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Abstract: Two different interpretations of algebra that differ in the ontological status assigned to variables are 

distinguished. Variables may either be viewed as meta-mathematical tools to express generality or as objects 
similar to numbers and other members of the mathematical ontology. Both interpretations are detailed and linked 

with the literature and the use of variables in computer programming. Furthermore, it is analyzed how these two 

conceptualizations lead to two different understandings of the process of change of values. Some evidence from 
algebra assessment on the understanding of change by students is given that that illustrate that the theory is useful 

in analyzing students work. 
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1. Introduction 

Variables in Algebra may be conceptualized and used in different ways (Küchemann 

1978, Usiskin 1988). In this paper we concentrate on the ontological status of variables 

and distinguish two possible conceptualizations that define variables either at the object or 

at the meta level. In the first case, variables are mathematical objects just like numbers or 

sets. In the second case they are part of the meta language that we use to talk about the 

mathematical objects, but they are, e.g. never elements of a set. This distinction is not only 

of academic interest. Different programming languages can be categorized into using one 

or the other conception of variable. Moreover, understanding the concept of change is 

influenced by the conception of variable used.  

This paper is mainly theoretical in nature: We expose a theory that describes the two 

conceptions MLA (meta level algebra) and OLA (object level algebra). will be defined. 

As the topic is quite unusual, the reader is first presented our view, and only afterwards a 

broad literature review is made. This has the advantage that the reader can judge our 

conceptions against ideas from the cited literature. Finally, we present some empirical 

observations that can be interpreted in the theoretical framework. 

2.  Variables 

Variables are not only used in algebra but exist in natural language as well (hence it is 

not too surprising that language and algebraic understanding correlate as found in 

MacGregor and Price (1999). Whenever we speak about generalities we use linguistic 

tools to refer to all objects of a certain set or to a specific unknown of these objects. E.g. 

in rules for games one often sys “The player who…has to…”. Here ‘player’ is a linguistic 

variable that can refer to any of the actual players. This example shows that variables may 
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almost be invisible. Variables here are linguistic tools. In algebra we may either take over 

this framework or we may alternatively consider variables to be objects under discourse. 

A more detailed look at variables as conceptualized in the literature will follow in a 

later section when the two kinds of algebra have been introduced. 

3. Variables at the Object- and Metal-language level 

In the mathematical theory of arithmetic, the basic set of objects is a set of numbers, 

usually the set of integer. True sentences of arithmetic are 2+3=5, 99-1=100-2, 5|45 or 

1<2. Although the objects of arithmetic are only numbers, any typical book on arithmetic 

is full of variables used to talk about numbers and assuming that they stand for numbers 

(e.g. stating that x+y=y+x). They come into play, when we wish to make general 

statements, e.g. when we want to be able to describe the whole theory by few general 

statements (axioms) from which all true statements can be deduced, or when we want to 

express general (deducible) facts, such as a|b˄b|c→a|c (and quantifiers may be used to fix 

the semantics of this). These variables are not members of the set (the numbers) under 

discourse but are part of the meta language we use to talk about numbers and arithmetic 

(see (Li 2010) for the distinction of meta and object language), they are just a linguistic 

trick for the sake of abstraction. The algebra of these variables is then the theory of logical 

statements about the domain of numbers. We refer to this view of algebra as the meta-

level algebra (MLA).   

This is the standard point of view taken in most mathematical works. It is based on 

mathematical logic where semantics is defined using interpretations (cf. Tourlakis 2003, 

p. 53; Mendelson 1997, p. 48). An interpretation of a set of formulae of predicate calculus 

is given by a set S (the domain of the interpretation) and an assignment that gives an 

element of S for every occurrence of an unbound variable in the formula, and functions 

and predicates over S for every function and predicate symbol in the formulae. After 

applying all these assignments, the formulae reduce to statements in the domain with no 

unbound variables remaining. A model is an interpretation that makes all formulae true. If 

a set of formulae is true for (respectively) every, some or none interpretations then it is 

called true (tautology), satisfyable, contradictory. Variables here again are meta-linguistic 

concepts and not part of the domain of e.g. integer numbers. This logical framework can 

be applied to any domain S, not just to sets of numbers, but this may blur the distinction to 

be made. So we’ll stick to S being a set of numbers for now and consider consequences of 

more general domains later on. 

