Investigating Triangular Numbers with greatest integer function, Sequences and **Double Factorial**

Asia Pacific Journal of **Multidisciplinary Research**

Vol. 4 No.4, 134-142 November 2016 P-ISSN 2350-7756 E-ISSN 2350-8442 www.apjmr.com

Tilahun A Muche (PhD)¹, Agegnehu A Atena (PhD)² Department of Mathematics, Savannah State University, USA ¹muchet@savannahstate.edu, ²atenaa@savannahstate.edu

Date Received: August 3, 2016; Date Revised: October 5, 2016

Abstract - The nth Triangular number denoted by T_n is defined as the sum of the first n consecutive positive integers. A positive integer n is a Triangular Number if and only if $T_n = \frac{n(n+1)}{2}$ [1]. We stated and proved a sequence of positive integers (A, B, C) is consecutive triangular numbers if and only if $\sqrt{B + C} - \sqrt{B + A} = 1$ and $B - A = \sqrt{B + A}$. We consider a ceiling function $\left[\frac{x}{2}\right]$ to state and prove a necessary and sufficient condition for a number $m = T_n = \left\lceil \frac{n+1}{2} \right\rceil (2 \left\lceil \frac{n}{2} \right\rceil + 1)$ to be a triangular number for each $n \ge 0$. A formula to find lcm and gcdof any two consecutive triangular numbers and a double factorial is introduced to find products of triangular numbers.

Key words: *Triangular numbers*, *ceiling function*, *double factorial*.

Introduction

A triangular number T_n is a number of the form $T_n = 1 + 2 + 3 + \cdots + n$, where n is a natural number. So that the first few triangular numbers are 1, 3, 6, 10, 15, 21, 28, 36, 45, ... [2]. A well-known fact about triangular numbers is that y is a triangular number if and only if 8y + 1 is a perfect square [1]. Triangular numbers can be thought of as the numbers of dots that can be arranged in the shape of a square.

Lemma 0.0.1: A positive integer m is triangular if and only if it is in the form of $m = \sum_{i=1}^{n} \frac{i(i+1)}{2}$ for $n \ge 1$.

Theorem 0.0.2: For any integer n, $\left[\frac{n}{2}\right] = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$

Theorem 0.0.3: A positive integer
$$m$$
 is triangular if and only if $m = T_n = \left\lceil \frac{n+1}{2} \right\rceil \left(2 \left\lceil \frac{n}{2} \right\rceil + 1 \right)$ for each $n \ge 0$.

Proof: (\Longrightarrow) Suppose a positive integer m is triangular. There exist $n \ge 1$ such that $m = \frac{n(n+1)}{2}$, (Lemma 0.0.1).

Case 1: When n is odd. If n Is odd then $\frac{n+1}{2} = \left\lceil \frac{n+1}{2} \right\rceil$ and $\left\lceil \frac{n}{2} \right\rceil = \frac{n+1}{2}$. The later implies $n+1=2\left\lceil \frac{n}{2} \right\rceil$ and $n+2=(2\left\lceil \frac{n}{2} \right\rceil+1)$. Therefore $m=\left(\frac{n+1}{2}\right)(n+2)=\left\lceil \frac{n+1}{2} \right\rceil\left(2\left\lceil \frac{n}{2} \right\rceil+1\right)$.

Case 2: When n is even. If n is even then $\left\lceil \frac{n}{2} \right\rceil = \frac{n}{2}$. This implies $n = 2 \left\lceil \frac{n}{2} \right\rceil$ and $n + 1 = 2 \left\lceil \frac{n}{2} \right\rceil + 1$. Similarly for n is even $\frac{n+2}{2} = \left\lceil \frac{n+1}{2} \right\rceil$. Combining the former and the later we have

$$m = (n+1)\left(\frac{n+2}{2}\right) = \left\lceil\frac{n+1}{2}\right\rceil \left(2\left\lceil\frac{n}{2}\right\rceil + 1\right).$$

