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LOCATION PROBLEMS ON d-CONVEX SIMPLE PLANAR GRAPHS

Sergiu CATARANCIUC, Elisei MACOVEICIUC
Moldova State University

The article examines the center and median problems on graphs with special structure. In scientific works these are
frequently called location problems on graphs. Although efficient solutions for graphs with some well-known properties
have been found, in general case the problem remains complex. In this paper the structure of median and center in a
d-convex simple planar graph G is studied. We evaluate the connection between median/center of a graph G with mentioned
properties and median/center of a tree, determined by G.
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PROBLEME DE AMPLASARE iN GRAFURI d-CONVEX SIMPLE PLANARE

in articol este examinati problema centrului si problema medianei, cunoscute in literatura de specialitate ca probleme
de amplasare. Fiind, in caz general, probleme dificile, acestea se rezolva in mod eficient pe structuri matematice speciale.
In lucrare se prezintd un studiu complex cu privire la structura medianei si centrului intr-un graf planar d-convex simplu G.
Este studiata legdtura dintre mediana/centrul grafului si mediana/centrul unui arbore, determinat de G.

Cuvinte-cheie: graf d-convex simplu, mediand, centru, arbore, distantd, probleme de amplasare.

1. Introduction

Different problems involving studies of physical configurations for resource allocation are frequently met
in practice. The corresponding solutions often consist in full or in part of minimizing the sum of distances
between certain facilities, or of minimizing the worst-case distance to the facility. Finding medians and centers
of a graph proved to be useful in this regard.

In order to mathematically model the problems described above, in most cases, undirected graphs are
used (however situations that require generalized model in the form of a directed graph also do exist). In this
paper all the graphs are considered to be connected. Properties of centers and medians have long been studied
(for example [2,5]). Work [2] shows that a tree has one central point or two central points that are adjacent.
The same property holds for tree medians [5].

In this paper, we will examine properties of central and median points in graphs with a special structure,
described in [1].

Let G, and G, be two copies of a graph G =(X;U), where X ={X,,X,,...,X,} is a set of vertices, and

U ={u,,u,,...,u, } — the set of edges. The sets of vertices of G, and G, we denote by X, ={X,,X,...,X, }
and X, ={X,,X,,...,X,}. The vertices x, € X,, x. € X, , are considered to be copies of X, € X, 1<i<n
In this case we say that xi' , xI are corresponding vertices. According to [4] we will denote by L,(G) the
graph obtained by joining every vertex x. € X, with all verticesy e (), 1<i<n. (Here T'(x,) is a set
of vertices in G, , which are adjacent to xI ). If vertices adjacent only to a couple of corresponding points are
added, the graph will be denoted by C(L,(G)). The procedure of construction of these graphs is represented
in figure 1. We add that C(L,(G)) graph is not constructed univocally, as opposed to L, (G) .

Let T be a tree of order n >3 and T - a sub tree of T consisting of vertices of a degree not less than two.
We will denote by L(T,T,) graph that is constructed form T and T, following the procedure: for every

vertex z €T,, the edges incident to z and to every vertex from I'(Z), wereZ €T, are added (z,Z are
corresponding vertices of G).
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Fig.1. The process of constructing L, (G) and CL,(G)-

L,(G) and CL,(G) are especially used for simple convexity examination of undirected graphs, which is
having an important contribution for the development of convexity theory on discrete structures.
A subset of vertices Ac X is called d-conve, if for every two vertices X,y € A the following relation

holds [2]:
<X y>={zeX;:d x,y =d X,z +d z,y }c A

Where graph distance between x and y is denoted byd X,y . The set <X,y > is called metric segment
that links x and y [2].

Definition 1.1 [1] Agraph G= X,U that does not contain d-convex sets Ac X of the following
property

2<|A<n=|xg|

is called d-convex simple graph.

Definition 1.2 [1] Vertex y e X, is called dominant forxe X, ifl’ x o2I'y . If I' x =" y
then x and y are called copies.
Let A be a set of undirected graphs G= X,U for which the following properties hold:

1. G= X,U doesn’t contain cycles of order 3;

2. Every vertex y e X is dominated by at least one vertex X € X .

Lemma 1.1 [1] If GEA, then G is d-convex simple graph.

