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MINIMUM CONVEX COVER OF SPECIAL NONORIENTED GRAPHS

Radu BUZATU

State University of Moldova

A vertex set S of a graph G is convex if all vertices of every shortest path between two of its vertices are in S. We
say that G has a convex p-cover if X (G) can be covered by p convex sets. The convex cover number of G is the least
p > 2 for which G has a convex p-cover. In particular, the nontrivial convex cover number of G is the least p > 2 for

which G has a convex p-cover, where every set contains at least 3 elements. In this paper we determine convex cover
number and nontrivial convex cover number of special graphs resulting from some operations. We examine graphs
resulting from join of graphs, cartesian product of graphs, lexicographic product of graphs and corona of graphs.

Keywords: nonoriented graphs, convex covers, convex number, operations, join, cartesian product, lexicographic
product, corona.

ACOPERIREA CONVEXA MINIMA A GRAFURILOR SPECIALE NEORIENTATE

Multimea de varfuri S ale grafului G se numeste convexa daca pentru orice doua varfuri X, y din S toate varfurile ce
apartin tuturor lanturilor de lungime minima cu extremitatile X, y se contin in S. Se spune ca G contine o0 p-acoperire

convexd daci X (G) poate fi acoperitd cu p multimi convexe. Numdrul acoperirii convexe al lui G este cel mai mic numar
p > 2, pentru care G contine 0 p-acoperire convexa. in particular, numdrul acoperirii convexe netriviale al lui G este

cel mai mic numdr P > 2, pentru care G contine o p-acoperire convexa, in care orice multime consta din cel putin 3 varfuri.

in aceastd lucrare noi determinim numdrul acoperirii convexe si numarul acoperirii convexe netriviale al unor clase
speciale de grafuri obtinute din urmatoarele operatii pe grafuri: suma, produsul cartezian, produsul lexicografic, coroana.

Cuvinte-cheie: grafuri neorientate, acoperiri convexe, numdrul acoperirii convexe, operayii, suma grafurilor, produs
cartezian, produs lexicografic, coroand.

Introduction

In this paper we consider only connected and nonoriented graphs. We denote by G a graph with vertex set
X (G) and edge set U (G) . An edge joining two vertices x and y in G is denoted by xy. The distance between

vertices x and y in G is denoted by d (X, y) . The diameter of a graph is the length of the shortest path between
the most distant nodes.
Aset S < X(G) isaclique if every pair of vertices of S is adjacent in G. The neighborhood of a vertex x

of X(G) is the set of all vertices y of X (G) such that x and y are adjacent, and it is denoted by T'(x) . A
vertex x is called simplicial if I'(x) is a clique. Also, a vertex x is called universal if T'(x) = X (G) \{x}.
Let S be a subset of X (G). We say that G[S] is the subgraph of G induced by S.

Now we remind some concepts from [1]. The metric segment (x, y> is the set of all vertices lying on a

shortest path between vertices x and y in G. A set S < X (G) is called convex if <x, y> c S forall X,yeS.

The convex hull of S < X(G), denoted d —conv(S), is the smallest convex set containing S.

A family of sets is called convex cover of G =(X;U) and is denoted by 2(G) if the following
conditions hold:

(i) Everysetof 2(G) is convexin G.

(i) X(G)= Usep«;) S.
(i) S Ucep(G)C¢SC ,forevery S € 2(G).
If |P(G)| = p, then this family is called convex p-cover of G and is denoted by 2, (G) [2].
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A convex cover 2(G) of graph G is called nontrivial convex cover if every set S € 2(G) satisfies the
inequalities: 3<|S|<|X (G)|—1. The minimum number of cliques that cover all the vertices of a graph is
known as a clique cover number 6(G), introduced by Berge [3]. Also, convex cover number ¢_(G) was
defined as the least p>2 for which G has a convex p-cover [2]. Similarly to ¢_.(G), we introduced

nontrivial convex cover number ¢, (G) [4].