 (\Leftarrow) Suppose $m = T_n = \left\lceil \frac{n+1}{2} \right\rceil \left(2 \left\lceil \frac{n}{2} \right\rceil + 1 \right)$ & is even for some $n \ge 0$. We show that m is triangular. Set $A = \left\lceil \frac{n+1}{2} \right\rceil$ and $B = 2 \left| \frac{n}{2} \right| + 1$. Then either A and B are both even or they have different parity. But because B is always odd, A must be Consider $B = 2\left\lceil \frac{n}{2} \right\rceil + 1$ is odd. Then $\left\lceil \frac{n}{2} \right\rceil$ is either even or odd. Suppose it is odd. This implies n is odd. Therefore $\left\lceil \frac{n}{2} \right\rceil = 1$

and $\left[\frac{n+1}{2}\right] = \frac{n+1}{2}$. From the former $2\left[\frac{n}{2}\right] + 1 = 2\left(\frac{n+1}{2}\right) + 1 = n+2$ and combining with the later,

$$m = T_n = \left\lceil \frac{n+1}{2} \right\rceil \left(2 \left\lceil \frac{n}{2} \right\rceil + 1 \right) = \frac{(n+1)(n+2)}{2}$$
. Hence by (Lemma 0.0.1) m is triangular.

Suppose $\left\lceil \frac{n}{2} \right\rceil$ is even. Then either n is even or odd. Suppose n is even. Then we have $\left\lceil \frac{n+1}{2} \right\rceil = \frac{n+2}{2}$ and $\left\lceil \frac{n}{2} \right\rceil = \frac{n}{2}$. Hence $\left(2\left[\frac{n}{2}\right]+1\right)=2\left(\frac{n}{2}\right)+1=n+1$ and therefore,

$$m=T_n=\left\lceil \frac{n+1}{2} \right\rceil \left(2\left\lceil \frac{n}{2} \right\rceil +1\right)=\frac{(n+1)(n+2)}{2}$$
 is triangular.

Similarly when n is odd, we have $\left[\frac{n+1}{2}\right] = \frac{n+1}{2}$ and $\left(2\left[\frac{n}{2}\right] + 1\right) = n+2$ and hence

$$m = T_n = \left\lceil \frac{n+1}{2} \right\rceil \left(2 \left\lceil \frac{n}{2} \right\rceil + 1 \right) = \frac{(n+1)(n+2)}{2}$$
 is triangular.

 $\boldsymbol{m} = \boldsymbol{T}_n = \left\lceil \frac{n+1}{2} \right\rceil \left(2 \left\lceil \frac{n}{2} \right\rceil + 1 \right) = \frac{(n+1)(n+2)}{2} \text{ is triangular.}$ In similar fashion one can prove the case $m = T_n = \left\lceil \frac{n+1}{2} \right\rceil \left(2 \left\lceil \frac{n}{2} \right\rceil + 1 \right) \& \text{ is odd for some } n \geq 0.$

Theorem 0.0.4:

A sequence of positive integers in the order (A, B, C) is consecutive triangular numbers if and only if

$$\sqrt{B+C} - \sqrt{B+A} = 1 \tag{*}$$

and

$$B - A = \sqrt{B + A} . \tag{**}$$

Proof. (\Rightarrow) Let (A, B, C) be a sequence of positive integers in the order. Suppose

$$\sqrt{B + C} + \sqrt{B + A} = 1$$
 and $B - A = \sqrt{B + A}$.

From the later when we square both sides, $(B - A)^2 = B + A \dots$ (***)

and combining the former with (***) we have $\sqrt{B+C}=1+\sqrt{B+A}=1+\sqrt{(B-A)^2}$

This implies
$$\sqrt{B + C} = 1 + |B - A| = 1 + B - A$$
 because $B > A$ (****).

Squaring both sides of (****) gives, $B + C = (1 + B - A)^2$. Let B - A = n, for some $n \in \mathbb{Z}^+$. This implies $B + C = (1 + n)^2$ and from (***) $B + A = n^2$.

Hence $\sqrt{B+C}-\sqrt{B+A}=1$ is true if and only if $B+C=(n+1)^2$ and $B+A=n^2$ for some $n\geq 0$.