From a didactical perspective this view correlates with the approach to algebra as 

generalized arithmetic (cf. Bednorz, Kieran & Lee, 1996). In this approach students 

typically investigate number sequences (defined e.g. by geometric configurations like 

figurate numbers). Variables then have the role to enable expressing the general form of a 

sequence of numbers. 

This completes the discussion of MLA. The other possible point of view is to 

consider variables as objects in the universe under discourse. This means that the variable 

itself is an object in the domain of the theory and can be manipulated by processes in the 
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theory. Then, for example, it is possible to refer with one variable to another variable 

(rather than to a number. Note according to the theory of ontological commitment one can 

reinterpret the predicate ‘exists’ as ‘is possible as the value of a variable’ – in this sense 

this position gives variables the status of ontological objects.). This point of view shall be 

called the object level algebra (OLA). 

In OLA the meaning of operational signs like + has then to be extended to take as 

operands not only numbers but also variables and results from operations, i.e. one is 

automatically led to consider the set of all expressions that can be build up from numbers 

and variables. The operators thus build up structures according to the well-known syntax 

of arithmetic, i.e. if e.g. x,y are objects than x+y is necessarily on object as well, namely an 

expression. The semantic of this extension is suggested but not fixed by the underlying 

arithmetic. This results in an important distinction between OLA and MLA when the 

justification of transformation laws is considered. In MLA x∙y=y∙x is merely the same 

statement as “multiplication is commutative for all objects from the domain, usually 

numbers”, especially x∙y is just a number. In OLA, x∙y is a compound object with – 

besides its structure – undefined properties. It can be manipulated in many ways. It has no 

semantics determined by some domain –one may define arbitrary rules for its 

manipulation– although one might wish to impose rules such that one is consistent when 

replacing variables by numbers from some domain, but one needs not. One has the 

freedom to impose e.g. x∙y=-y∙x. Thus, the view of OLA opens up the view e.g. for non-

commutative objects as used in group presentations, e.g. qp=pq+h as imposed in the 

operator structures of quantum mechanics. 

This, however does not mean, that MLA cannot deal with non-commutative objects 

or with letters as objects of calculations. This is merely the question of the domain 

considered in MLA and one may define non-commutative operations for this domain or 

include letters in this domain. This leads to the distinction between letters in the domain of 

the theory and meta-linguistic symbols that are used in formulas about this domain. This 

is also discussed very clearly in (Freudenthal 1973, p.338). So, in a sense, every OLA 

activity can be modeled in MLA by extending the domain to include the variable and 

expression objects one would like to have. However, the setup of MLA makes it necessary 

to even then distinguish between meta level variables and object level variables. We will 

explain this with an example. 

The case of polynomials 𝑍[𝑥]shall make this situation a bit more transparent. In OLA 

x is an object in its own right and + has to operate on it. With the assumption that an 

object x (of type variable) exists one must assume that even more objects exists such as 

x+1. Among these expressions certain of a special form can be identified and called 

polynomials. In standard mathematics one usually assumes that the symbol x in 𝑍[𝑥]is not 

meant to represent a number (and care is taken about this by explicitly considering the 

insertion morphism 𝜙𝑎: 𝑍[𝑥] → 𝑍, 𝑥 ↦ 𝑎 that replaces x by an element a from 𝑍). 
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The polynomial ring 𝑍[𝑥]can be handled as well in MLA. This means that one 

constructs (just like number sets are constructed) a domain for the theory. In the case of 

polynomials this may be e.g. the finite sequences of integers (and thus eliminating the 

need to use x explicitly). Nicaud, Bouhineau and Gélis, (2001) show how to construct 

further algebraic domains from this point of view. 