Theorem 1.1 If G is a graph that does not contain the cycles of order 3, then the following statements
holds:

1. L,(G) is a d-convex simple graph;

2. Every graph of CL,(G) type is d-convex simple;

Proof. Considering Lemma 1, we will prove the theorem affirmation, by showing that L,(G) and every
graph of CL, (G) type are connected and belong to A.

If G is connected, then the property of connectivity of L,(G) and CL,(G) immediately results from the
definition of their structure.

1) L,(G)consists of two copies of G. The procedure of adding new edges to constructL,(G) graph
necessarily implies that for every vertex x there is at least one vertex y, that is a copy of x (is true equality
I' x =T y ). Following definition 1.2, we can say that y dominates vertex x. Thus L,(G) €A.

2) As it has been shown that L, (G) €A, only vertices of a degree 2 in CL,(G) remain to be studied. If
a vertex x is of a degree 2, then x is adjacent with y, and y’ that is the copy of y. From the structure of
L,(G) results thatdeg(y) > 1. Therefore, there exists a vertex z, that is different from x, adjacent to y. It
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follows that z is also adjacent to y’. Conclude /" z /7" x . So, z dominates x and CL,(G) belongs to
A m

2. The Center problem

We will examine the problem of CL,(G) center determination.

Definition 2.1 [2] The eccentricity e(x) of a vertex x is the greatest geodesic distance between this vertex
and any other vertex of graph:

e X =maxd(x,y).
ye Xg

Definition 2.2 [2] The radius of a graph G is the minimum eccentricity of all vertices of graph.
Definition 2.3 [2] Graph center is the set of vertices W, = X;,...,X, with eccentricity equal to the
graph's radius:
e(x) =r(G),vx, eW;
Thus, vertices in the center (central points) minimize the maximal distance from other points in the graph.
Single chain that links two vertices in a tree is denoted by X,y .

Theorem 2.1. If xeW; , then X eW

L2G
Proof. L, (G) is constructed by adding only vertex copies, therefore
& X = m:;l(xd(x, y)= max d(x,y)=e_ X -
ye Xg

e Xiy0)

This implies that the theorem affirmation holds.m
Theorem 2.2. Central points of T belong to the center of L T,T, .

Proof. The fact that T is a tree implies that the distance between two vertices x and y equals to the length

of the chain that connects them X,y minus 1. The identity d(X,y)= d(X,y) results from the structure
x,yeT X,yeL(T,Ty)

of L T,T, . Itfollows that eccentricities of the vertices from W+ remain to be minimal inL T,T, .

3. The Median Problem
Now let us see what properties the CL, (G) -median has. The CL,(G) planar graph is of special interest.

This case will be examined further.
Definition 3.1 [2] Function

f x =>dxy)

yeX
is called median function of agraphG = X,U . Vertexx*e X that verifies the identity

f x* =min f(x)

xeX

is called median vertex, or median of graph.
Theorem 3.1. If x is median in G, then x is median in L, (G).

Proof. Suppose that x is median in G. Then the sum Zd (X,z) has minimum value. From the structure
2eG

of L,(G) it follows that Z d(x,z) = ZZd(X, Z) +2.The minimal value of Zd(x, Z) guarantees that

zel,(G) 2eG zeG
median function in L,(G) reaches its lowest value in vertex x. Conclude that x is median in L, (G) .
Theorem 3.2. If x is a vertex of a degree 2 in CL, (G) , then x is not median.
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Proof. Let x be a vertex of a degree 2 inCL, (G) . Vertex x is adjacent to y and z (z is a copy of y). It

follows that d x,t = d y,t +1 for every vertex teGand d x,t' = d zt' +1 for every t’ that
belongs to the copy of G.

Therefore d x,t =d y,t +1,VteCL, G\ z ,andd x,z =1=d y,z -1

Concludethat > d x,t = > d y,t +m—1, wherem=|CL,(G)\{z}|, and m is greater than 1.

teCL, G teCL, G
This implies that x is not median.

