreased 
in pre-diabetic and type β diabetes obese subjects.(176) 
Their metabolic dysfunction, including reduced oxidative 

metabolism and attenuated mitochondrial electron transport, 

is consistent with defective PGC-1α and PPARȖ function, 
although primary adipogenesis was not studied in this 

cohort. Well matched MHO and IR obese human subjects 

should be evaluated for these hypothesized variants.(164)
 MHO individuals display a reduced inlammatory 
proile (47), with reduce hepatosteatosis (48), lower 
numbers of iniltrating ATMs and crown-like structures in 
WAT (46) and reduced serum levels of TNF-α, monocyte 
chemotactic protein-1 (48), IL-6 and C-reactive protein 
(CRP) (46). Elevated serum adiponectin and reduced ATM 
iniltration are the strongest predictors of preserved ability 
to clear glucose (46,177); in men, preserved adiponectin 
levels are associated with a reduced rate of myocardial 

infarction (178). Adiponectin also promotes protective 
Mβ macrophage differentiation.(179) The mechanistic 
details of the ways in which macrophages, T-cells, B-cells 

and adipocytes respond to dietary interventions, bariatric 

surgery or drug treatment for IR, or can be mobilized for 

therapeutic beneit, are very poorly understood which has 
provoked active inquiry.(180) Study of MHO individuals is 
likely to reveal critical new principles for how their speciic 
anatomical, cellular, immunological and molecular features 

protect them from type β diabetes mellitus and CVD.(181)
 A more precise term might be ‘metabolically 

protected obese’. This is because not only are a number 

of deleterious factors reduced in these individuals, but 
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other protective factors are relatively undiminished, such 

as serum adiponectin.(18β,18γ) In some MHO subjects, 
adiponectin concentrations even exceed the values seen in 

normal BMI individuals.(184) Interestingly, a meta-analysis 
of PCOS women showed that both lean and obese subjects 

have signiicantly lower adiponectin than the normal 
controls (185), consistent with the contention that increased 
metabolic risk need not be a result of elevated BMI.(164)
Triglycerides, HDL cholesterol, and hsCRP may be useful 

markers for predicting which individuals will develop 

MHO, and which will go on to develop metabolically 

unhealthy obesity. MHO may not be a stable condition, 

because it confers markedly increased risk of developing 

multiple metabolic abnormalities in the future.(186)

Complication Centric Approach to Obesity 

Management

Obesity is arguably the most common medical problem seen 

today in primary care (187), and is a disease that adversely 
affects mortality, morbidity, and quality of life as a result of 

its associated complications (188,189). These complications 
can broadly be categorized as cardiometabolic, mechanical, 

and lifestyle based. The health risks associated with being 

overweight and obese include a range of conditions, 

including diabetes, CVD, hypertension, dyslipidemia, 
sleep apnea, some cancers, musculoskeletal disease, 

infertility, disability, dementia, and mortality.(1,19,190) 
Moderate weight loss (5-10%) has been associated with 
improvements in these obesity-related comorbidities (191), 
with lifestyle modiication, pharmacotherapy, and bariatric 
surgery representing the three available treatment options. 

Currently, BMI still used as a predominant measure used 

to gauge obesity-related disease severity and treatment 

modalities, but recent understanding in obesity treatment 

and relationship between BMI and obesity-related 

complications convince us that this BMI-centric medical 

model has to be re-examined.