Note that there are graphs for which there are no nontrivial convex covers. For instance, every convex
simple graph has no nontrivial convex covers. A graph G is called convex simple if it does not contain
nontrivial convex set [5]. Let us remark that if G has a nontrivial convex cover, then we have ¢_(G) < ¢,,(G) .

The minimum convex cover 2, (G) is the convex p-cover of graph G such that p =¢,(G). In the same
way, we define minimum nontrivial convex cover 2, (G) and minimum clique cover 2,(G) of graph G.

By P(G) we denote a family of convex sets, where X (G) :U S . We denote by 2(P(G)) a

SeP(G)
convex cover of G that consists of sets, which belong to P(G).
A nonempty subset S of X (G) is a nonconnecting set in G if for every pair of vertices X,y € X(G)\S
with d(Xx,y) =2 we haveT'(x) T'(y)S=<.
A map pg:X(G*H)—>X(G) , pg((9,h))=g , is the projection onto G and
Py : X(G*H)— X(H), p,((g9,h)) =h, the projection onto H, where G and H are two graphs and * is

one of two operations: cartesian product, lexicographic product.

Convex cover of a graph was studied by many mathematicians. Any latest results on graph convex covers
are given in [2, 4, 6-8]. Deciding whether a graph G has a convex p-cover or a nontrivial convex p-cover for
a fixed p>2, it is known to be NP-complete [2, 4]. Besides, convexity was studied in some graph

operations [9-11]. Further, there is particular interest in establishing of convex cover number and nontrivial
convex cover number for special graphs resulting from graph operations, such as join of graphs, cartesian
product of graphs, lexicographic product of graphs and corona of graphs.

Preliminary Results

Firs, note that for a given P(G), which has no set X (G), we can easily obtain 2(P(G)) by removing
from P(G) all sets contained in the union of other sets of the family P(G). It can easily be checked that

Propositions 1, 2 and 3 are true.
Proposition 1. Let G be a connected graph of order n>2. Then for every vertex X € X (G) there is a

convex set S € X (G) suchthat xe S and |S|=2.

Proposition 2. Let G be a connected graph of order n > 3. There exists 2, (G) such that for every set
Se®, (G) condition [S|> 2 holds.

Proposition 3. Let G be a connected graph of order n>3. There exists 2,(G) such that for every set
S €,(G) condition [S|> 2 holds.

Theorem 1. Let G be a connected graph of order n >3 that contains a universal vertex. Then for every
vertex g € X (G) there is a convex set S € X (G) suchthat g € Sand [S|=3.

Proof. Let x be a universal vertex of G and I'(x) = X (G) \{x}. Suppose that G[I"(x)] is a disconnected
graph. This means that there are two connected components G,[I"(x)] and G,[I"(x)]. Further, for every two
vertices X, € X(G,[T"(x)]) and x, € X(G,[I'(x)]) we get a convex set {X, X, X,}, and this set is nontrivial.

Now suppose that G[I'(x)] is a connected graph. In this case every vertex y of X(G)\{x} has an

adjacent vertex z € X (G)\{x}. Hence, set {X, y, z} is convex and consists of three vertices. o
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Consequence 1. Let G be a connected graph of order n >4 that contains a universal vertex. Then, G has
a nontrivial convex cover.
Consequence 2. Let G be a connected graph of order n>4 that contains a universal vertex. Then,

?.(G) = ,,(G).

Join of Graphs

The join of graphs G and H, denoted GV H , is a graph with X(GvH)=X(G)UX(H) and
UGVH)=UG)UUH)UU{y:xe X(G),ye X(H)}.

Theorem 2 [9]. Let G be a connected graph and K., the complete graph of order m. Then a proper subset
C=S,US, of X(GVvK,),where S, < X(G) and S, < X(K,,),isconvexin G v K, ifand only if either

(i) S, isacliquein G, or

(i) S, = X(G)\S and S, = X(K,,) for some nonconnecting set S of G.

Theorem 3. Let G be a noncomplete graph on n vertices with diameter 2 and K the complete graph of
order m>1. Let C=S,US, be a proper convex subset of X(GvK_), where s < x(G) and S, = X(K,)-
Then S, is convex in G.

