Bioscience Discovery, 7(1):74-85, Jan - 2016

© RUT Printer and Publisher Print & Online, Open Access, Research Journal Available on http://jbsd.in

ISSN: 2229-3469 (Print); ISSN: 2231-024X (Online)

Research Article

In silico analysis of Progeria: A genetic disease and natural cardiovascular disorders preventive compounds

Shraddha Mulange^{1*}, Satish Kulkarni², Vaishali Wadekar² and L.H. Kamble¹

¹DST-FIST sponsored School of Life Sciences, S R T M University, Nanded ²Department of Biophysics, Government Institute of science, B A M University, Aurangabad. *E-mail: shradhha.mulange@gmail.com

Article Info

Abstract

Received: 10-10-2015, Revised: 19-12-2015, Accepted: 30-12-2015

Keywords: Docking, LMNA gene, Natural compounds, Progeria. extremely rare, severe, genetic condition wherein symptoms resembling aspects of aging are manifested at an early age. The basic objective of this study is how is it responsible for faster ageing than normal? The study of its bioinformatics aspect explaining where the mutation occurs in normal LMNA gene to form mutated Progerin. We explain its sequential and structural aspects in domain and motif. Structural visualization by Marker view software provides the linear structure of LMNA and mutated LMNA. We studied the properties and specificity of Lonafarnib (an edible drug available in market) against Progerin with Docking. Cardiovascular disorders are the major symptoms occurred in Progerin patients. Therefore we found 32 natural compounds with their sources having anti cardiovascular disorders activity. We checked its docking properties and ADMET properties. From this we came to conclude 11 most effective, edible, naturally occurring compounds for cardiovascular disorders in Progerin patients.

Progeria (also known as "Hutchinson-Gilford progeria syndrome"(HGPS) is an

INTRODUCTION

Hutchinson-Gilford progeria syndrome is a genetic condition that occurs as a new mutation and is not usually inherited, although there is a uniquely inheritable form (Merideth et al., 2008, Kudlow et al., 2007). As a child ages past infancy, additional conditions become apparent. Limited growth, alopecia, and a distinctive appearance (small face and jaw, pinched nose) are all characteristic of progeria. Later, the condition causes wrinkled skin, atherosclerosis, and cardiovascular problems (Raska I 2010, Eriksson et al., 2007). (HGPS) is a childhood disorder caused by a point mutation in position 1824 of the LMNA gene, replacing cytosine with thymine, creating an unusable form of the protein Lamin A. Lamin A is part of the building blocks of the nuclear envelope (Taimen et al., 2009). No treatments have been proven

effective. Most treatment focuses on reducing complications (such as cardiovascular disease) with heart bypass surgery or Growth hormone treatment has been attempted. The most serious aspect of the disease, however, and the cause of death in >90% of cases, is rapid, progressive arterial occlusive disease, with death from myocardial infarction or stroke occurring at an average age of 13 years (range, 8–21 years) (Sagelius *et al.*, 2008).So we tried to find the some natural compounds which can help to ameliorate the life span of progerian patients.

Laminopathies

Laminopathies are a group of rare genetic disorders caused by mutations in genes encoding proteins of the nuclear lamina (Worman and Bonne, 2007). They are included in the more generic term nuclear envelopathies that was coined in 2000 for diseases associated with defects of the nuclear envelope (Wilson and Foisner, 2010). Mutations causing progeria are defective in splicing LMNA mRNA, therefore producing abnormal lamin A protein, also known as Progerin (McClintock D et al., 2007). The mutations activate a cryptic splice site within exon 11 of the gene, thereby causing the deletion of the processing site on prelamin A. This results in an accumulation of progerin that is unable to mature into lamin A, leading to misshapen nuclei. Missplicing also leads to the complete or partial loss of exon 11 and results in a truncated prelamin A protein in the neonatal lethal tight skin contracture syndrome (Rodriguez and Eriksson, 2010). The two major proteins produced from this gene, lamin A and lamin C, are made in most of the body's cells. These proteins have a nearly identical sequence of protein building blocks (amino acids) (Schirmer and Foisner, 2007). In HGPS, the recognition site that the enzyme requires for cleavage of prelamin A to lamin A is mutated. Lamin A cannot be produced, and prelamin A builds up on the nuclear membrane, causing a characteristic nuclear blabbing. This results in the premature aging symptoms of progeria.

Hutchinson-Gilford progeria syndrome (HGPS):

Progeria caused by mutations in the LMNA gene A specific mutation in the LMNA gene has been found in most patients with Hutchinson-Gilford progeria syndrome. This mutation changes a single DNA building block (nucleotide) in the gene (Kudlow BA 2007). Specifically, the mutation replaces the nucleotide cytosine with the nucleotide thymine at position 1824 (written as C1824T). This mutation is also sometimes noted as Gly608Gly (G608G), which refers to the position in the lamin A protein affected by the mutation (Barthélémy et al., 2015). The C1824T mutation leads to an abnormal version of the lamin A protein called progerin, which is missing 50 amino acids near one end (Lopez-Mejia et al., 2011). The mutations responsible for this disorder result in an abnormal version of lamin A that cannot be processed correctly within the cell. When the altered protein is incorporated into the lamina, it can disrupt the shape of the nuclear envelope (Webster et al., 2009). Researchers are working to determine how these changes lead to the signs and symptoms of Hutchinson-Gilford progeria syndrome.

