
Acta Informatica Pragensia, 2015, 4(3): 310–317 

DOI: 10.18267/j.aip.77 

Peer-reviewed paper 

  

310 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015 

 

Android Access Control Extension  

 Anton Baláž*, Branislav Madoš*, Michal Ambróz* 

Abstract  

The main objective of this work is to analyze and extend security model of mobile devices 
running on Android OS. Provided security extension is a Linux kernel security module that 
allows the system administrator to restrict program's capabilities with per-program profiles. 
Profiles can allow capabilities like network access, raw socket access, and the permission to 
read, write, or execute files on matching paths. Module supplements the traditional Android 
capability access control model by providing mandatory access control (MAC) based  
on path. This extension increases security of access to system objects in a device and allows 
creating security sandboxes per application. 

Keywords: Android, Security, Sandbox, Policy, Profile, Access control, MAC. 

 

1 Introduction 

Android represents an operating system for mobile devices being used with approx. 80%  

of all these devices. Since approx. 97% of all malware is created for this operating system, 

there is a need to pay a proper attention to security of such devices (Bousquet, 2013). 

Malware created for mobile devices differs in various goals, e.g. obtaining personal data, SIM 

card number or IMEI device number which is send to servers of third parties and misused,  

or creating hidden calls and SMS messages which can cost a lot of money (Novák, 2012). 

Security of mobile devices is extensively affected by user behavior, as every potentially 

dangerous application requires permissions when being installed. Malicious software usually 

requires inadequate set of permissions according to its purpose. If users paid a proper 

attention to these permissions, the risk of threats to their devices would be minimized. 

However, according to many studies, only around 20% of users pay attention to permissions 

when installing applications to their mobile devices (Barrera, 2010). 

The main goal of this work is to propose and implement an architecture which creates  

a mandatory access control module for kernel of Android operating system which allows 

managing installed applications permissions as well as the access control of system resources 

more securely (Smalley, 2013). 

2 State of Art 

As an operating system for mobile devices, Android is based on Linux kernel inheriting both 

advantages and disadvantages of this architecture. Linux kernel provides a number of security 

                                                 

* Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,  

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic 

 anton.balaz@tuke.sk, branislav.mados@tuke.sk, michal.ambroz@tuke.sk 



  

311 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015 

benefits for Android. These advantages include isolation of active processes, interprocess 

communication or user security model etc. (Hoopes, 2009). With such a multiuser system, an 

early goal is to separate resources of one user from another. However, for Android it means 

that resources of one application are separated from resources of another application, since 

Android applications are defined by a given user identification number from their installation 

to their uninstallation. As other systems, yet Linux and Android are still prone to security 

faults (Wei, 2012). In case of mobile devices, these faults mainly include threats to privacy 

and sensitivity of user data, possibility of identity theft and possibility of money leak,  

if permissions related to phone calls and SMS messages are misused (Shan, 2012). 

Applications for Android can be distributed to users through developer web pages, though 

more common way is to use Google Play, a shop with Google applications. Google enters the 

process of publication of applications in their shop only at minimal level, making the work of 

developers easier on one hand, but creating a space for spreading insecure applications among 

users on the other hand. After its installation, such an application can cause harm to the 

device, eventually it can cause an unexpected behavior of the device (Wagner, 2012). 

In order to avoid such an unexpected behavior, every application contains a set of permissions 

which should be defined by its user. Android provides several mechanisms limiting the 

interactions between the system and the applications and between the applications themselves. 

To handle applications privileges, Android uses a specific model of permissions (Wu, 2015). 

Each application requests a set of permissions, allowing it to perform specific actions. For 

instance, an application that needs to send SMS has to request the SEND SMS permission. 

This is a security model based on capabilities (Vargas, 2012). Permissions are explicitly 

granted by the user during the installation of the application. Nevertheless, since Android 

does not allow a partial selection, the user must either accept all the permissions or cancel the 

installation. Moreover, the user cannot change the permissions afterwards: the only way is to 

uninstall the application. A solution proposed in this paper allows the user to specify exactly 

what resources an application can use. 

Actually, there exist a number of security solutions for Android: 

 TaintDroid is an extension of Android that enables to track information flows on 

Android smartphones (Felt, 2012). TaintDroid uses data tainting to track sensible data. 

It assumes that the applications installed by the user cannot be trusted. It monitors the 

user’s data and aims to detect whether any data leave the system.  