Proof. By Theorem 2, let us consider two cases. Firstly, if S, induces a complete subgraph of G, then
evidently it is convex in G. Without loss of generality it can be assumed that S, does not induce a complete
subgraph of G. Thus, S; € X(G)\S and S, = X(K,,) for some nonconnecting set S of G. Assume further
that S, is not convex in G. Let x and y be two vertices of S, such that there exists a vertex z € <x, y>G that
does not belong to S, . Since diameter of G is 2, we obtain dg (X, y) =dg (X, y)=2 and zeT5(X) T (Y)-

Hence, z € S;. From definition of nonconnecting set, T';(X) T'5(Y)(1S =& and consequently z ¢S .
Thus, Theorem 2 is satisfied and therefore there is a contradiction. Furthermore, S is convex in G. o
Theorem 4. Let G be a connected graph on n>1 vertices and K the complete graph of order m>1.
Then, the following statements hold.
1) If G is complete, then ¢, (GV K )=2.

2) If G is complete and n+m >4, then ¢, (GVK_ )=2.
3) If G is noncomplete with diameter 2, then . (GV K, )=¢,,(GVK_ )=¢.(G).

4) If G is noncomplete with diameter at least 3, then @, (GV K )=¢, (GVvK, ) <¢.(G).

Proof.
1) Suppose G =K, . Then, by definition of the join of two graphs, it follows that G v K, also is complete.

Here graphs K, and K are nonempty. Further, we obtain ¢ (K, v K, )=2.

2) Suppose G=K, and n+m=>4. As before, G v K, is complete. Since every nontrivial convex set
has at least three elements, we have ¢, (K, v K, )=2.

3) Suppose G is noncomplete graph with diameter 2. Let C be a proper convex subset of X(GVvK,),

which satisfies conditions of Theorem 2. It follows from Theorem 3 that X (G)(\C is convex set in G. Let
2, (GvK,) be aminimum convex cover of Gv K. We get family of sets p(G) =( J, o, IX(G)NS}

It is clear that P(G) has no set X (G). This yields that |?(P(G))|£¢C(Gva). In fact, we obtain
inequality ¢, (G)<¢.(GVvK,).
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By Proposition 2, a connected graph G on n > 3 vertices has a minimum convex cover 2, (G) such that for
every set S e, (G) condition |s| > 2 holds. Hence, we obtain a nontrivial convex cover 2(Gv K ) of GvK_,
adding X(K,) to Y, , where Y, €2, (G) , for 1<i<¢,(G) . Note that [2(GVK,)|=¢.(G) and

2.(GVK,)<g, (GvK,)<q(G). Continuing this line of reasoning, we see that ¢ (Gv K, )=¢, (GVvK,)=¢.(G).

4) Now, assume that G is honcomplete and its diameter is at least 3. As above, it is easy to prove that
every minimum convex cover of G, which satisfies Proposition 2, generates a nontrivial convex cover of

G v K,,. Thence, ., (GVK,)<¢.(G). Note also that there are noncomplete graphs W, with diameter at
least 3, for which strict inequality ¢, (W v K ) <@, (W) holds. For instance, graph represented in Figure 1
is the join of graphs W and K, where X(K,)={k}. This graph has minimum nontrivial convex cover
27%”(Wv K ={{X, X5, X, K} {X,, X5, X0, K} {X5, X5, K} {X,, X5, K}}, but graph W has minimum convex
cover 2, W) ={{x, X1 %, X106, X1 0% X Db (b} and further ¢, (W K,) =4, bt ,(G) =6.

We stress that nontrivial convex cover is a particular case of convex cover. Since any vertex of k € X(K,,) is
universal in Gv K, Consequence 2 implies that the equality holds ¢, (GV K )=¢,,(GVvK,). Thus, we
obtain . (GVK,)=¢,(GVvK, )<¢p.(G).o

Fig.1.