It is an extremely rare, severe, genetic condition wherein symptoms resembling aspects of aging are manifested at an early age (Burke and Stewart, 2014). Those born with progeria typically

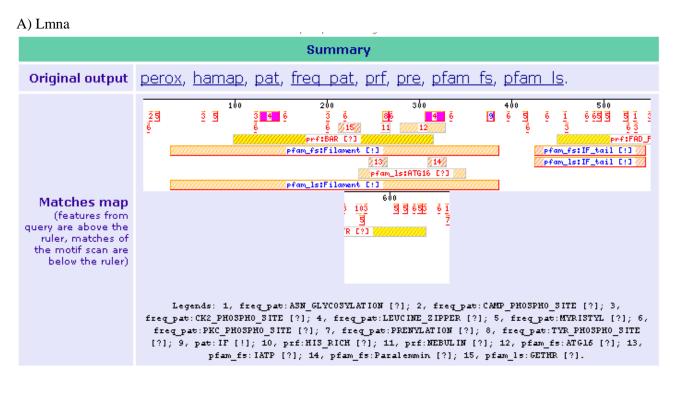
live about thirteen years, although many have been known to live into their late teens and early twenties and rare individuals may even reach their forties (Stratmann HG 2016). It is a genetic condition that occurs as a new mutation and is not usually inherited, although there is a uniquely inheritable form. In HGPS, the recognition site that the enzyme requires for cleavage of prelamin A to lamin A is mutated. Lamin A cannot be produced, and prelamin A builds up on the nuclear membrane, causing a characteristic nuclear blabbing. This results in the premature aging symptoms of progeria, although the mechanism connecting the misshapen nucleus to the symptoms is not known. A study that compared HGPS patient cells with the skin cells from LMNA young and elderly human subjects found similar defects in the HGPS (McClintock 2007). HGPS is related to aberrant processing of the nuclear envelope protein lamin A and accumulation of farnesylated prelamin A (Dechat et al., 2008). The farnesylated preprogerin protein is then incorporated into the nuclear membrane (Capell et al., 2005) However, the mutant, truncated protein lacks an important posttranslational processing signal required for cleavage of the preprogerin protein at the carboxyterminus (Reddy and Comai, 2012). This cleavage is required for the release of prelamin A from the nuclear membrane, thus allowing its incorporation into the nuclear lamina. As a result of the absence of lamin A in the nuclear lamina, the cell nuclei from HGPS patients display abnormal nuclear blabbing and aberrant nuclear shapes. Abnormal chromosome segregation and delayed onset and progression of mitosis have also been demonstrated.

Thus, our study aims to determine the point at which the mutation alters the LMNA gene to form Progerin. We was further interested in determination of structural aspects of mutated and non mutated LMNA. The binding specificity of lonafarnib to Progerin was described and some of the natural compounds against cardiovascular diseases were proven to take orally and comfortably fulfilling different Insilco analytical criteria.

MATERIALS AND METHODS

We got sequence of non mutated LMNA and mutated Progerin gene from genbank database. These genes were aligned using ClustalW multiple alignment tool. It is a widely used multiple sequence alignment computer program. The latest version is 2.0. This program is available from the

Bioscience Discovery, 7(1):74-85, Jan - 2016


ClustalW Homepage or European Bioinformatics Institute ftp server. The simultaneous alignment of many nucleotide or amino acid sequences is now an essential tool in molecular biology. Multiple alignments are used to find diagnostic Patterns to characterize protein families. Motif Scan was used to get the motif pattern in the protein sequences. Using Geneious we combine all the leading DNA and protein sequence analysis tools into one revolutionary software solution. We also used CLC bio protein work bench to create a software environment enabling users to make a large number of advanced protein sequence analyses, combined with smooth data management, and excellent graphical viewing and output options. For an interactive molecular graphics program we used Marker View software and displaying feasible docking modes of pairs of protein and DNA molecules we used Hex. Hex can also calculate protein-ligand docking, assuming the ligand is rigid, and it can superpose pairs of molecules using only knowledge of their 3D shapes. To determine the ADMET properties of chemical compounds we used ADME Tox from that we concluded how much compound is safe as a drug.

RESULTS AND DISCUSSION

A point mutation in LMNA gene can produce mutated LMNA called progerin. The motif results

taken from the Motif Scan gives the region where mutation occurs (Figure 1). The blank area shows of the Progerin deletion area Sequence (Supplementary table 1). We also studied the secondary structure of LMNA and Progerin by CLC-bio3. Comparative alpha helixes and beta sheets were shown in figure 2 where as annotation table of both sequences showed that progrein sequence has absence of 2 beta strands. 3D structure of both LMNA and Progerin was observed in Marker View which results that non mutated lmna is linear in structure where as mutation in LMNA gives rise to form a complex globular structure (Figure 3).