If MLA is carried out with a domain that contains symbols (variables; such as the set 

of polynomials) then nevertheless there is a clear distinction between the variables from 

meta language and the variables that are elements of the domain, e.g. over the domain 

𝑍[𝑥]one may state (x-1)|p where x is an object from the domain (thus 𝑥 − 1 ∈ 𝑍[𝑥]) and 

p is a meta-level variable referring to an element of 𝑍[𝑥]. In OLA this distinction is not 

made and this leads to the following shift necessary in the meaning of the equal sign: The 

interpretation of “Let in the following x=y…” in MLA is that either both variables are 

meta variables, then one simply assumes that in all interpretations to be considered they 

refer to the same objects, and if one is a meta variable and the other an object variable 

then this means that in all interpretations the meta variable (say x) refers to the object y. In 

OLA, on the other hand, this means that the objects x and y are to be identified in the 

sense that they can be freely exchanged. Thus, the equal sign – in this use – does not mean 

identity of referred objects but declares a certain use of objects. 

As made plausible by the above explanations all algebraic problems can be addressed 

both by MLA and OLA and hence it is merely a question of choosing the best thinking 

tool for a problem at hand. When a domain has been fixed, however, both modes of 

algebraic thinking can be clearly distinguished. Allowing a certain lack of rigor and letting 

the domain considered open we may obscure the distinction. The same is achieved by 

freely switching domains under consideration. Experts can thus navigate between the 

views perhaps without even noting that they differ. Learners however, as we suppose, 

usually stick to one domain (especially if they feel “at home” in it). Thus for them the 

distinction is sharp. 

4. Object- and Meta-language algebra from the perspectives of semiotics and 

computer science 

From a semiotic point of view (Filloy, Rojano & Puig, 2008), variables should be 

signs (labels) and refer to something and this something can be understood from both 

viewpoints but with a minor difference. If we take x to refer to 5, from the point of view 

of MLA x and 5 are identical, while for OLA they are not. In MLA we may say “x is 5” in 

OLA we may say “the value of x is 5”. The second formulation is according to our 

observations preferred by a vast majority of students. 

Consider the problem “x=5, what is 2+x”. Interpreted in MLA x is 5, so one really can 

read this as “what is 2+5?”. This is also the interpretation taken by most programming 

languages:  Consider a simple small (Basic) program like the following: 

 Input a : Input b : c=a+b : Print c 
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The variables occurring here are not objects themselves, but they stand for numbers. 

The compiler takes this and turns it into machine code that reads two numbers and outputs 

their sum. At runtime, the computer’s memory is only occupied by numbers. The 

variables have only been needed on the meta level of programming to describe the 

operation to be carried out. In fact, the names a,b,c don’t show up in the created 

executable program (unless they are included as debugging information). 

If “x=5, what is 2+x” is to be brought to computers on the OLA one must represent x 

as an object in the computer’s memory and 2+x is then to be represented as a compound 

data structure. The computer can then distinguish between the symbol x and the value of x 

and go from one to the other is a process usually called evaluation. This is the point of 

view that originated in the Lisp programing language and that has been taken over to 

computer algebra systems (CAS). So from this point of view we can summarize: MLA is 

the algebra used by ordinary programming languages, OLA is the algebra used by CAS. 

This has important consequences. The point of view of Frege (Drouhard & Teppo, 2004) 

that x²-x and x∙(x-1) have the same denotation (but a different sense) is aligned to MLA 

over 𝑍[𝑥]. For OLA as used in computer algebra systems these two expressions denote 

different objects and there are explicit conversion functions (expand, factor) in most CAS 

that are used to convert one to the other. Thus the meaning of the equal sign depends on 

the OLA-MLA distinction and is more complicated in the former form. This point is 

elaborated in more depth in (Oldenburg, 2015). 

5. Literature Review 

This section investigates which theories of algebra relate to the MLA-OLA distinction. 

The understanding and use of variables has been investigated in many studies. 

