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Abstract - In this paper, we approximate a non – polynomial function which promises to be an 

essential tool in interest rates forecasting in the Philippines. We provide two numerical schemes in order 

to generate polynomial functions that approximate a new wavelet which is a modification of Morlet and 

Mexican Hat wavelets. The first is the Polynomial Least Squares method which approximates the 

underlying wavelet according to desired numerical errors. The second is the Chebyshev Polynomial 

approximation which generates the required function through a sequence of recursive and orthogonal 

polynomial functions. We seek to determine the lowest order polynomial representations of this wavelet 

corresponding to a set of error thresholds. 
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INTRODUCTION 

A wavelet is a mathematical function that is used 

to divide a given function or a continuous- time signal 

into different scale components. Since wavelet 

transforms are representation of functions similar to 

those of Fourier transforms, they are used in data 

compression and signal processing. Over the years, 

wavelets have been employed in research 

undertakings in a broad range of fields from electrical 

engineering and computer science to economics and 

finance. The utility of wavelets lie in their capacity to 

make sense of real world data which are mostly non-

stationary, non-periodic, and noisy. The data are 

transformed such that analyses and inferences on them 

can be done easily. 

 Such transformation mechanism is not 

inherently unique to wavelets. Joseph Fourier 

conceptualized the Fourier transform in 1807.  The 

method uses orthogonal basis functions to represent 

continuous and periodic functions.  For 𝑝 ∈ ℝ, 

1 ≤ 𝑝 < +∞, let 

𝑥 𝑡 ∈ 𝐿𝑝  
be the signal function to be analyzed.  Then its Fourier 

transform is defined as 

𝑓 𝜉 =  𝑥 𝑡 

+∞

−∞

𝑒−2𝜋𝑖𝜉 𝑑𝑡 

where 𝜉 is in Hertz. 

Fourier transform was a success in function 

transformation but it has a major shortcoming. It is not 

compactly supported in time. Thus, it is not a suitable 

transformation for non-stationary data.  The Short 

Time Fourier Transform (STFT) was conceptualized 

to correct this drawback.  It is given by 

𝑆 𝜏, 𝑓 =  𝑥 𝑡 𝑤∗ 𝑡 − 𝜏 𝑒−2𝜋𝑖𝑓𝑡 𝑑𝑡 

where 𝑤(𝑡) is the windowing function, 𝜏 is the time 

axis, 𝑓 and 𝑡 are frequency and translation parameters, 

respectively, and ∗ is the complex conjugate operator.  

The STFT is compactly supported in time. 

However, it uses the same window for the analysis of 

the entire signal.  This brought difficulties in data 

analyses.   If the signal to be analyzed has high 

frequency components for a short time span, narrow 

windows are used. But such narrow windows mean 

wider frequency bands which result to poor frequency 

resolution.  On the other hand, if the signal features 

low frequency components of longer time span, then a 

wider window needs to be used to obtain good 

frequency resolution. 

This limitation posed by the STFT was the driving 

force in finding another function transform.  In 1970, 

Jean Morlet, a geophysical engineer, and Alex 

Grossman, a theoretical physicist constructed another 

function transform which has versatile window 

function. This new function transform was named 

wavelet and it was so successful that several variants 
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have been constructed to suit the needs of a wide 

variety of phenomena and applications. 

In 2010, Noemi Torre and Jose Maria Escaner, 

IV, developed a new wavelet which we call the Torre 

– Escaner Wavelet. This new wavelet fits historical 

data of Philippine 90 – day T – bill rates from 1987 up 

to 2008. It was constructed using the Morlet and 

Mexican Hat wavelets and logically inherits their 

intrinsic properties. The Morlet wavelet is known to 

offer improved detection and localization of scale over 

the Mexican Hat. On the other hand, the Mexican Hat 

wavelet provides better detection and localization of 

patch and gap events over the Morlet wavelet. 