 A major shortcoming of BMI as a measure of 

adiposity is that the numerator (weight) of the index fails to 
distinguish between lean and fat mass.(19β-194) Variables 
that limit BMI as a comparative measure include aging, 

sex, physical itness and muscular build, weight loss with 
exercise, racial differences, and clinical disease.(195-197) A 
systematic review found that around 50% of individuals not 

labeled as obese by BMI might indeed have excess adiposity, 

helping to elaborate why BMI is a poor discriminator of 

cardiovascular risk in people with intermediate BMI (below 
γ0) values.(198) 

 The relationship between generalized obesity, as 

measured by the BMI, and its associated comorbidities 

is complex. Obesity can exacerbate IR and impel 

cardiometabolic disease progression to metabolic syndrome, 

prediabetes, diabetes, and CVD. However, IR exists largely 
independent of BMI, and BMI is a poor predictor of CVD 
when compared with other measurements such as waist/hip 

ratio.(199-β04) Importantly, up to γ0% of obese individuals 
(BMI ≥γ0) are relatively insulin sensitive and do not have 
manifestations of cardiometabolic disease (i.e., the MHO), 
and up to 30% of lean individuals are insulin resistant with 

cardiometabolic disease manifestations.(β0β,β05,β06) 
Thus, obesity is neither necessary nor suficient to explain 
the pathophysiology underlying cardiometabolic disease. 

Similarly, regarding the mechanical complications of 

obesity, the presence and severity of obstructive sleep apnea 

(OSA), osteoarthritis, gastroesophageal relux disease 
(GERD), and stress incontinence can be poorly correlated 
with the BMI level.(β01)
 Denis and Hamilton at the Boston University Medical 

Center who have investigated the metabolically unhealthy 

obese, compared to the MHO, and found that a distinguishing 

factor could be the accumulation of not just visceral body 

fat but ectopic fat in the pericardial space.(β07) Favorable 
inlammatory status is positively associated with metabolic 
health in obese and non-obese individuals. These indings 
are of public health and clinical signiicance in terms of 
screening and stratiication based on metabolic health 
phenotype to identify those at greatest cardiometabolic risk 

for whom appropriate therapeutic or intervention strategies 

should be developed.(β08) 
 A complications-centric approach to obesity 

management identiies patients who will beneit most 
from weight loss, and optimizes patient outcomes, beneit/
risk ratio, and the cost-effectiveness of interventions. In a 

complications-centric model, the existence and severity 

of complications at baseline is more important than the 

baseline BMI itself in determining the treatment modality 

and intensity for obesity.(β09-β11) Therefore, in order to 
develop an appropriate therapeutic strategy, irst we have to 
evaluate the severity of patients’ obesity complication. 

 The clinician should evaluate patients for the metabolic 

syndrome and prediabetes, as this effectively identiies 
individuals at high risk for future diabetes and CVD.
(β1β,β1γ) The initial evaluation should also screen for other 
disease entities that will beneit from weight loss, including 
nonalcoholic fatty liver disease (NAFLD) and sleep apnea. 
Finally, mechanical complications such as problematic 

degenerative joint disease, GERD, stress incontinence, and 

immobility/disability also have to be evaluate.(198) Obesity 
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Stage
Cardiometabolic and Mechanical Disease 

Complications
Functional Impact

0 No risk factors No functional impairments or impairments in well-being

1

‘Subclinical risk factors’: prediabetes, metabolic 

syndrome, NAFLD, borderline hypertension, 

dyspnea on moderate exertion

Mild functional limitations and impairment of well-being 

mild psychopathology, occasional aches and pains

2
Established chronic disease: T2DM hypertension 

sleep apnea, PCOS, osteoarthritis, GERD

Moderate limitations in activities of daily living, moderate 

impairment of well-being, and/or moderate 

psychopathology (e.g., anxiety disorder)

3

Established end organ damage: myocardial 

infarction heart failure, stroke, diabetes vascular 

complications incapacitating osteoarthritis

Significant functional limitations and/or impairment o 

well-being

4 Severe end-stage disabilities
Severe limitations and impairment of well-being severe 

disabling psychopathology

Table 1. A complications-centric approach for obesity scoring system.
 A. Edmonton Obesity Staging System. (198) (Adapted with permission from Lippincott William & Wilkins).