Theorem 5 [9]. Let G and H be noncomplete connected graphs. Then a proper subset C =S, US, of
X(GvH), where S, < X(G) and S, < X(H), is convex in GvH if and only if S, and S, are

cliques in G and H respectively.
Theorem 6. Let G and H be noncomplete connected graphs. Then, the following equalities hold:

OGVvH)=¢.(GVvH)=¢,(GVvH)=max{6(G),0(H)}.
Proof. From Theorem 5, we know that every convex set of Gv H is a clique. Further, every convex
cover of Gv H is a clique cover. Therefore, we have ¢, (GvH)=6(GVvH). Let Z (GVvH) be a

sep, @y N (G)18}-
It is clear that P(G) has no X(G) and every set of P(G) is a clique. This implies
inequality [2(P(G))|<¢,(GVvH) . Thus, (G)<¢, (GvH) . Continuing in the same way, we see that
[P(P(H))|<¢,(GVvH), where P(H)=|] {X(H)NS}, and further O(H) <@ (GVH) .

Hence, max{0(G),0(H)}<¢.(GVH).
By Proposition 3, consider minimum clique covers 2,(G) and 2,(H) of graphs G and H, such that
every set of 2,(G) and 2,(H) has at least to vertices. If (G)=>6(H) then we construct a nontrivial
49
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clique cover 2(G v H), which satisfies the equality |¢(G vH )| =0(G) . Since every convex set of Gv H
is a clique, we unify sets X, and Y,, where X, €2,(G) and Y, €2,(H), for 1<i<@(H), and after X,
unify with Y,, for 8(H)+1<i<6(G). Similarly, if 8(G) <8(H), then it can be constructed a nontrivial
clique cover 2(Gv H), where [2(G v H)|=6(H). We obtain ¢,(Gv H) <¢, (GvH)<max{0(G),o(H)}.
So, p.(GVvH)=¢,(GVvH)=max{0(G),0(H)}. o

Cartesian Product of Graphs

The cartesian product of graphs G and H is a graph GLJH on vertex set X (G)x X (H) in which vertices
(9,,h,) and (g,,h,) are adjacent if and only if either g, =g, and hh, eU(H) or h, =h, and g,g, cU(G).

Theorem 7 [9]. Let G and H be two connected graphs. A set C < X (GLIH) is convex in GJH if and
only if p;(C) isconvexsetinG, p,(C) isconvexsetinH, and C = p,(C)xp,(C).

Theorem 8. Let G be a connected graph on n>1 vertices and K, the complete graph of order m>1
such that n+m > 3. Then, the following statements hold.

1) If m=1, then ¢, (GUK)=¢,(G).

2)If m=1and n>4,then ¢, (GUK,)=¢,(G).

3)If m>2,then ¢ (GUK, )=2.

4)If m>2and n>3 or m>3 and n>2, then ¢, (GIK,)=2.

Proof.
1) Suppose m = 1. Here we see that G = GL/K,. Since n+m >3, it is obvious that ¢ (GK,)=¢.(G).

Further assume that n>4. In this case GLK, has a nontrivial convex cover if and only if graph G has a
nontrivial convex cover. Consequently, we have ¢, (G1K ) = ¢,,(G). So, statement 2) also holds.
3) Suppose m>2. We choose two different vertices k;,k, € X(K,,) and obtain two sets:

C,={(9.k):g e X(G),k e X(K,)\{k;}} and C, ={(9,k): g € X(G),k € X(K,,) \{k,}}.

Since K, is a complete graph, both sets C, and C, satisfy Theorem 7. Furthermore, sets C, and C,
form a convex 2-cover of graph GL/K and ¢,(GLK_ )=2. If n>3, then we see that C, and C, form a
nontrivial convex 2-cover of GLIK  and further ¢, (GLUK,)=2. Similarly, if m>3 and n>2, then we
also get ¢, (GUK ) =2. Thus, statement 4) also holds. o

Theorem 9. Let G and H be two noncomplete connected graphs and P(G) = USE%c © H){pG (S)}- Then

IP(G)|=1or [P(G)\{X(G)}>2.