 AppFence makes privacy controls on Android applications by retrofitting the runtime 

environment. AppFence implements two systems: data shadowing, i.e. providing fake 

data to the application (empty contact list etc.) instead of sensitive data, and ex-

filtration blocking, i.e. preventing sensitive data (tainted by TaintDroid) from leaving 

the device. 

 Aurasium is a protection solution that does not alter the Android OS. Indeed, 

Aurasium hardens Android applications by repackaging them in order to add its policy 

enforcement code. Thus, Aurasium can control access to sensitive information, such as 

IMEI number, location etc. 

 CRePE presents a policy enforcement solution based on the contextual environment 

(geographical location, time of the day etc.). These environments are automatically 

detected by CRePE, and no action from the user is requested. Thus, users can disable 

particular functions depending on the current situation. 

As shown by this state of the art, a solution that provides a fine-grained access control 

mechanism is required. Module proposed in this work is designed as a sandbox for 



  

312 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015 

applications installed in the devices. The user defines a set of policies (profile) to control the 

propagation of data. Sandbox is a mechanism which operates on user level (Vokorokos, Baláž 

& Ádám, 2015). It tracks untrusted applications and allows controlling potentially insecure 

system calls. As a result of this assumption, an application is capable to perform any action 

within its address space in more secure way. 

3 Designed Security Architecture 

In order to solve the presented problem, we proposed and implemented a sandbox module for 

the OS kernel which allows a user to manage advanced permissions assigned to installed 

applications (Spreitzenbarth, 2013). This allows to perform an effective creation of isolated 

sandboxes over running applications and to securely manage an access to system resources 

(Fig. 1). 

 

 

Fig. 1. Sandbox architecture. Source: Authors. 

The security extension monitors application requests (system calls) for system resources. 

Each request is referenced to security policy profile, confining data flow from/to application 

and OS resources. 

Application Request ID → Policy Profile → System Resources Permit, Deny 

Within the design phase, it was necessary to appropriately select an interface allowing to 

operate with profile files – security policy. Such an interface would apply these profiles and it 

would manage application permission according to the desired security policy. The most 

common approach in Linux OS uses a virtual file system called proc or sys, both allowing to 

create and process files without any impact on the operating system (Danková, 2011). From 

the previous analysis, the realized solution is based on system call filp open. Module 

presented in this work does not need to have an access to a superuser account. For the 

purposes of this work, filp_open interface was used, provided by the OS kernel, allowing to 

filter all common system operations on files, e.g. open, reading and writing. The main 

restrictions of the filp_open function include the size which cannot exceed the size of the 

stack, 1 024 bits in this case. Structure of a profile file is specifically defined. Profile name 

corresponds to user identification number of the application. Every file line represents one 

permission adjustment of a given application or an access adjustment to one of the files. 

Profile files implement black list – entering denying rules, default policy is permit. 

  



  

313 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015 

Profile example: 

/sdcard/images/dont/show/picture/pic.png rwf 

/sdcadrd/other/dont/show/data/data.txt rp 

network 

#application 

Within the presented example, one may notice that the user prohibited to display pic.png  

in images directory as well as to change this file. Conversely, in data directory, the user only 

permits to read contents of data.txt, however, the given application is allowed to modify this 

file. The third line defines the user denied a network access to this application. The last line 

allows the user to write a comment to which application this profile applies. 

Profile syntax: 

<profile> ::= <permission><operation><mode> | <permission> | 

<comment> 

<comment> ::= "#" <string> 

<permission> ::= <path-to-file> 

|"network"|"identity"|"contacts"|"photos, media, files" 

<operation> ::= "r"|"w"|"o"|"rw"|"wo"|"or"|"rwo"|"" 

<mode> ::= "p"|"f"|"" 

In this work, the module design included 2.3.69 Goldfish version of Android. In order to 

ensure a secure functioning of the module, the first step focused on the necessity to determine 

address of a table with system calls located in system.map in a directory containing system 

kernel. The module hooks an access to all system calls performed to installed applications 

through the table of system calls. 

 

Fig. 2. Module operation. Source: Authors. 

The module contains two obligatory functions: init_module and cleanup_module. The aim  

of the init_module function is to initialize the module and further it is used to hook system 

calls. The cleanup_module function is called when the module ends its work and it assigns 

original values to every call. However, in case of this work, the cleanup_module function 

executes on the functionality of hooking the Internet service, since the values are assigned to 

the system calls when they are captured. Fig. 2 depicts a simplified model of security module 

processing. The module operates in several steps: 

1. In the beginning the module should be introduced to kernel using the insmod 

command. 