Therefore, $B = n^2 - A$ and C - A = 2n + 1. This implies C = 2n + 1 + A.

Consider the sequence

$$(A, B, C) = (A, n^2 - A, 2n + 1 + A),$$
 (****)

From (**), B - A = n. Combining (**) and (***), we have $n^2 - n = 2A$, which implies

$$A = \frac{n^2 - n}{2} = \frac{(n-1)n}{2} \quad \text{and} \quad$$

$$C = 2n + 1 + A = 2n + 1 + \frac{n^2 - n}{2} = \frac{n^2 + 3n + 2}{2} = \frac{(n+1)(n+2)}{2}$$
 and

$$B = n^2 - A = n^2 - \frac{n^2 - n}{2} = \frac{n^2 + n}{2} = \frac{n(n+1)}{2}$$
.

Therefore (A, B, C) = $(\frac{n^2-n}{2}, \frac{n(n+1)}{2}, \frac{(n+1)(n+2)}{2}) = (T_{n-1}, T_n, T_{n+1})$ is a sequence of consecutive triangular numbers.

(\Leftarrow) Suppose a sequence of integers (*A*, *B*, *C*) is consecutive triangular numbers.

Set
$$A = T_m$$
. Then $B = T_{m+1}$ and $C = T_{m+2}$. By (Lemma 0.0.1),

$$A = \frac{m(m+1)}{2}$$
, $B = \frac{(m+1)(m+2)}{2}$ and $C = \frac{(m+2)(m+3)}{2}$.

This implies $B+C=(m+2)^2$ and $B+A=(m+1)^2$. Thus

$$\sqrt{B+C} - \sqrt{B+A} = \sqrt{(m+2)^2} - \sqrt{(m+1)^2}$$

$$= |m+2| - |m+1| = 1$$
 and, (Δ)

B-A=
$$\frac{(m+1)(m+2)}{2}$$
 - $\frac{m(m+1)}{2}$ = m + 1 and

$$\sqrt{B+A} = \sqrt{\frac{(m+1)(m+2)}{2} + \frac{m(m+1)}{2}} = \sqrt{(m+1)^2} = |m+1| = m+1$$
.

Therefore
$$B - A = \sqrt{B + A}$$
. $(\Delta \Delta)$

From (Δ) and $(\Delta\Delta)$ if a sequence of integers (A, B, C) is consecutive triangular numbers,

then
$$\sqrt{B+C} - \sqrt{B+A} = 1$$
 and $B-A = \sqrt{B+A}$.

Note: For any $k \ge 1$ the number $n = 2^{k-1}(2^k - 1)$ is triangular in particular if $(2^k - 1)$ is prime for k > 1 then $n = 2^{k-1}(2^k - 1)$ is perfect and also triangular number. To investigate the converse i.e., (in our next paper) which even triangular numbers has the form of $n = 2^{k-1}(2^k - 1)$ and are perfect we explore the followings.

Definition 0.0.5: The greatest common integer d that divides two non-zero integers a and b is called the **greatest common divisor** of a and b, denoted by gcd(a, b).

Example 0.0.6: Given $x = p_1^m p_2^a$ and $y = p_1^n p_2^b$ where p_1 and p_2 are distinct primes, the

$$gcd(x,y) = p_1^{min(n,m)} p_2^{min(a,b)}$$

Definition 0.0.7: The least common multiple of the integers a and b is called the **smallest positive integer** that is divisible by both a and b, denoted by lcm(a, b).

Example 0.0.8: Given $x = p_1^m p_2^a$ and $y = p_1^n p_2^b$ where p_1 and p_2 are distinct primes the $\mathbf{lcm}(x,y) = p_1^{\max(n,m)} p_2^{\max(a,b)}$

Theorem 0.0.9 [4,5]: For two positive integers a and b, ab = lcm (a, b) gcd(a, b).