 The Torre – Escaner wavelet is given by 

𝑊 𝑡 =  
2

 3
𝜋−

1

4(1 −  1.1𝑡)2 𝑒−
(1.1𝑡)2

2 𝑒𝑖7.7𝑡                     (1) 

 

where t stands for time and W(t) for frequency.This 

new wavelet fits historical data of Philippines 90 – 

day T – bill rates and can be potentially used to model 

Philippine interest rates according to Torre and 

Escaner [1]. 

In the areas of computing and numerical analysis, 

polynomial functions receive preferential treatment.  

This is because their structures, being based on 

elementary operations of addition and multiplication, 

are simple to humans and to computers.   In the 

context of computational, time and space 

complexities, polynomial functions are much efficient 

compared to their non – polynomial counterparts.  

That is why, if possible, non-polynomial functions are 

transformed as polynomials via numerical 

approximation methods.  As is the case with such 

approximation techniques, there is always the error 

trade – off. That is, the error varies inversely to the 

degree of the approximating polynomial.   

 

OBJECTIVES OF THE STUDY 

 

In this paper, we intend to 

 (a)  represent the Torre – Escaner wavelet by  

a polynomial function 𝑃𝑛(𝑡) via numerical methods; 

and  

 (b) determine the root-mean-squared errors, 

𝐸𝑅𝑀𝑆 =  
1

 𝑛
∥ 𝑊 𝑡 − 𝑃𝑛(𝑡) ∥2, of these polynomial 

representations. 

 We are interested in polynomial functions as 

approximations for the Torre – Escaner wavelet for 

three reasons. Firstly, polynomial functions are 

generally simple and easy to manipulate. Secondly, 

polynomial functions are algorithmically easy to 

implement and computationally efficient. Note that 

these two are the reasons why we only want a 

polynomial approximation of practical degree. 

Although a plethora of numerical schemes can easily 

give an approximation for (1), they are mostly higher 

ordered that they become impractical for our goal. 

Thirdly, we want to provide a numerical basis or 

treatment for the wavelet that can model Philippine T 

– bill rates. 

 

METHODS 

We employ techniques and methods provided in 

Numerical Analysis such as Polynomial Least Squares 

(PLS) and Chebyshev Polynomial approximations to 

construct the approximating or interpolating function 

𝑃𝑛(𝑡). 

Polynomial Least Squares Approximation 

 For the Polynomial Least Squares (PLS) 

approximation, we seek to construct a degree n 

polynomial, 

𝑃𝑛 𝑡 =  𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + ⋯+ 𝑎𝑛𝑡

𝑛   

  (2) 

from the Torre – Escaner wavelet W(t), such that the 

root- mean squared error, 𝐸𝑅𝑀𝑆  is as small as possible, 

i.e.,  

𝐸𝑅𝑀𝑆 =
1

 𝑛
∥ 𝑊 𝑡 − 𝑃𝑛 𝑡 ∥2

< 𝜖                                       (3) 

 Let 

𝐺 𝑎0 , 𝑎1 , … , 𝑎𝑛 =    𝑊 𝑡𝑖 − 𝑃𝑛 𝑡𝑖  
2𝑚

𝑖=1  

    

=   [𝑊 𝑡𝑖 − 𝑎0 − 𝑎1𝑡𝑖 − 𝑎2𝑡𝑖
2 −⋯− 𝑎𝑛𝑡𝑖

𝑛  ]2

𝑚

𝑖=1

 

𝜕𝐺

𝜕𝑎0
= 0, 

𝜕𝐺

𝜕𝑎1
= 0,     

⋮     
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To minimize 𝐸𝑅𝑀𝑆 , we set the following: 

      
𝜕𝐺

𝜕𝑎𝑛
= 0, 

and solve the subsequent equations 

𝜕𝐺

𝜕𝑎0
= −2  𝑊 𝑡𝑖 − 𝑎0 − 𝑎1𝑡𝑖 − 𝑎2𝑡𝑖

2 −⋯− 𝑎𝑛𝑡𝑖
𝑛  = 0 

𝑚

𝑖=1

, 

𝜕𝐺

𝜕𝑎1
= −2  𝑊 𝑡𝑖 − 𝑎0 − 𝑎1𝑡𝑖 − 𝑎2𝑡𝑖

2 −⋯− 𝑎𝑛𝑡𝑖
𝑛  𝑡𝑖 = 0 ,

𝑚

𝑖=1

 