Lemma 3.1. Let X, =X*X,...,X, be achainin a tree and vertex x* is a median. Then the function f
has the following properties:

1L f(x,,)>f(x), O<i<t-1,
2. F (%)= F(x%)> f(x)—f(x,) O<i<t-1;
Proof. Let B, x*, ..., B, X* be the branches of T from x*.

Assume that X, = X*,X,,...,X, =B, x> . We will denote by T; a subgraph of the branch B, x* with
the property: X, €T, X, , ¢ T,, X, € T,.

Bl [_X’ *] Y {x *} K X Kis]

B, (x*)\ {x*}

2. A 2.B

Fig.2. Subgraphs L, (G) and T;.

We have:

Step 1.f(x) = > d (X, y) = > dxLy)+ DL d(x,y) =

yeT yeT\B, (x9)U{x*} yeB, (x)\{x*}

>, dx*y)+D+ > (dx*y)-1=

yeT\B; (x*)U{x*} yeB; (x*)\{x*}

> d(x*y)+n—n(B;(x))+1+ > d(x*y)—n(B(x*)+1=

yET\B; (X)UEx*} yeB; (x)\{x*}
Zd (x*y)+n=-2n(B,(x*)+2= f(x*)+n—-2n(B,(x*)) +2

yeT

We denote the order of T by n(T)=n, and the order of B, x* by n B x* ).
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According to [2] a tree has exactly one median, or exactly two median joined by an edge. Therefore
the term n(T)—2n B a +2 is not less than 0.The next step shows us that the values of f are
increasing.

Step 2.F(%,) =3 d06,y)= > dOuY+ > d(%,y)=

yeT yeT\B; (x*)UT,U{x*} yeB; (X*)\{x*}\T,
> dx,Y)+D+ > dx,y)-=
yeT\B; (x*)UT,U{x*} yeB; (x*)\{x*}\T,
> d(x,y)+n—n(B,(x*)+n, +1+ > d(x,y)—n(B(x*)+n, +1=
YET\B; (x*)UT, LKx*} yeB; (X ){x*NT,
Zd (X, y)+n-=2n(B,(x*)+2+2n, = f(x)) +n-2n(B,(x*)) +2+2n,.
yeT
Step j+1'f(xj+l)zzd(xj+l’y): Z d(Xj+l! y)+ Z d(Xj+l'y):
yeT yeT\B; (x*)UT, U...UT; U{x*} yeB; NN AT,
= > (d(x;, y)+1)+ > (d(x;,y)-1) = > d(x;,y)+
yeT\B; (x*)UT1U...UTJ- U{x*} yeB; (x)\{X* AT \.\T; yeT\B; (x*)UT1U...UT]- U{x*}
+n—=n(B;(x*)) +n +n, +...+n; +1+ Z d(x;,y)-n(B,(x*)) +n, +n, +..+n; +1=

yeB; NPT NAT;,
= f(x;)+n=2n(B,(x*) +2+2(n, + N, +...+n,).

We immediately conclude that f X,

i >F xand fox, —f %

o >fF o —f x, =

i—1
Let zeT be avertex for which the following relation holds
gz =ming x =min Y d x,y .

xeT xeT yeT

degy=1
Lemma3.2. Let X, =X*X,...,X, beachaininatree T. Then the following inequalities hold:

1)g x, =9 X% ,0<i,n-1;

2) 9 Xa —9 % 20 X —0 X, Li,n-1;

If deg(x,)=1,theng X, >Q X, .

Proof. Let B, x*, ..., B, X* be the branches of T from z (figure 3). Assume that s vertices of a

degree 1 belongto B, z \ z , mvertices of a degree 1 belongto B, z \ z , and k vertices of a degree 1

belong to O[Bi(z)].

B (2)\{z} {

- - -
e ———— k. T——L_
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Fig.3. The structure of T.