Küchemann (1978) identified six ways in which students use variables (he speaks of 

letters and reserves variable for the case of actually varying quantities). Three of them are 

assigned to Piaget’s formal operational thinking: letter as a specific unknown, as a 

generalized number and as a varying quantity. Although the use and the ontological status 

of variables are not independent, this classification is concerned with a different 

dimension of variables than the OLA-MLA distinction. Especially, despite the name, the 

use of letters as objects in Küchemann’s classification has nothing to do with OLA. 

Usiskin (1988) has classified variable use according to the conception of algebra used. 

He relates the approach of algebra as generalized arithmetic with the use of variables as 

patterns generalizers. While it is particularly convenient to view placeholders in the light 

of MLA one should note that the same can be achieved in OLA by allowing the variables 

to refer to some other objects. 

Euler’s classical textbook on algebra may be seen to reason mainly on the level of 

MLA. He repeatedly states that letters represent numbers (i.e. they are not objects that 

refer to numbers), e.g. on p.4. he writes “In Algebra, in order to generalize numbers, we 
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represent them by letters, as a, b, c, d, & e. Thus the expression a+b, signifies the sum of 

two numbers.” Interestingly, Euler links such expressions with the occurrence of new 

mathematical objects when he writes with regard to the fraction b=c/a (Euler 1810, p. 88) 

“Now, as it frequently happens that the number c cannot be really divided by the number 

a, while the letter b must however have a determinate value, another new kind of numbers 

presents itself, which are fractions.” We’ll come back to this in the section on reification. 

An even more radical understanding of MLA is presented by Linchevski (2001). She 

states (p. 143) “Operating on and with the unknown implies understanding that the letter 

is a number. It does not only symbolize a number, stand for a number, and it does not only 

tag/label/sign for an unknown number.” It is not clear what problems this interpretation 

solves that more modest forms of understanding may have. Moreover, it is not held by 

teacher students. In two university courses for teacher students we asked (questionnaire) 

taken together114 students to decide, which sentence represents better the way they think. 

The options were either “A variable is a number” or “A variable stands for a number”. 

100% opted for the latter version. The first version is incompatible with OLA, the second 

can be interpreted both in MLA and OLA. So we cannot not deduce what kind of algebra 

is preferred by students but we can state that the radical MLA version if Linchevski is 

rejected by students (which, of course, does not mean that it is a false or useless position). 

OLA, on the other hand, can also be detected in the history of algebra. Peacock (see 

the enlightening discussion in (Menghini, 1994) distinguishes between arithmetical 

algebra and symbolic algebra. (Chiappini, 2011) has characterized them in the following 

way: 

“According to Peacock, Arithmetical Algebra differs from Arithmetic for the use of 

letters that allow to operate on indeterminate quantities, namely on quantities whose value 

is not specified. In this algebra, however, the operations are those of Arithmetic, with the 

same natural limitations that they have in this knowledge domain, so that an expression 

like a-b has a sense only for b<a. With the Symbolical Algebra, the meaning of symbols 

becomes operational, namely defined according to the operation (and its properties). In 

Symbolical Algebra, symbols can represent any kind of quantity that is incorporated into 

them through specific operations.” 

It is clear that Peacocks arithmetical algebra is close to MLA and his symbolic algebra 

is close to OLA. However, both pairs of concepts are not identical. Peacock is mainly 

concerned with the problem of expressions that make sense in the domain only under 

certain conditions. His domain consists only of positive numbers, thus he states (Peacock 

2004, p. viii) that in arithmetical algebra “a-(a+b) (…) obviously express an impossible 

operation (..); but if a+b was replaced by a single symbol c, the expression a-c, though 

equally impossible with a-(a+b), would cease to express it.” This shows an entanglement 

between syntax and semantics that leads to restrictions on substitutions that are not 

present in MLA. In modern mathematical language one would simply find out that no 

model over a certain domain exists. 
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The resolution to this problem of Peacock may be either to invent new numbers (i.e. 

negative numbers) or to revise the definition of the operations. Peacock does the latter: 

“The assumption however of the independent existence of the signs + and – removes this 

limitation, and renders the performance of the operation denoted by – equally possible in 

all cases.” (p. ix). Thus these modified operators do not operate on numbers but on 

symbolic expression and they build up new structures just as we have postulated for OLA. 