Example 0.0.10: Given
$$x = p_1^m p_2^a$$
 and $y = p_1^n p_2^b$ where p_1 and p_2 are primes, then $\mathbf{x}\mathbf{y} = p_1^m p_2^a \ p_1^n p_2^b = \mathbf{gcd}(x,y) \ \mathbf{lcm}(x,y) = \mathbf{p_1^{\min(n,m)}} \mathbf{p_2^{\min(a,b)}} \mathbf{p_1^{\max(n,m)}} \mathbf{p_2^{\max(a,b)}}$

Theorem 0.0.11:

For each $n \ge 1$, $(f(n), g(n)) = (T_{4n-1}, T_{4n})$ and $(\phi(n), \eta(n)) = (T_{4n-3}, T_{4n-2})$ are the set of ordered pairs with

consecutive even and consecutive odd triangular numbers.

Note: See the table at page 9 below.

Theorem 0.0.12:

$$\begin{cases} \gcd(f(n), g(n)) = 2n \\ \gcd(\phi(n), \eta(n)) = 2n - 1 \end{cases} \text{ and } \begin{cases} \operatorname{lcm}(f(n), g(n)) = 3\binom{4n+1}{3} \\ \operatorname{lcm}(\phi(n), \eta(n)) = 3\binom{4n-1}{3} \end{cases}$$

Proof:

$$f(n) = T_{4n-1} = \frac{(4n-1)(4n)}{2} = (2n)(4n-1)$$
 and $g(n) = T_{4n} = \frac{(4n)(4n+1)}{2} = (2n)(4n+1)$.

If $d \mid (4n-1)$ and $d \mid (4n+1)$ then |(4n+1)-(4n-1)|. This implies $d \mid 2$ and then $d \mid 1$

or d|2. But $d \neq 2$, because d is a divisor of an odd integer. Therefore the only divisor of

$$(4n+1)$$
 and $(4n-1)$ is 1. Hence the $gcd(4n-1,4n+1)=1$. $(\diamond\diamond\diamond)$

Therefore for each n, $f(n) = T_{4n-1}$ and $g(n) = T_{4n}$ $\gcd(f(n), g(n)) = 2n$ and then

$$lcm (f(n), g(n)) = \frac{f(n)g(n)}{\gcd(f(n), g(n))} = \frac{(2n)(4n-1)(2n)(4n+1)}{2n}$$
$$= (2n)((4n-1)(4n+1)) = \frac{1}{2n}(T_{4n-1}T_{4n})$$
$$= \frac{1}{2n}\binom{4n}{2}\binom{4n+1}{2} = 3\binom{4n+1}{3}.$$

Next we find $\operatorname{lcm}(\phi(n), \eta(n))$ and $\operatorname{gcd}(\phi(n), \eta(n))$.

$$\phi(n) = T_{4n-3} = \frac{(4n-3)(4n-2)}{2} = (4n-3)(2n-1)$$

and

$$\eta(n) = T_{4n-2} = \frac{(4n-2)(4n-1)}{2} = (4n-1)(2n-1)$$
. The gcd $(4n-1,4n-3) = 1$. (**) above.

Therefore, $gcd(\phi(n), \eta(n)) = gcd((4n-3)(2n-1), (4n-1)(2n-1)) = 2n-1.$

By (Theorem 0.0.8),
$$lcm(\phi(n), \eta(n)) = \frac{\phi(n)\eta(n)}{\gcd(\phi(n), \eta(n))} = \frac{(2n-1)(4n-3)(4n-1)(2n-1)}{2n-1}$$

P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com Asia Pacific Journal of Multidisciplinary Research, Vol. 4, No. 4, November 2016

$$=(2n-1)(4n-1)(4n-3)\ =\frac{1}{(n-1)}(T_{4n-3}T_{2n-2})$$

$$=\frac{1}{2n}\binom{4n-2}{2}\binom{2n-1}{2} = 3\binom{4n-1}{3}$$

 $= \frac{1}{2n} {\binom{4n-2}{2}} {\binom{2n-1}{2}} = 3 {\binom{4n-1}{3}}$ **Example 0.0.13:** Find $\gcd(T_7, T_8)$ and $\gcd(T_7, T_8)$.