  

314 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015 

2. While the module operates, it is necessary to hook system calls and filter them 

according to the defined profiles. 

3. If a packet is captured by the module, it loads the profile. If the application which 

initialized the packet already includes a defined profile as well as a defined size of the 

data to be transmitted, it is necessary to count how many data have been already 

transmitted by the application out of the data guaranteed by the user. If the application 

received more data than permitted, then the packet is discarded. Otherwise the packet 

is received and the evaluation continues. 

4. If the module captures a system call to open, read or write to a file, it loads a profile 

for the application which invoked the call. 

5. The system calls of read and write to file do not contain the name of the file to which 

they approach but they contain its descriptor. Since it is possible to determine a path to 

the file from this number, this step is recommended in such a case. 

6. After the module receives a path to the file and reads the file, it is possible to evaluate 

permissions from the profile. 

7. Since some permissions contain their own identification number, they are monitored 

separately according to files to which the application approaches. 

8. If permission located in the profile matches with the file to which the application 

approaches, the call is returned with the -EPERM macro of the kernel, marking that 

the permission was removed from the application. Otherwise the original system call 

is returned. 

4 Module Evaluation 

Testing of the proposed security policy was performed on the Android OS using the 2.3.69 

Goldfish kernel. For evaluation purposes of the enhanced security policy and comparison to 

the status quo, we have chosen several applications which are commonly installed by users 

and ones containing malware, e.g. Flappy Bird with a malware secretly sending SMS 

messages, applications of iMatch and iCalendar containing the Zsone malware, and Tencent, 

an application which cumulates and sends data to remote servers. In order to test file security, 

another ES File Manager was selected as well, simulating opening of sensitive files. As an 

example, this paper selected an application containing several suspicious permissions as it is 

displayed in Fig. 3. 



  

315 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015 

 

Fig. 3. FlappyBird permissions. Source: Authors. 

The application requires permissions to send SMS messages, causing a financial harm to the 

user. Based on this information, a profile was created and as it is visible in Fig. 3, the module 

successfully prevented the application from its insecure malicious behavior. Similarly were 

tested all selected applications against defined security policy by application profiles. 

 

 

Fig. 4. Call/SMS denying. Source: Authors. 

 

Tab. 1 contains an evaluation of the selected set of tested insecure applications. Lines labeled 

by X mark successful attack prevention. The - character indicates the permission was not 

dangerous to the application and N marks such a behavior that was impossible to reproduce. 

 



  

316 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015 

 FlappyBird iMatch iCalendar Tencent ES 

Internet Access - X X X - 

SMS and Calls X X X - - 

Identity - - - N - 

File Access - - - - X 

Tab. 1. Security module evaluation. Source: Authors. 

5 Conclusion 

Android represents an operating system for mobile devices being used with majority of all 

these devices. Since approx. 97% of all malware is created for this operating system, there is  

a need to pay a proper attention to security of such devices.  

The aim of this work was to propose and implement a security enhancement to Android OS 

through the module for the operating system kernel. Based on a profile this module is capable 

of restricting threats to applications installed in mobile devices. Designed extension is an 

application security tool designed to provide an easy-to-use security framework for installed 

applications. Module proactively protects the operating system and applications from external 

or internal threats, even zero-day attacks, by enforcing expected behavior and preventing even 

unknown application flaws from being exploited. Module security policies, called profiles, 

completely define what system resources individual applications can access, and with what 

privileges. 

Proposed security extension was evaluated on selected samples of malicious code, which 

causes several malicious activities such as unwanted SMS delivering, privacy data gathering, 

unsolicited data transmitting. From the results, active proposed module successfully 

eliminates mentioned security threats of the evaluated samples. However, the proposed 

solution contains actually several restrictions, e.g. no customized GUI interface to create and 

modify profiles as well the need to compile the module for a specific version of the system 

kernel. 

Acknowledge 

This work was supported by the Slovak Research and Development Agency under the 

contract No. APVV-0008-10 and project KEGA 077TUKE-4/2015 Promoting  

the interconnection of Computer and Software Engineering using the KPIkit. 