The quote from Euler above has shown that he too links operations and the emergence of 

new objects. This will be considered in more detail in the next section. 

6.  Reification 

The theory of reification (Sfard, 1991) is useful for the understanding of algebra. We 

won’t review this well-known theory here. Instead, we point out that two different strands 

of reification are relevant to our subject. A graphical illustration is given below. 

 

Figure 1. An illustration for reification 

A calculation processes may be reified into unevaluated structures (i.e. objects on 

hold) which are then considered as expressions. This is the horizontal reification direction 

in the diagram above. On the lower row it means that the linguistic sign (with its 

associated processes of interpretation and manipulation) gets recognized as an object in 

the domain of investigation and is operated on according to the rules of formal calculus. 
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The top-down-direction may be viewed as a reification step as well. The process 

reified is that of “giving a number”. Names of numbers such as 8, VIII or ‘eight’ directly 

give a number. Using a letter to denote a known number is a more indirect version of this 

process. Next, letters can refer to any (possible varying) number of a certain domain and 

finally this reference process is completely reified and the letter becomes a symbol. The 

unevaluated operator + in the example and the symbol reified in this sense are the parts of 

the symbolic structure x+y. 

7.  Learning Trajectories 

For Peacock it is clear that symbolic algebra is more advanced than arithmetical 

algebra and this may indicate a natural learning trajectory. However, neither MLA nor 

OLA fit exactly Peacocks definitions and the question is not that easily answered. 

The approach to algebra as generalized arithmetic starts with MLA and OLA may 

follow later. Approaching algebra as in the tradition of Davydov, see e.g. Dougherty 

(2008), may lead directly to OLA with mastering arithmetic and MLA later on.   

In this situation we do not attribute higher value to either of these thinking modes but 

try to understand what consequences it has if one of the modes is dominant. 

One should consider the possibility that a preference for either OLA or MLA is linked 

with the learner’s thinking style according to Schwank (1999). According to this theory 

predicative thinking is thinking in terms of relations and judgments; functional thinking is 

thinking in terms of available actions and achievable effects. This it seems to be plausible 

that relational thinkers should show a preference for MLA while functional thinkers 

should prefer OLA. This questions have, however, not been considered in the present 

study. 

One may speculate that OLA has a special role in the creation of mathematics. We’ll 

take up the polynomial example above to explain this point: Assume that the domain of 

integer numbers has already been successfully constructed and one is using MLA style 

variables in working with it. When the interest in expressions like x²+1 shifts from the 

operations they describe to their structural properties, one may take these expressions as 

objects of thought, thus arriving on OLA. Later on, when the precise structure of these 

objects and their operations is clarified, one arrives at the ring of polynomials Z[x] which 

form then the domain of a new, higher MLA. 

As computer algebra systems operate in a way that is best described by OLA the 

instrumentation process of these systems is likely to shift the users understanding of 

algebra towards this mode as well. We therefore suspect that the further investigation of 

computer algebra use in learning may profit from the distinction described here. 

8.  Change 

The description of change in continuous processes is at the core of differential 

calculus. Discrete changes may even be more important as they may result from 

discretization of continuous problems and from the description of immanent discrete 
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processes. Nemirowski, Tierney and Ogonowski (1993) have investigated this in detail 

and found that even young children can gain a good understanding of processes involving 

change. They didn’t however investigate the algebraic formulation of change. 

Nie, Cai and Moyer (2009) have compared standard based and traditional curricula 

and found that the newer standard based approach does give more weight to the concept 

of variable and change. However, there is no detailed analysis on how the change of the 

value of a variable is to be understood. 

Usiskin (1988) has remarked that understanding the change of values is one of the 

most difficult aspects of algebra. His example is the question “What happens to the value 

of 1/x as x gets larger and larger?” Later on we will report on students’ responses to 

similar tasks which are, however, not functional but relational in nature. 