Stage Descriptor

0 Metabolically healthy

a) High waist circumference ( 88cm in women; 102 cm in men; and 

80cm in south-east Asian women and 90 in south-east Asian men)

b) Elevated blood pressure (systolic 130mmHg and/or diastolic 85 

mmHg) or on antihypertensive medication

c) reduced serum HDL cholesterol (<1.0 mmol/l or 40 mg/dl in men 

<1.3 mmol/l or 50 mg/dl in women)

d) elevated fasting serum triglycerides ( 1.7 mmol/l or 150 mg/dl)

a) Metabolic syndrome based on three or more of four risk factors: high 

waist circumference, elevated blood pressure, reduced HDL-C, and 

elevated triglycerides

b) Impaired fasting glucose (fasting glucose 5.6 mmol/l or100 mg/dl)

c) Impaired glucose tolerance (2-h glucose !7.8 mmol/l or140 mg/dl)

a) Metabolic syndrome

b) IFG

c) IGT

a) T2DM (fasting glucose 126 mg/dl or 2-h glucose 200 mg/dl or on 

antidiabetic therapy)

b) Active CVD (angina pectoris, or status after a CVD event such as 

acute coronary artery syndrome, stent placement, coronary artery 

bypass, thrombotic stroke, nontraumatic amputation due to peripheral 

vascular disease)

Have T2DM and/or CVD:

1 One or two risk factors

2

3

4 T2DM and/or CVD

Metabolic syndrome or prediabetes

Metabolic syndrome and prediabetes

Criteria

Have one or two of the following risk factors:

No risk factors

Have any two of the following three conditions:

Have only one of the following three conditions in isolation:

Data from Reference No.210 and 214.

 B. Cardiometabolic Disease Staging. (198) (Adapted with permission from Lippincott William & Wilkins).

CVD: Cardiovascular disease, HDL-C: High-density lipoprotein cholesterol, IFG: Impaired fasting glucose, IGT: Impaired 
glucose tolerance, T2DM: Type 2 diabetes mellitus.
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scoring systems that are complications-centric offer a better 

methodology to gauge severity and direct intervention, 

but these tools will need to be validated in many settings. 

The study by Daniel, et al., discusses such scoring systems 

and some have been published recently such as the 

Edmonton Obesity Staging System  (EOSS) (β14) and the 
American Association of Clinical Endocrinologist (AACE) 
Complications-Centric Obesity algorithm (β1β).
 The EOSS is a important guideline for obesity 

management as it integrates an evaluation of the severity of 

both cardiometabolic disease and mechanical complications 

together with an assessment of functional impairment. 

However, it has two limitations. First the assessments are 

not quantitative and staging depends largely on clinical 

judgment. Second, it lacks granularity for cardiometabolic 

disease staging (CMDS). All patients with IR, prediabetes, 
metabolic syndrome, elevated hepatic transaminases, 

borderline hypertension, moderate dyspnea on exertion, and 

mild impairment of well-being are included within stage 

1, which encompasses a wide range of risk for (Table 1A).
(198)
 Garvey and coworkers  have recently proposed 

CMDS System as a guide for treatment of obesity or other 

interventions intended to treat or prevent diabetes and 

CVD risk.(β09,β11) CMDS is a single staging system that 
provides a quantitative assessment of risk for both future 

diabetes and all-cause and CVD mortality. CMDS assigns 
patients to one of ive risk categories using quantitative 
parameters readily available to the clinician, including 

waist circumference, SBP and DBP, fasting blood levels of 

glucose, triglycerides, and HDL cholesterol, as well as the 

2-h oral glucose tolerance test value. With advancement from 

stage 0 to stage 4, there are signiicant increments in risk 
and adjusted hazard ratio for diabetes as validated using the 

Coronary Artery Risk Development in Young Adults study 
national cohort, as well as increased risk and hazard ratios 

for both all-cause and CVD-related mortality in the National 
Health and Nutrition Examination Survey cohort.(β11) This 
staging system provides a strong predictor of diabetes, 

CVD mortality, and all-cause mortality independent of BMI 
(Table 1B).

Conclusion
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