Suppose thatB, z \ z o z,, ..., z, . We will evaluate the value of g z,, .
Stepl. > d z,y = > dz,y+ > dz,y+ > dz,y-=
yeT yeBlz \z ko yeB2 z \ z
degy=1 degy=1 yeg[Bl 2] degy=1
degy=1
> [dzy -1+ > [dzy+1]+ > [dzy +1]=
yeBlz \z k _ yeB2 z \ z
degy=1 VEQ[BI z ] degy=1
degy=1
> dzy-s+ > d@€yI+ > d@€yIn= > dgyIm+k-s
yeBlz \z ko yeB2€ D% ¥ yeT
degy=1 yeg[B' Q degy=1 degy=1
degy=1

According to the definition of vertex z the inequality m+k —s >0 holds.
We assume now that for every x;,t >1>1, there could exist vertices T = tij (figure 4), of a degree 1,

‘T“: n. thatbelongto B, z \ z ,and, ze[zq,tij] : zqsz[z,tij].q> l.

Fig.4. Vertices T'.

Step2. > d z,,y = > dz,y+ > dz,y+ > dz,y-=
yeT yeBlz \ z\T1 ko yeB2 z \ z UT1
degy=1 degy=1 yeg[B' z ] degy=1

degy=1

[d z,,y —1]+ kz [d z,,y +1]+ > [d z,,y +1:|=

yeBlz \ z\T1 yeB2 z\z UT1

degy=1 yEiL:JJ:Bi z :| degy=1
degy=1
Blz\:{}ld G,y Xs—n)+ kz d €.y K+ BZZ 1d G,y Im+n, =
’ degy=1 yeg[BiQ g degy=1
degy=1
> d€.y Im+k—s +2n,.
dglgeyT=1

In this case the value of 2n; is non-negative, because it is entirely possible that a tree does not have
vertices that belong to T*, implying that deg(z,) =2 . So z; is only adjacent to z, and z, .
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The inequality Z d z,,y > Z d z,y holds because in other cases, however, the degree of z

yeT yeT
degy=1 degy=1
can be greater than two, ensuring the positive value of 2n, .
Stepk. > d z,,y = > dz,y+ > dz,y+ > d z,y =
yeT yeBlz \ z \TI\T 2\.. \Tk k. yeB2 z \ z UT1UT 2...UTk
degy=1 degy=1 yeiL=J3|:B| z ] degy=1

degy=1

[d 2.y -1]+ kz [d z.,.y +1]+ > [d €.y )1]=

yeB1 z \ z \TI\T 2\...\Tk yeB2 z \ z UT1UT 2...UTk

degy=1 yeg[Bi z ] degy=1
degy=1
dQ—l’Y)(S_n _n2_"'nk—1)+ Z d@-liy)"' z d@_ly)’)
yeB1@ DA \FINT 2\.. \Tk ko yeB2@DEITIUT 2...UTk
degy=1 yeg[Bl O degy=1
degy=1
+m+n 0+ 40 = > d @,y IN+K—s +2n+ 20, +...+2n, .
yeT
degy=1
Itfollowsthat »_.d z,y > > d 7,y .
yeT yeT
degy=1 degy=1
So the inequalities 1 and 2 hold. Now we have to prove that Z d z,y > Z dz.,y,if deg(zt) =1.
yeT yeT
degy=1 degy=1

Letdeg zz = 1.Thenz € z,y ,VyeT, evidently z_ € z,y ,Vy: degy=1.We have:
>dz,y =>dz,y+m+s-1+k.

yeT yeT
degy=1 degy=1

Considering the fact, that a tree has at least two vertices of a degree 1, we have m+s+k >2, and
m+s—-1+k>1.m
Theorem 3.1. Let M be a set of medians in a d-convex simple planar graphG = X,U . Then exactly

one of the following affirmation holds:
1. M= x,x*: x—is a copy of x* ;
2. M={x, x*, ¥, y*: Xx~y, X*~y*;x* , y*are copies of x,y}

Proof. First, assume that the graph has two medians x and y, we consider that x is not a copy of y, and the
length of the shortest path between x and y is greater than 2 (figure 5). We will denote vertices that belong

to X,y by: X, =X,...,X, =Y. Evidently x* and y* are medians too. We will consider x,y — case only,

because for x*, y* the reasoning repeats itself.
Median function in d-convex simple planar graphG = L T, T, has the following form:

ddxz =2)dxz+>dxz =2fx +f, x,

2eG zeT0 zeT
degz=1

Observe that f; is the median function in Ty, and f, is the function discussed in Lemma 3.2.
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ddxz =2)dxz+>dxz =2fx +f, x.
2eG zeT0 zeT
degz=1

According to the properties of functions described in Lemma 3.1, and Lemma 3.2, every median belongs

to the path [x mein] , Where Xpi, is the median in Ty, and in yn, function f, reaches its lowest value.

min

Kmun X=X KXV Ymin

Fig.5. Medians in G.