Proof. Let 2, (Gl/H) be minimum convex cover of Gl/H . Let |P(G)| =1 and C € P(G). It means
that C =X (G) . Now, assume that |P(G)\{X(G)}]=1. Further, for a set S € P(G)\{X(G)} there is
S'e?, (GIIH) such that ps(S)=S . If {X(G)}&P(G), then we obtain a contradiction, because
X(G)\S #IJ, which means that G /H is not covered by convex sets. Suppose further {X (G)}< P(G).
From definition of convex cover, we know that every set of 2, (GJH) has at least one vertex that belongs
only to this set. Hence, there is he X (H) for which there is a vertex (g,h) of GIIH that belongs to S
and does not belong to S" e 7, (GL/H), where pg(S”) = X(G). By Theorem 7, for h that we fixed before,
and g € X(G)\S, vertices (g,h) remains uncovered in GIJH . It is a contradiction. o
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Consequence 3. Let G and H be two connected noncomplete graphs and P(H) :USEp © H){pH (S)}.

Then |P(H)| =1 or [P(H)\{X (H)}>2.

Theorem 10. Let G and H be two connected noncomplete graphs. Then, the following equalities hold:
¢.(GUH) = ¢,,(GUH) = min{g, (G), ¢.(H)}.

Proof. First, note that |G| >3 and |H|> 3. By Proposition 2, there is a minimum convex cover 2, (G)
of G such that every set of Z, (G) has at least two elements. Further, by Theorem 7, we obtain a nontrivial
convex cover 2(GJH), which consists of sets C; ={(g,h):g €S;,he X(H)}, where S, €2, (G),

1<i<¢,(G). Note that |P(GIH)|=¢,(G) . Thus, ¢,,(GIH) < ¢,(G). For the same reason, if 2, (H)
is @ minimum convex cover of H, then we obtain a nontrivial convex cover 2(GJH) of GIIH such that
|P(GH)|=¢,(H) and further ¢, (GH) < ¢, (H) . We have ¢ (GIH) < ¢,,(GIH) <min{e, (G), ».(H)}.

Let 2, (GUH) be a minimum convex cover of graph GIJH .Using Theorem 7, we get

PG)=Us.., P&} P(H)=U,_, o 1 {Pu(S)}- Evidently, equalities |P(G)|=1and [P(H)[=1
do not hold at the same time. By Theorem 9 and Consequence 3, let us consider three cases:
Suppose |P(G)|=1. In this case inequality |P(H)\{X (H)}/=>2 holds. Consequently, for convex cover

P(P(H)) of G we get |P(P(H))|<¢,(GIH) and ¢,(H) <¢,(GIH). Now, suppose [P(H)|=1. As
above, we have [P(P(G))|<¢,(GH) and ¢,(G) <¢,(GIH) . Similarly, if [P(G)\{X(G)}{>2 and
[P(H)\{X(H)}{>2, we have ¢,(G) <¢,(GIH) and ¢,(H) < ¢,(G'H). Combining these three cases, we
obtain that min{e, (G), ¢, (H)} < ¢,(GL/H) . Finally, we have ¢_(G1H) =g, (GIH) =min{gp,(G), ».(H)} .o
Lexicographic Product of Graphs
The lexicographic product of graphs G and H, denoted G o H , is a graph on vertex set X (Go H) = X (G) x X (H),
where vertices (g,,h,) and (g,,h,) are adjacent if and only if either 9,9, eU(G) or g, =g, and

h,h, eU(H). The graph Go H is called nontrivial if both graphs have at least two vertices.

Theorem 11 [11]. Let C be a proper subset of a nontrivial connected lexicographic product GoH . If C
induces a noncomplete subgraph of Go H , then C is convex if and only if the following conditions hold:

(i) ps(C) isconvexin G,

(ii) {o}x X (H) < C for every nonsimplicial vertex g € p;(C),

(iii) H is complete.