Answer: $T_7 = T_{4n-1} = 28$ and $T_8 = T_{4n} = 36$ where n = 2. Therefore

$$gcd(T_7, T_8) = gcd(28, 36) = 2n = 4$$
 and $lcm(T_7, T_8) = 3\binom{9}{3} = 252 = \frac{(28)(36)}{2}$.

Theorem 0.0.14:

Define a sequence

$$F_n = \sum_{i=0}^n (4i+1)$$
 and $G_n = \sum_{i=0}^n (4i+3)$. Then
$$\sum_{i=1}^{2n} T_i = \sum_{i=0}^{n-1} \sum_{k=0}^i (F_i + G_i)$$
.

Proof: Given

$$F_t = \sum_{k=0}^t (4k+1) \quad and \quad G_t = \sum_{k=0}^t (4k+3). \text{ Then}$$

$$\sum_{i=1}^{2n} T_{2i} = \sum_{i=0}^{n-1} \sum_{k=0}^i (F_i + G_i) \tag{\odot}$$

We use induction to prove the statement. We verify it is true for n = 1. The left side of

$$(\bigcirc\bigcirc\bigcirc)$$
 $\sum_{i=1}^2 T_i = T_1 + T_2 = 1 + 3 = 4$ and the right side $\sum_{i=0}^0 \sum_{k=0}^0 (F_i + G_i) = F_0 + G_0 = 1 + 3 = 4$.

Let $t \in \mathbb{Z}^+$ and suppose the statement in $(\bigcirc \bigcirc)$ is true for n = t that is

$$\sum_{i=1}^{2t} T_{2i} = \sum_{i=0}^{t-1} \sum_{k=0}^{i} (F_i + G_i)$$
. Now we show that it is true for $n = t+1$. Thus

$$\sum_{i=1}^{2(t+1)} T_{2i} = \sum_{i=1}^{2t+2} T_{2i} = \sum_{i=1}^{2t} T_{2i} + \ T_{2t+1} + T_{2t+2}$$
 , but

$$F_t = \sum_{k=1}^t (4k+1) + 1 = \frac{4t(t+1)}{2} + t + 1 = (t+1)(2t+1) = T_{2t+1}$$
 , and

$$G_t = \sum_{k=1}^{t} (4k+3) + 3 = \frac{t(t+1)}{2} + +3t + 3 = (t+1)(2t+3) = T_{2t+2}$$
. Hence,

$$T_{2t+1} = F_t$$
 and $T_{2t+2} = G_t$ and $\sum_{i=1}^{2(t+1)} T_{2i} = \sum_{i=1}^{2t} T_{2i} + F_t + G_t$ and therefore

$$\sum_{i=1}^{2(t+1)} T_{2i} = \sum_{i=1}^{2t+2} T_{2i} = \sum_{i=1}^{2t} T_{2i} + T_{2t+1} + T_{2t+2}$$

$$=\sum_{i=0}^{t-1}\sum_{k=0}^{i}(F_i+G_i)+F_t+G_t$$

$$= \sum_{i=0}^{t-1} \sum_{k=0}^{i} (F_i + G_i) + \sum_{k=0}^{t} (4k+1) + \sum_{k=0}^{t} (4k+3)$$

= $\sum_{i=0}^{t} \sum_{k=0}^{i} (F_i + G_i)$ and the statement is true for n = t + 1.

Hence
$$\sum_{i=1}^{2n} T_i = \sum_{k=0}^{n-1} \sum_{k=0}^{i} (F_i + G_i)$$

Theorem 0.0.15: For each $n \ge 1$,

$$\sum_{i=1}^{n} T_i^2 = \frac{n}{60} T_{2n+1} {3T_n + 2 \choose 3T_n + 1} + \frac{1}{2} T_n^2$$

Example 0.0.16: Find
$$\sum_{i=1}^{3} T_i^2$$
. Answer: $\sum_{i=1}^{3} T_i^2 = T_1^2 + T_2^2 + T_3^2 = 1^2 + 3^2 + 6^2 = 1 + 9 + 36 = 46$ and $\frac{3}{60} T_7 {3T_3 + 2 \choose 3T_3 + 1} + \frac{1}{2} T_3^2 = \frac{3}{60} \cdot 28 \cdot {20 \choose 19} + \frac{1}{2} (36) = \frac{3}{60} \cdot 28 \cdot 20 + \frac{1}{2} (36) = 28 + 18 = 46$. This implies $\sum_{i=1}^{3} T_i^2 = 46 = \frac{3}{60} T_7 {3T_3 + 2 \choose 3T_3 + 1} + \frac{1}{2} T_3^2$.