Success in calculus teaching is often limited according to the findings of (White & 

Mitchelmore 1996) by a symbolic centered view which prevents the students to see 

variables as related, changing quantities. White and Mitchelmore (1996) conclude 

“Detailed analysis revealed three main categories of error, in all of which variables are 

treated as symbols to be manipulated rather than as quantities to be related.” 

Quine (1960) has clearly described how change should be understood in mathematical 

logic, i.e. under our view of MLA: “As x increases, we are told, 2/x decreases. Since 

numbers never increase or decrease, such talk of variables must be taken metaphorically. 

The meaning of this example is of course simply the general statement that if x>y then 
2

𝑥
<

2

𝑦
 .” 

The distinction between a variable (which is an object in its own right) and the 

(current, if any) value of this variable is fundamental to understand how algebra deals 

with change. When we say that x increases, in OLA the variable (as an object) is 

unchanged but its current value is changed. In MLA a precise description is far more 

difficult: Either one doubles every variable (i.e. instead of x one considers x1 and x2 to 

refer to two values of the same quantity at different stages of the change process) or one 

investigates at least two interpretations (in the technical sense given above) or – for 

continuous change – families of interpretations that assign different values to the variable. 

In the established versions of OLA such as those in CAS the current value of a 

variable is not a part of the variable itself. The current value of say x is contained in a 

separate table of substitutions (frame of bindings or environment in computer language). 

The difference between OLA an MLA views may be made clearer by defining two 

possible understandings of a statement like “x increases by 1”: 

• Internal Change: The symbol x is unchanged but it refers to another number 

which is one more than it referred to before. 
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• External change: x itself is not changed. The change is an operation denoted 

exterior to x: x is replaced by x+1. 

Internal change can only be understood from an OLA point of view and external 

change is the natural way from the MLA point of view but can also be understood from 

OLA. But note that there is no wrong or right interpretation as there are situations that 

show advantages of both versions: 

• The derivative analyses how f(x) changes when one moves away from x by h, i.e. 

it considers the difference f(x+h)-f(x) as the numerator of the difference quotient. This 

shows an external representation of a change of x. 

• In physics all kinds of measurable quantities are denoted by variables, e.g. 

current I, voltage U, resistance R and relations between them like U=RI are considered. 

Physical laws stay the same over time even while the quantities change. Typical 

mathematical statements in physics thus reflect an OLA understanding. To reformulate 

this in MLA one would have to treat all physical quantities as functions (of time, and 

maybe position in space). This is certainly formally a perfect approach. For the learner, 

however, it has the disadvantage that functions are the most common object to deal with 

and operations on these functions are performed. Even in math courses the internal view is 

applied when graphing a function like y=x². Here one changes x to see how y behaves and 

this change is considered internal. 

Note that the difficulties in understanding change has led many computer scientists to 

recognize purely functional programming languages as a good tool both for teaching and 

for writing efficient and correct programs (e.g. Felleisen, Findler, Flatt & Krishnamurthi, 

2001). 

9.  Change in students' test answers 

We now look into students understanding of change processes and try to interpret them 

in the light of the distinction between OLA and MLA. The data was collected in a written 

test on algebra for 16 year old students that has been conducted by 329 high school 

students from various schools in the Frankfurt urban region. The schools varied much in 

socio-economic background of students and there were both low and high achieving 

schools in the set. For our present analysis we concentrate on the following test items: 

Item A 

a) Assume that a=b+3 always holds, what happens to a if b is increased by 2? 

b) Assume that a=b+3 always holds, what happens to b if a is increased by 2? 

c) Assume that a=2b+3 always holds, what happens to b if a is increased by 2? 

Item B 

a and b are positive numbers. Assume that 
1

𝑎
+

1

𝑏
= 2holds, how does b change 

when a increases? 
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The answers of students to these questions are striking as they show a much greater 

variety than expected. A number of wrong answers can be traced down to the following 

sources that are not related to the understanding of change: 

 Some students only gave a solution to item Aa but explicitly wrote that Ab and 

on have no solution or that b cannot change. This may be explained as the result of a 

dominating functional understanding: If the equation is given in the form of a 

functional equation y=f(x) as in item Aa the problem can be solved but for these 

students the concept of change is in clash with more general relationships. 