So x; is a median, and X, is not. We have:

dd x,z ->dx,z =2 f % -fx +fx-f,x >0

z2eG 2eG

If f, X, =1 X , then

e D.d x,z->d x,z =0,if f, x, =f, X contradiction.

z2eG 2eG

e D>.d %,z ->d x,z <0,if f, X, <f, X contradiction.
z2eG z2eG
Conclude that f, x, —f, x >0.
According to Lemma 3.1, and Lemma 3.2 we have:
f X, = X)<flx, —f x ad f, x;, —f, x

;< fox, —f, % forisj.

It follows that
O<f, x, —-fx, <fix —fx,  0<f,x,—-f, x, <f, x —f x,.
So
Sdx,z ->dxz2=21fx —-fx, +f x —-f x, >0
zeG 2eG

We obtained a contradiction.
Second, assume that G has 3 mediansX, Y ,z, X ~Yy ~Z. (The same property holds for their copies

X* ~y* ~7%).
We have:
a. f, x =f y (To has two medians). The identity 2f x +f, x =2f, y +1f, y results

from x and y being medians in G. So, f, x =1f, y . According to lemmas 3.1 and 3.2 we obtain that
fz>fy , f,z>f y . Contradiction: 2f z +f, z >2f, y +f, y andzismedianinG.

b. f, x <f, y .Wewilldenote f, y —f, X =1r>0.Then
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f, x -f, y =2f y -2f, x =r,.
The inequality f, z > f, y results fromlemma3.l1andr,=f z —f, y >f y —f z =r.So0
wehave f, z <f, y (lemma3.2)andr,=f, vy —-f, z <f, x - f, y =r1.
Contradiction:
2f, z +f,z -2f, y+f,y =2(f,z-f,y)+f,z-f,y =2r,-,>0m

4. Conclusions

This paper outlines the research that completes well-known results associated with center and median
problems. For the class of d-convex simple planar graphs, structure and properties of median and center are
described. The mentioned results can lead to the elaboration of methods for median/center calculation on a
d-convex simple planar graph G, using properties of a special tree-median/center.

Bibliography:

1. CATARANCIUC, S., SUR, N. Grafuri d-convex simple si quasi-simple. Chisinau: CEP USM, 2009. 199 p.
ISBN 978-9975-70-914-9

2. DOUGLAS, B.W. Introduction to Graph Theory. Second Edition. Prentice Hall 2001. ISBN-10: 0130144002

3. GERSTEL, O., ZAKS, S. A new characterization of tree medians with applications to distributed algorithms, 1991.

4. MORENO-PEREZJ, A., MORENO-VEGA, J.M., VERDEGAY, J.L. On Location problems on fuzzy graphs. In:
Math. ware & Soft Computing, 2001, no.8, p.217-225.

5. ZELINKA, B. Medians and peripherians of trees. In: Archivum Mathematicum (Masaryk University), 1968, vol.4,
no.2, p.87-95, 1968.

6. BOJITSIHCKUU, B.I'., COJITAH, I1.C. Kombunamopnas zeomempus pasiudnbiX KIACCO8 GbINYKIbIX MHOICECTNE.
Kunmmues: Hltunana, 1978.

7. IPATAH, ©.®., [IPUCAKAPL, K.®., ‘-IEHOPT, B.A. 3amaun pa3memieHns Ha Trpadax W CBOWCTBO Xeiumd. B:
Juckpem. mamem., 1992, 4:4, ¢.67-73.

Prezentat la 09.12.2015

30