⋮ 

𝜕𝐺

𝜕𝑎𝑛
= −2  𝑊 𝑡𝑖 − 𝑎0 − 𝑎1𝑡𝑖 − 𝑎2𝑡𝑖

2 −⋯− 𝑎𝑛𝑡𝑖
𝑛  𝑡𝑖

𝑛 = 0 

𝑚

𝑖=1

, 

which simplifies to 

𝑎0  1 +

𝑚

𝑖=1

𝑎1  𝑡𝑖 + ⋯

𝑚

𝑖=1

𝑎𝑛  𝑡𝑖
𝑛 =  𝑊(𝑡𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

, 

𝑎0  𝑡𝑖 +

𝑚

𝑖=1

𝑎1  𝑡𝑖
2 + ⋯

𝑚

𝑖=1

𝑎𝑛  𝑡𝑖
𝑛+1 =  𝑊(𝑡𝑖)𝑡𝑖

𝑚

𝑖=1

,

𝑚

𝑖=1

 

⋮ 

𝑎0  𝑡𝑖 +

𝑚

𝑖=1

𝑎1  𝑡𝑖
𝑛−1 + ⋯

𝑚

𝑖=1

𝑎𝑛  𝑡𝑖
2𝑛 =  𝑊(𝑡𝑖)𝑡𝑖

𝑛

𝑚

𝑖=1

𝑚

𝑖=1

.                 (4) 

 According to Atkinson and Han [2], (4) is a system of normal equations which is equivalent to 

     𝑋𝑇𝑋𝑎 =  𝑋𝑇𝑊    (5) 

where 

𝑋 =

 
 
 
 
1 𝑡1 𝑡1

2

1 𝑡2 𝑡2
2

⋮
1

⋮
𝑡𝑚

⋮
𝑡2

𝑚

  … 𝑡1
𝑛

  … 𝑡2
𝑛

  ⋮
  …

⋮
𝑡𝑚

𝑛  
 
 
 
 

and 

𝑊 =  

𝑊(𝑡1)
𝑊(𝑡2)

⋮
𝑊(𝑡𝑚 )

 . 
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 Expression (5) is also equivalent to 

 
 
 
 
 
 
 
 
 
  1

𝑚

𝑖=1

 𝑡𝑖

𝑚

𝑖=1

…  𝑡𝑖
𝑛

𝑚

𝑖=1

 𝑡𝑖

𝑚

𝑖=1

 𝑡𝑖
2

𝑚

𝑖=1

…  𝑡𝑖
𝑛+1

𝑚

𝑖=1

⋮ ⋮

 𝑡𝑖
𝑛+1

𝑚

𝑖=1

 𝑡𝑖
𝑛+2

𝑚

𝑖=1

⋮
…

⋮

 𝑡𝑖
2𝑛

𝑚

𝑖=1  
 
 
 
 
 
 
 
 
 

 

𝑎0

𝑎1

⋮
𝑎𝑛

 =  

 
 
 
 
 
 
 
 
 
  𝑊(𝑡𝑖)

𝑚

𝑖=1

 𝑊(𝑡𝑖)𝑡𝑖

𝑚

𝑖=1

⋮

 𝑊(𝑡𝑖)𝑡𝑖
2𝑛

𝑚

𝑖=1  
 
 
 
 
 
 
 
 
 

, 

which can be expressed as 

𝐿𝑎 = 𝑏                                         (6) 

where 

𝐿 =

 
 
 
 
 
 
 
 