Proof: We use the following identities: (\otimes)

1)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

2)
$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

1)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

2) $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$
3) $\sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)}{30} (3n^2 + 3n - 1)$

For each $n \ge 1$, $T_n^2 - T_{n-1}^2 = n^3$. This implies

$$\sum_{i=1}^{n} \left(T_{i}^{2} - T_{i-1}^{2}\right) = \sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4} = \left(\frac{n(n+1)}{2}\right)^{2} = T_{n}^{2} . \text{ Hence}$$

$$T_{k}^{2} = \sum_{i=1}^{k} i^{3} \text{ and } \sum_{k=1}^{n} T_{k}^{2} = \sum_{k=1}^{n} \sum_{i=1}^{k} i^{3} = \sum_{k=1}^{n} \frac{k^{2}(k+1)^{2}}{4} = \frac{1}{4} \sum_{k=1}^{n} (k^{4} + 2k^{3} + k^{2}) . \tag{\oplus}$$

But,

$$\begin{split} \sum_{k=1}^{n} k^4 + \sum_{k=1}^{n} k^2 &= \sum_{k=1}^{n} k^4 - \sum_{k=1}^{n} k^2 + 2 \sum_{k=1}^{n} k^2 \\ &= \frac{n(n+1)(2n+1)}{30} (3n^2 + 3n - 1) - \frac{n(n+1)(2n+1)}{6} + 2 \frac{n(n+1)(2n+1)}{6} \\ &= \frac{n(n+1)(2n+1)}{6} \left(\frac{3n^2 + 3n - 1}{5} - 1 \right) + 2 \frac{n(n+1)(2n+1)}{6} \\ &= \frac{(n-1)n(n+1)(n+2)(2n+1)}{10} + \frac{n(n+1)(2n+1)}{3} \\ &= n(n+1)(2n+1) \left(\frac{(n-1)(n+2)}{10} + \frac{1}{3} \right) \\ &= \frac{1}{30} n(n+1)(2n+1)(3n(n+1) + 4) \\ &= \frac{n}{30} \frac{(2n+1)(2n+2)}{2} (3n(n+1) + 4) \\ &= \frac{n}{30} T_{2n+1} \left(\frac{6n(n+1)}{2} + 4 \right) = \frac{n}{30} T_{2n+1} \left(6T_n + 4 \right) \\ &= \frac{n}{15} T_{2n+1} \left(3T_n + 2 \right) \end{split} \tag{Φ Φ}$$

Combining (\oplus) and $(\oplus\oplus)$ we have,

$$\frac{1}{4}\sum_{k=1}^{n}(k^{4}+2k^{3}+k^{2}) = \frac{1}{4}\left(\sum_{k=1}^{n}k^{4}+\sum_{k=1}^{n}k^{2}+2\sum_{k=1}^{n}k^{3}\right) \\
= \frac{1}{4}\left(\frac{n}{15}T_{2n+1}\left(3T_{n}+2\right)+2\sum_{k=1}^{n}k^{3}\right) \\
= \frac{1}{4}\left(\frac{n}{15}T_{2n+1}\left(3T_{n}+2\right)+2\frac{n^{2}(n+1)^{2}}{4}\right) \\
= \frac{n}{60}T_{2n+1}\left(3T_{n}+2\right)+\frac{1}{2}T_{n}^{2} \\
= \frac{n}{60}T_{2n+1}\left(\frac{3T_{n}+2}{3T_{n}+1}\right)+\frac{1}{2}T_{n}^{2}$$
(see (\Omega))

Hence for each for each $n \ge 1$,

$$\sum_{i=1}^{n} T_i^2 = \frac{n}{60} T_{2n+1} \binom{3T_n+2}{3T_n+1} + \frac{1}{2} T_n^2$$

Double Factorial

The product of the integers from 1 up to some non-negative integers n that have the same parity as n is called double factorial or semi factorial of n and is denoted by n!! [3, 6]. That is

$$n!! = \prod_{k=0}^{m} (n-2k) = n(n-2)(n-4)...$$
, where $m = \left[\frac{n}{2}\right] - 1$.