Consequence 4. Let C be a proper subset of a nontrivial connected lexicographic product Go H , where

H is noncomplete. Then C is convex if and only if it induces a complete subgraph of Go H and the following
conditions hold:

(i) ps(C) induces a complete subgraph of G,
(ii) For every g € p;(C), set p,, (C?) induces a complete subgraph of H, where
C’={(g,h)eC: foranyheH}.
Theorem 12. Let G be a connected graph on n >1 vertices and K the complete graph of order m>1
such that n+m > 3. Then, the following statements hold.
1) If G is complete, then ¢, (GoK,)=¢.(K,G)=2.
2) If Giscompleteand Nn+m=>=5,0r n=2 and m=2, then ¢, (G°K ) =9, (K, G)=2.
3) If G is noncomplete and m=1, then ¢.(GoK ) =¢.(K -G)=¢.(G).
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4) If G is noncomplete, N >4 and m=1, then ¢, (G- K, ) =0, (K, G)=¢,(G).

5) If G is noncomplete, it has a simplicial vertexand m>2, then ¢, (GoK_ )=¢, (GoK_ )=2.

6) If G is noncomplete, it has no simplicial vertices and m=>2, then ¢.(GoK_ ) =¢,,(GoK_ ) =¢.(G).
7) If G is noncomplete and m> 2, then ¢, (K, cG) = ¢, (K., cG) =6(G).

Proof.
1) Suppose G is complete. Then, it is obvious that obtained graph is complete and we have

0. (GoK,)=¢.(K,oG)=2. In addition, suppose Nn+m=5, or n=2 and m=2. Obtained complete

graph with at least 4 vertices has a nontrivial convex 2-cover. Whence, ¢, (GoK_)=¢, (K -G)=2.
Statement 2) also holds.
3) Suppose G is noncomplete. If m=1, then graphs GoK_ and K_ oG are equal to G and further we

have . (GoK_)=¢.(K,oG)=¢.(G). In the same way, with condition n >4, statement 4) holds. In
other words @, (GoK)=¢,,(K, cG) =¢.(G) . Assume that m> 2. If G has a simplicial vertex g, then
we choose two different vertices k;,k, € X (K, ) and obtain two sets:
C, =(X(G)\{g I X (K ) U{(g".k) :k € X(K)\{k;}} and
C, =(X(G) g I X (K, ) U{(g" k) :k e X(K,)\{k,}}.

Evidently, sets C, and C, satisfy Theorem 11 and these sets form a nontrivial convex 2-cover of Go K.
Further, we have ¢, (GoK ) =¢,, (GoK ) =2. Statement5) is satisfied.

Now assume that G has no simplicial vertices. We know from Theorem 11 that for every convex set C of
GoK,, the projection pg(C) must be convex in G. Let 2, (GoK) be a minimum convex cover of
GoK, . We get family P(G) = USE%c (GoKm){pG (S)}. Since noncomplete graph G has no simplicial

vertices, it follows that P(G) has no set X(G). Obviously, for convex cover 2(P(G)) of graph G we
have [2(P(G))| < ¢,(G = H). Consequently, ¢,(G) <¢,(G-K,).

Let 2, (G) be a minimum convex cover of G. Then, sets S, =C, xX(K),1<i<¢,(G), form a
convex cover of GoK , whereC, € 2, (G), 1<i<¢,(G), and further we get ¢, (G- K ) <¢,(G). We
have ¢.(GoK,)=¢.(G) . From Proposition 2 we obtain ¢, (GoK )=¢,(G-K )=¢.(G) . So,

statement 6) also holds.
It follows from Consequence 4 that every proper convex subset of K oG is a clique and further by

Proposition 2 and Proposition 3 we have @, (K, cG) =@, (K, cG) =6(G) . Furthermore, statement 7) also

holds. o
Theorem 13. Let G and H be two connected noncomplete graphs. Then, the following equalities hold:

?.(GoH)=¢,,(GoH)=6.(G-H)=6.(G)6.(H).