 
  1

𝑚

𝑖=1

 𝑡𝑖

𝑚

𝑖=1

…  𝑡𝑖
𝑛

𝑚

𝑖=1

 𝑡𝑖

𝑚

𝑖=1

 𝑡𝑖
2

𝑚

𝑖=1

…  𝑡𝑖
𝑛+1

𝑚

𝑖=1

⋮ ⋮

 𝑡𝑖
𝑛+1

𝑚

𝑖=1

 𝑡𝑖
𝑛+2

𝑚

𝑖=1

⋮
…

⋮

 𝑡𝑖
2𝑛

𝑚

𝑖=1  
 
 
 
 
 
 
 
 
 

′ 

𝑎 =  

𝑎0

𝑎1

⋮
𝑎𝑛

 , 

and 

 

𝑏 =

 
 
 
 
 
 
 
 
 
  𝑊(𝑡𝑖)

𝑚

𝑖=1

 𝑊(𝑡𝑖)𝑡𝑖

𝑚

𝑖=1

⋮

 𝑊(𝑡𝑖)𝑡𝑖
2𝑛

𝑚

𝑖=1  
 
 
 
 
 
 
 
 
 

 . 

 Now, if L is invertible, then 𝐿−1 exists and matrix a can be solved. 
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Chebyshev Polynomial Approximation 

 Instead of monomial basis, Chebyshev Polynomial approximation uses different bases vectors.  Let 

𝑇𝑛 𝑡 =  cos𝑛𝜃 =  cos 𝑛 (arccos(𝑡))                                (7) 

where −1 ≤ 𝑡 ≤ 1. We know that 

cos(𝑛 + 1)𝜃 + cos(𝑛 − 1)𝜃 = 2 cos 𝑛𝜃 cos 𝜃. 

Thus, we have 

𝑇 𝑛+1  𝑡 = 2𝑡𝑇𝑛 𝑡 − 𝑇 𝑛−1  𝑡 .              (8) 

 Hence, the basis vector is of the form {𝑇0 𝑡 , 𝑇1 𝑡 , 𝑇2 𝑡 , … , 𝑇𝑛 𝑡 } which is also a basis vector of 

polynomials in terms of t.  According to a theorem by Weierstrass [3], if 𝑃𝑛 𝑡  interpolates a given function f (t) 

on the zeros of 𝑇𝑛+1(𝑡), then 

∥ 𝑓 𝑡 − 𝑃𝑛 𝑡 ∥∞≤
2−𝑛

 𝑛 + 1 !

max
𝑡0 ≤ 𝑡 ≤ 𝑡𝑛

 𝑓 𝑛+1  𝑡                            (9) 

where 𝑡 ∈  −1,1 . 

 This theorem guarantees that a good fit of f (t) can be found. Hence it is imperative to determine the 

zeros of  𝑇𝑛+1 𝑡 . That can be done by simply setting (7) to zero and solving for the corresponding 𝜃 values. 

cos 𝑛𝜃 = 0 

𝑛𝜃 =  2𝑘 + 1 
𝜋

2
, 𝑘 = 0,1,2,… ,  𝑛 − 1 , 

𝜃 =  2𝑘 + 1 
𝜋

2𝑛
, 𝑘 = 0,1,2,… ,  𝑛 − 1 . 

Let 

𝑡𝑘 =  cos 𝜃 = cos( 2𝑘 + 1 
𝜋

2𝑛
) ; 𝑘 = 0,1,2,… ,  𝑛 − 1                     (10) 

be the kth zero of (7). Then the set generated by (10) is called the set of Chebyshev nodes of (7). 

 Next, we note that since {𝑇0 𝑡 , 𝑇1 𝑡 , 𝑇2 𝑡 , … , 𝑇𝑛 𝑡 } is a basis for the set of polynomials, then the set 

is linearly independent and 𝑇𝑖(𝑡) is orthogonal to 𝑇𝑗 (𝑡) for 𝑖 ≠ 𝑗 from Kolman and Hill[4]. Hence, we can set 

𝑃𝑛 𝑡 =   𝑐𝑘𝑇𝑘 𝑡 ,                                         (11)

𝑛

𝑘=0
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a linear combination of these basis vectors. Thus, we need to determine each coefficient 𝑐𝑘  to come up with the 

Chebyshev polynomial approximation 𝑃𝑛(𝑡) for 𝑓 𝑡 .  𝑃𝑛(𝑡) interpolates 𝑓 𝑡  at the (n +1)  Chebyshev nodes so 

that at every node 𝑡𝑘 , 

𝑓 𝑡𝑘 = 𝑃𝑛 𝑡𝑘 . 