A consequence of this definition is that 0!! = 1. For even n, the double factorial is

$$n!! = \prod_{k=1}^{\frac{n}{2}} (2k) = n(n-2)...2$$
 and for odd n ,

$$n!! = \prod_{k=1}^{\frac{n+1}{2}} (2k-1) = n(n-2) \dots 1.$$

Theorem 0.0.17:

Let T_n be the *nth* triangular number. Then for $p \ge 1$,

$$(2p+1)!! = \frac{1}{n!} \prod_{i=1}^{p} T_{2i}$$
.

Example 0.0.18:

$$5!! = (2.2+1)!! = 1 \cdot 3 \cdot 5 = 15 = \frac{1}{2!} \prod_{i=1}^{2} T_{2i} = \frac{1}{2} \cdot T_2 \cdot T_4 = \frac{1}{2!} (3 \cdot 10) = 15$$
 and

$$7!! = (2.3+1)!! = 1.3.5.7 = 105 = \frac{1}{3!} \prod_{i=1}^{3} T_{2i} = \frac{1}{3!} . T_2 . T_4 . T_6 = \frac{1}{6} (3.10.21) = 105.$$

Proof: We prove by induction. Let P(p) be the statement that

$$(2p+1)!! = \frac{1}{p!} \prod_{i=1}^{p} T_{2i}.$$
 (000)

We verify that P(1) is true. When p = 1, the left side of $(\circ \circ \circ)$ (2.1 + 1) = 3!! = 3 and the right side $\frac{1}{1!} \prod_{i=1}^{1} T_{2i} = T_2 = 3 = 3!! = 1$. 3, so both sides are equal and P(1) is true.

Let $k \in \mathbb{Z}^+$ and suppose P(k) is true for n = k, i.e., $(2k + 1)!! = \frac{1}{k!} \prod_{i=1}^k T_{2i}$. (***) Next we show that

P(k+1) is true for each $k \ge 1$ that is $(2(k+1)+1)!! = \frac{1}{(k+1)!} \prod_{i=1}^{k+1} T_{2i}$.

$$(2(k+1)+1)!! = (2k+3)!! = (2k+3)(2k+1)!!$$

$$= (2k+3) \frac{1}{k!} \prod_{i=1}^{k} T_{2i} \quad \text{(See (osso))}$$

$$= \frac{1}{k!} \prod_{i=1}^{k} T_{2i} (2k+3) = \frac{k+1}{(k+1)!} \prod_{i=1}^{k} T_{2i} (2k+3) \quad \text{(Because } \frac{1}{k!} = \frac{k+1}{(k+1)!})$$

$$= \frac{k+1}{(k+1)!} \prod_{i=1}^{k} T_{2i} \ (2k+3) = \frac{1}{(k+1)!} \prod_{i=1}^{k} T_{2i} \ (2k+3) \left(k+1\right)$$

But $T_{2k+2} = \frac{(2k+2)(2k+3)}{2}$, Lemma (0.0.1) which implies $T_{2k+2} = \frac{(2k+2)(2k+3)}{2} = (2k+3)(k+1)$.

Consequently,
$$2(k+1)+1)!! = (2k+3)!! = \frac{1}{(k+1)!} \prod_{i=1}^{k} T_{2i} (2k+3) (k+1)$$

$$=\frac{1}{(k+1)!}\prod_{i=1}^k T_{2i}$$
. T_{2k+2}

$$=\frac{1}{(k+1)!}\prod_{i=1}^{k+1}T_{2i} = P(k+1)$$

This implies P(k+1) is true for each $k \ge 1$, and hence,

$$(2p+1)!! = \frac{1}{p!} \prod_{i=1}^{p} T_{2i}$$
 for each $p \ge 1$.