Proof. From Consequence 4 we know that every convex set of GoH is a clique. Further, we have
@.(GoH)=6.(GoH). Moreover, it can be checked that 8,(GoH)=6.(G)&.(H) . Taking into account
Proposition 2 and Proposition 3, we get ¢.(GoH)=¢,(GoH) . Finally, we have inequalities
?.(GoH)=¢,,(GoH)=6.(G-H)=6.(G)6.(H). o

Corona of Graphs

The corona of graphs G and H is the graph GL1 H obtained by taking one copy of G and n copies of H,
where |X (G)| =n, and then joining by an edge the ith vertex of G to every vertex in the ith copy of H.
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We consider a general version of corona of graphs. Let G be a connected graph on n vertices. Let
{9,.9,,....0,}€ X(G) and Hgl, ng,..., Hglk , Wwhere 1<k <n, be connected graphs of order at least one.

Then by (G:{9,,9,,-.9 DL (Hy,H, ,....H, ) is denoted a graph obtained by taking one copy of G and
after joining every vertex g; to every vertex of H wherel<i<k.If H, =Hg, =---=H, =H  thenwe
simply denote (G;{9,,9,,....9,})J H .Ifalso k=n, then (G;{9,,9,,....,9,}) H isthecorona Gl H .

Theorem 14 [10]. Let G be a connected graph and H be any graph, with {g,,d,,...,9,} < X(G) and

H,  Hg, ..., Hy being the corresponding copies of H. A nonempty set C < X (GO H) isconvex in G[1 H

if and only if it satisfies one of the following conditions:
(i) CisaconvexsetinG.

(i) Cinduces a complete subgraph of Hg foravertex g € X(G).

(i) G[C]=(G[S1:{s,,S,,-, s (He He ..., Hy) L S is convex in graph G, {s,,S,,...5}<S
{s5.5,.+53+<{9,,9,,....9,} and X (s, \/H;) is convex in s, v H, foreach i=12,..,1.

Theorem 15. Let G and H be two connected graph on n>1 and m >1 vertices, with {g,, 9,,..., g, } < X(G),

where 1<k <n. Then, the following statements hold.
1) If n=1 and H is complete, then ¢, (G H)=2.

2) If n=1, His complete and m>3, then ¢ (G H)=2.

3) If n=1, H is noncomplete with diameter 2, then ¢, (Gl H)=¢_ (Gl H)=¢.(G).

4) If n=1, H is noncomplete with diameter at least 3, then ¢, (G K_)=¢, (Gl K,)<¢.(G).

5)If n>2, then ¢.((G;{9,,9,,...9, ) H)=2.

6)If n>2 and k*m+n=>4,then ¢, ((G;{9,.9,,...9, D) H)=2.

Proof. Suppose n=1. In fact, ¢.(K,[J H)=¢,(K, v H) . Consequently, statements 1), 2), 3), 4) follow
from Theorem 4.

5) Suppose N>2. It can easily be checked that sets X(H,) and X(G)UU:(:ZX(Hgi) satisfy

conditions of Theorem 14 and further form a convex 2-cover of graph (G;{9,,9,,...,9,p)[ H. This

implies that ¢, ((G;{9,,9,,...9, ) H)=2.

6) Now suppose that K*m+n>4. In other words, the cardinality of set X ((G;{9,,9,,--.9. ) H)
must be at least 4. Taking into account Theorem 14, we show nontrivial convex 2-covers of
G;{9,,9,,--, 9, ) H intwo cases:

a) If m=1, then we choose a vertex g'eI’(g)\ X(H,) for a vertex g €{9,,9,,.-, 9}, that yields a
nontrivial convex 2-cover:
2((GH91 G0 D0 H) =0, G TUXH ) X @)U, iy 4 o390 X(Hglb
b) If m>2, then we choose a vertex h e Hg for a vertex g €{0,,0,,..., 9, } and obtain a nontrivial
convex 2-Cover:

%((Gi{9,. 9,9 N0 H)=f{a¥UX (H){irUX G U

The theorem is proved. o

X(H )}

9'e{%:.9,.-.9c 19'#9
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