References 

Barrera, D., Kayacik, H. G., van Oorschot, P. C., & Somayaji, A. (2010). A methodology for 
empirical analysis of permission-based security models and its application to android.  
In Proceedings of the 17th ACM conference on Computer and communications security  
(pp. 73-84). New York: ACM. doi: 10.1145/1866307.1866317 

Bousquet, A., Briffaut, J., Clévy, L., Toinard, C., & Venelle, B. (2013). Mandatory Access Control 
for the Android Dalvik Virtual Machine. ESOS: Workshop on Embedded Self-Organizing 
Systems. Retrieved from https://www.usenix.org/conference/esos13/workshop-
program/presentation/bousquet 

Danková, E., Ádám, N. & Jakubčo, P. (2011). An anomaly-based intrusion detection system.  
In Proceeding of the Electrical Engineering and Informatics II (pp. 260-264). Košice: FEI TU. 

http://dx.doi.org/10.1145/1866307.1866317
https://www.usenix.org/conference/esos13/workshop-program/presentation/bousquet
https://www.usenix.org/conference/esos13/workshop-program/presentation/bousquet


  

317 ACTA INFORMATICA PRAGENSIA Volume 04 | Number 03 | 2015 

Hoopes, J. (2009). Virtualization for security: including sandboxing, disaster recovery, high 
availability, forensic analysis, and honeypotting. New York: Elsevier. 

Novák, D., Ádám, N. (2012). Route planner for mobile devices. In Kollár, J. (ed.) Computer Science 
and Technology Research Survey. Košice: FEI TU.  

Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., & Wagner, D. (2012). Android permissions: 
User attention, comprehension, and behavior. In Proceedings of the Eighth Symposium on 
Usable Privacy and Security (no. 3). New York: ACM. doi: 10.1145/2335356.2335360 

Shan, Z., Wang, X., Chiueh, T. C., & Meng, X. (2012). Facilitating inter-application interactions for  
os-level virtualization. In Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual 
Execution Environments (pp. 75-86). New York: ACM. doi: 10.1145/2151024.2151036 

Smalley, S., & Craig, R. (2013). Security Enhanced (SE) Android: Bringing Flexible MAC to Android. 
Retrieved from http://www.internetsociety.org/doc/security-enhanced-se-android-bringing-
flexible-mac-android 

Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., & Hoffmann, J. (2013). Mobile-sandbox: 
having a deeper look into android applications. In Proceedings of the 28th Annual ACM 
Symposium on Applied Computing (pp. 1808-1815). New York: ACM. doi: 
10.1145/2480362.2480701 

Vargas, R. J. G., Huerta, R. G., Anaya, E. A., & Hernandez, A. F. M. (2012). Security controls for 
Android. In Proceedings of the 4th International Conference on Computational Aspects of Social 
Networks (pp. 212-216). New York: IEEE. doi: 10.1109/CASoN.2012.6412404 

Vokorokos, L., Baláž, A., & Ádám, N. (2015). Secure Web Server System Resources Utilization. 
Acta Polytechnica Hungarica, 12(2), 5-19. doi: 10.12700/APH.12.2.2015.2.1 

Wagner, D., Goldberg, I., & Thomas, R. (1996). A secure environment for untrusted helper 
applications. In Proceedings of the 6th conference on USENIX Security Symposium, Focusing 
on Applications of Cryptography. Berkeley: USENIX Association 

Wei, X., Gomez, L., Neamtiu, I., & Faloutsos, M. (2012). Permission evolution in the android 
ecosystem. In Proceedings of the 28th Annual Computer Security Applications Conference  
(pp. 31-40). New York: ACM. doi: 10.1145/2420950.2420956 

Wu, L., Du, X., & Zhang, H. (2015). An effective access control scheme for preventing permission 
leak in Android. In Proceedings of the International Conference on Computing, Networking and 
Communications (pp. 57-61). IEEE. doi: 10.1109/ICCNC.2015.7069315 

 

http://dx.doi.org/10.1145/2335356.2335360
http://dx.doi.org/10.1145/2151024.2151036
http://www.internetsociety.org/doc/security-enhanced-se-android-bringing-flexible-mac-android
http://www.internetsociety.org/doc/security-enhanced-se-android-bringing-flexible-mac-android
http://dx.doi.org/10.1145/2480362.2480701
http://dx.doi.org/10.1109/CASoN.2012.6412404
http://dx.doi.org/10.12700/APH.12.2.2015.2.1
http://dx.doi.org/10.1145/2420950.2420956
http://dx.doi.org/10.1109/ICCNC.2015.7069315