 Others stated in all items that the change leads to a false equation. 

 Some students explain that in item B a=b=1 is the only solution. This indicates 

that they limit variables to refer to natural numbers. 

 Some students seem to mistake addition and multiplication when they come up 

with expressions involving 2a. 

Among the wrong answers that do not fall into any of these cases there are 

approximately 10% of wrong answers that can be attributed to an external understanding 

of change. Typical answers have been: 

Aa: 

 a+2=b+5 

 a+2=(b+2)+3 

 a+2=b+2+3 a increases by 2 

 a+2=b+2+3    =   a+2=b+5 

Ab: 

 a+2=b+5 

 a+2=b+2+3 and then b must get greater as well 

 Then either b or 3 get larger by 2 or both get larger by 1. 

Ac: 

 a+2=2b+5 

 a gets larger by the same amount that b gets smaller, i.e. a+3=b-3 

Interestingly, as the last answer to Ab shows, some students even considered that 

numbers might change. Others explicitly explained the perceived impossibility of the 

change (“a number can’t change”). Another answer of this kind has been “Maybe b 
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increases by 2 or the other number (2+2, 3+2)“. Of course one may take this as speaking 

metaphorically to mean that the number is replaced by another number in the formula. 

Although not asked for, several students explicitly justified their internal 

understanding of change, e.g. in response to Aa: “a=b+3 the calculation stays the same, 

but for b another number is inserted” 

The answers listed above that indicate an external understanding of change were in 

originally considered to be wrong, as they indicate insufficient understanding of 

covariation. However, it turned out that these students scored better than the other 

students on the whole test. In fact, a t-test confirmed this difference to be significant 

(p=2,5%, effect size d=0.76, i.e. a strong effect). This may be explained by assuming that 

the external understanding of change indicated a thinking according to MLA and this is 

appropriate for most of algebra and in a sense typical for finished learning processes. 

MLA is also simpler in a sense because the laws from arithmetic carry over more directly 

to algebra, hence, one may speculate that it puts less load on the working memory when 

doing tasks where is adequate. 

However, there is also an apparent difficulty with MLA: As the semantics of MLA is 

given by interpretations, it seems plausible that students who hold a dominating MLA 

view are especially affected by the lack-of-closure obstacle (the inability to accept 

expressions containing free variables as valid answers). This was tested using the 

following item: “At the bakery I buy c croissants and r rolls. How many parts are bought 

altogether?” Only two students who showed an external understanding of change (and 

thus are supposed to hold an MLA view) answered this item correctly giving the open 

expression c+r. 

10.  Didactical conclusions 

As mentioned above, introducing algebra to describe number sequences (i.e. 

generalized arithmetic) can be seen as a common didactical pathway to MLA. Similarly, 

introducing variables as boxes that contain a certain number of smaller things (e.g. beans) 

is a pathway to OLA. Both approaches work but each has its own shortcomings. When 

working with real boxes one has to obey the additional rule that boxes labelled by the 

same letter have to contain the same number. Moreover, the process of substitution is not 

obvious: If x is substituted for y, does this mean that we put a box in a box? It seems that 

keeping the current value of x external to x and using a referential notation as x+5 is less 

confusing. Nevertheless, this approach has the advantage of starting at the level of 

tangible objects and thus seems to foster learning. 

We suppose that teaching algebra cannot be simplified by concentrating only on one 

mode, MLA or OLA. While formal mathematics requires only MLA it is much more 

convenient to interpret change processes in OLA and neglecting OLA may reduce the 

heuristic power of the algebraic language. Moreover, we argued that OLA has a special 

role in the creation of mathematics and it reflects the way computer algebra systems deal 

with algebra. Students may encounter obstacles if they tackle a question in one mode 

which is more suited for the other mode. 
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This paper thus identified the research desiderata to investigate how MLA and OLA 

can both be incorporated into the teaching of algebra. Moreover, it opens up the 

possibility to use this distinction in the explanation of students learning obstacles. 
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