Hence, 

 𝑓 𝑡𝑗  𝑇𝑘 𝑡𝑗  =   𝑐𝑖 𝑇𝑖(𝑡𝑗 )𝑇𝑘(𝑡𝑗 )

𝑛

𝑗=0

𝑛

𝑖=0

𝑛

𝑗=0

 

=  𝑐𝑖𝐾𝑖𝛿𝑖𝑘  (orthogoninality of 𝑇𝑖  and 𝑇𝑘)

𝑛

𝑖=0

 

=
1

2
 𝑛 + 1 𝑐𝑘  

where 𝐾𝑖 =
1

2
 𝑛 + 1  . 

Thus, the coefficients can be obtained by 

   𝑐𝑘 =  
2

𝑛 + 1
 𝑓 𝑡𝑗  𝑇𝑘 𝑡𝑗                                            (12)

𝑛

𝑗=0

 

where𝑡𝑗 = cos 
 𝑗+

1

2
 𝜋

𝑛+1
 . 

RESULTS AND DISCUSSION 

After considering several choices, we come up with the common interval of interest for (1). The interval is 

[-1,1] because this is the only interval in which our Matlab codes give quality results. For one, the graph outside 

[-1,1] explodes. For comparison purposes, we set a maximum root- mean square error, 𝐸𝑅𝑀𝑆 , of 0.10 

corresponding to 10 percent. This threshold might be considered large but setting a very small value might result 

in very high polynomial degrees. 

 

Least Square Approximation Results 

 Using Matlab, the minimum degree of the approximating polynomial is 𝑛 =  𝑚 =  20. For values 

larger than 20, the Matlab program returns a warning note that the solution to the matrix system (6) may be 

inaccurate. This is because L is a Hilbert matrix [5]. As the matrix becomes large, its determinant tends to zero. 

Thus L becomes non- invertible. 

 For this particular degree, the Matlab program returns the polynomial representation for (1): 

𝑃20 𝑡 =  4.2 − 0.01𝑖 𝑡20 +  9.32𝑖 𝑡19 +  −35.47 + 0.03𝑖 𝑡18 
+  0.01 − 67.28𝑖 𝑡17 +  144.3 + 0.06𝑖 𝑡16 +  −0.02 + 234.72𝑖 𝑡15 
+  −376.03 + 0.07𝑖 𝑡14 +  0.03 − 526.04𝑖 𝑡13 +  691.51 − 0.05𝑖 𝑡12 
+ 0.02 + 827.98𝑖 𝑡11 +  −914.14 + 0.02𝑖 𝑡10 +  0.01 − 921.35𝑖 𝑡9 
+ 842.72 − 0.01𝑖 𝑡8 + 692.78𝑖𝑡7 − 505.15𝑡6 − 321.48𝑖𝑡5 
+174.48𝑡4 + 78.11𝑖𝑡3 − 27.29𝑡2 − 6.68𝑖𝑡 + 0.87                      (13) 
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Its graph is 

 

Figure 1: Graph of 𝑃20(𝑡) with W(t) in circles 

However, its root- mean- squared error is 

𝐸𝑅𝑀𝑆 =
1

 𝑛
∥ 𝑊 𝑡 − 𝑃20 𝑡 ∥2= 0.8014, 

much bigger than the threshold root- mean squared error. 

Chebyshev Polynomial Approximation Results 

 For the Chebyshev Polynomial approximation, Matlab was able to find a polynomial approximation that 

satisfies the threshold error. In fact, it was able to find more than one polynomial in the interval [-1,1]. Since we 

want a polynomial of minimum degree, we only get the three lowest, in terms of degree, polynomial 

representation. 