ODD and EVEN Triangular Numbers with Corresponding Subscripts,

1	3	6	10	15	21	28	36	45	55
66	78	91	105	120	136	153	171	190	210
231	253	276	300	325	351	378	406		

From the table above we see that odd triangular numbers are given as

	1	3	15	21	45	55	91	105	153	171	231	253	325	351
	1*1	1*3	3*5	3*7	5*9	5*11	7*13	7*15	9*17	9*19	11*21	11*23	13*25	13*27
	t_1	t_2	t_5	t_6	t_9	t ₁₀	t ₁₃	t_{14}	t ₁₇	t_{18}	t ₂₁	t ₂₂	t ₂₅	t_{26}
_	$\left\{egin{array}{ll} t_{2i-2}, & i \ is \ even \ & and \ & t_{2i-1}, & i \ is \ odd \end{array} ight.$							{		i = 2k, and $i = 2k -$	$k \in \mathbb{Z}^+$ $1, k \in \mathbb{Z}^+$			

								(11.00)					
6	10	28	36	66	78	120	136	190	210	276	300	378	406
2*3	2*5	4*7	4*9	6*11	6*13	8*15	8*17	10*19	10*21	12*23	12*25	13*27	13*29
t_3	t_4	t ₇	t_8	t ₁₁	t ₁₂	t ₁₅	t ₁₆	t ₁₉	t ₂₀	t ₂₃	t ₂₄	t ₂₇	t_{28}

and in the table below the even triangular numbers has following subscripts,

$$\begin{cases} t_{2i} \text{ , } i \text{ is even} \\ and \\ t_{2i+1}, \text{ } i \text{ is odd} \end{cases} \Rightarrow \begin{cases} t_{4k} \text{ , } for i = 2k \text{ , } k \in \mathbb{Z}^+ \\ and \\ t_{4k-1}, \text{ for } i = 2k-1, k \in \mathbb{Z}^+ \end{cases}$$

CONCLUSION AND REMARKS

The sum of two triangular numbers may be a triangular number. For instance the pairs (6, 15) and (21, 45) are triangular number with $6 + 15 = T_3 + T_5 = 21 = T_6$ and $21 + 45 = T_6 + T_9 = T_1 = 66$ are again a triangular numbers. Moreover, if you see the double factorial,

$$5!! = 1.3.5 = (1)(3.5) = T_1.T_5$$

 $9!! = 1.3.5.7.9 = (1)(3.7)(5.9) = T_1.T_6.T_9$ and
 $13!! = 1.3.5.7.9.11.13 = (1)(7.13)(5.11)(3)(9) = T_1.T_{13}T_{10}T_2^3.$

We ponder that the double factorial of odd integers can be expresses as a product of triangular numbers. Is it unique? Can we find a relationship between gamma functions, beta function and product of triangular numbers? Which even triangular

numbers n has the form of $n = 2^{k-1}(2^k - 1)$ and is perfect. These are open problems we are working on and close to show these facts are true in our next paper.

REFERENCES

- [1] David M. Burton(1980) Elementary Number Theory, Ally and Bacon, Inc., ISBN 0-205-06965-7.
- [2] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
- [3] Thomas Koshy(2004) Discrete Mathematics with Application, ISBN, 0-12-421180, Elsevier Academic Press.
- [4] Charles Vanden Eynden(2001) Elementary Number Theory, ISBN13: 978- 1577664451, McGraw-Hill Publishing.
- [5] Guram Bezhanishvili, Eachan Landreth (2013) Introduction to Set Theory. DOI: 10.4169/loci003991
- [6] Keit Oldham, Jan Myland, Jerome Spanier (1987)An
 Atlas of Functions, ISBN10: 0891165738 ISBN
 13:9780891165736, Published by Taylor & Francis

COPYRIGHTS

Copyright of this article is retained by the author/s, with first publication rights granted to APJMR. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creative.commons.org/licenses/by/4.