 The lowest degree polynomial representation is 

𝑃10 𝑡 =  −97.36𝑡10 + 54.93𝑖𝑡9 + 284.32𝑡8 

−145.35𝑖𝑡7 − 304.26𝑡6 + 133.73𝑖𝑡5 

142.08𝑡4 − 48.64𝑖𝑡3 − 25.73𝑡2 

5.28𝑖𝑡 + 0.87  .                                                            (14) 
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Its graph is 

 
Figure 2: Graph of 𝑃10(𝑡) with W(t) in circles 

and the corresponding root- mean- square error is 

𝐸𝑅𝑀𝑆 =
1

 𝑛
∥ 𝑊 𝑡 − 𝑃10 𝑡 ∥2= 0.0792, 

which is less than the threshold error 0.10. 

 The next lowest degree polynomial representation is 

𝑃11 𝑡 = −104.19𝑖𝑡11 − 72.21𝑡10 + 346.99𝑖𝑡9 
+220.32𝑡8 − 444.54𝑖𝑡7 − 246.96𝑡6 
+268.81𝑖𝑡5 + 120.97𝑡4 − 73.82𝑖𝑡3 
−22.97𝑡2 + 6.62𝑖𝑡 + 0.81 .                   (15) 

Its graph is 

 

Figure 3: Graph of 𝑃11(𝑡) with W(t) in circles 
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while its root- mean- squared error is 

𝐸𝑅𝑀𝑆 =
1

 𝑛
∥ 𝑊 𝑡 − 𝑃11 𝑡 ∥2= 0.0376, 

expectedly lower than 𝑃10 𝑡 .+ 

 Lastly, the third lowest degree polynomial representation is 

𝑃12 𝑡 = 100.6𝑡12 − 82.03𝑖𝑡11 − 378.5𝑡10 

+285.21𝑖𝑡9 + 571.23𝑡8 − 381.68𝑖𝑡7 

−433.14𝑡6 + 240.67𝑖𝑡5 + 165.93𝑡4 

−68.64𝑖𝑡3 − 26.99𝑡2 + 6.35𝑖𝑡 + 0.87.                     (16) 

Its graph is 

 

 

Figure 4: Graph of 𝑃12(𝑡) with W(t) in circles 

 Its root- mean- squared error is 

𝐸𝑅𝑀𝑆 =
1

 𝑛
∥ 𝑊 𝑡 − 𝑃12 𝑡 ∥2= 0.0163, 

much lower than 𝑃11 𝑡 and 𝑃10 𝑡 . 
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CONCLUSION 

The purpose of this paper was to find polynomial 

approximations to the Torre- Escaner wavelet with 

ideal root- mean- squared errors. We first used the 

Polynomial Least Squares (PLS) approximation 

scheme and the results showed that the only resulting 

representation (13) did not satisfy our threshold 𝐸𝑅𝑀𝑆 . 
This meant that PLS failed to provide a good 

polynomial approximation for (1). 

On the other hand, the Chebyshev Polynomial 

approximation scheme was able to provide good 

polynomial approximations for (1) at lower 

polynomial degrees. This is a validation of the “near-

minimax” nature of the Chebyshev Polynomial 

approximation.  Under this scheme, the lowest degree 

polynomial representation for the Torre – Escaner 

wavelet that satisfied the threshold 𝐸𝑅𝑀𝑆  was 

 

𝑃10 𝑡 =  −97.36𝑡10 + 54.93𝑖𝑡9 + 284.32𝑡8 
−145.35𝑖𝑡7 − 304.26𝑡6 + 133.73𝑖𝑡5 
142.08𝑡4 − 48.64𝑖𝑡3 − 25.73𝑡2 

    5.28𝑖𝑡 + 0.87. 

 

For future works, we would like to examine other 

polynomial approximation schemes such as the 

Legendre, Gegenbauer, Jacobi and other orthogonal 

polynomials whether they can provide better 

approximations than the Chebyshev scheme. 
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