Currently lonafarnib is the only treatments available are used to lessen the strain of living with Progeria and are used on a patient-to patient basis. In lab tests FTIs have been able to reverse an abnormality in Progeria cells. In present study we dock this compound with the help of Hex Doc to check its specificity and binding affinity towards Progerin. We also checked the ADMET property of Lonafarnib which results that it is edible. After administration of lonafarnib a person may have various side effects. Considering this aspect we planned to go for natural compounds which can prevent the cardiovascular disorders occurring in progeria disease.

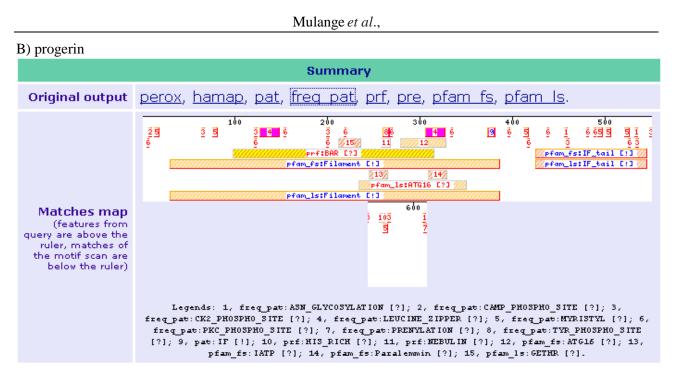


Figure 1: Motif Scan gives the region where mutation occurs. A- Is non mutated LMNA whereas B- is mutated Progerin.

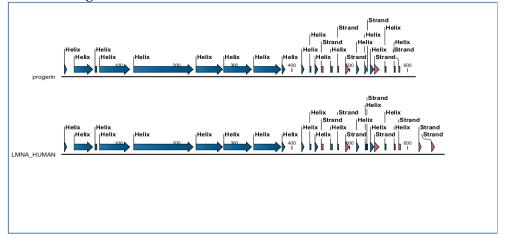
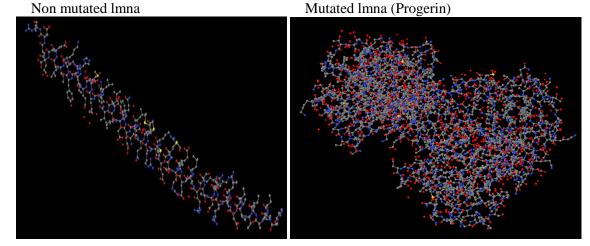



Figure 2: Secondary structures of progerin & Imna It shows the alpha helix & beta strands in the respective proteins. Screen shots of secondary structure prediction in CLC bio workbench.

http://jsrr.net

ISSN: 2249-7846 (Online)

Figure 3: Visualisation of non mutated lmna and mutated lmna (progerin) using Marker View software.

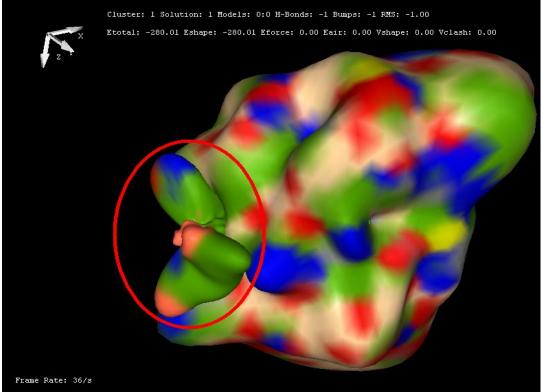


Figure 4: Docking of lonafarnib (Ligand) showed in red circle with Progerin

Supplementary table 1: Comparative analysis of non mutated LMNA and mutated Progerin. Blank space indicates where the mutation occurs.

lmna	progerin
>LMNA_HUMAN/456-459	>gi/456-459
motif=freq_pat:ASN_GLYCOSYLATION	motif=freq_pat:ASN_GLYCOSYLATION
NKSN	NKSN
>LMNA_HUMAN/532-535	>gi/532-535
motif=freq_pat:ASN_GLYCOSYLATION	motif=freq_pat:ASN_GLYCOSYLATION
NSTG	NSTG
>LMNA_HUMAN/660-663	>gi/610-613
motif=freq_pat:ASN_GLYCOSYLATION	motif=freq_pat:ASN_GLYCOSYLATION
NCSI	NCSI
>LMNA_HUMAN/7-10	>gi/7-10
motif=freq_pat:CAMP_PHOSPHO_SITE	motif=freq_pat:CAMP_PHOSPHO_SITE
RRAT	RRAT
>LMNA_HUMAN/5-7	>gi/5-7
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
SQR	SQR
>LMNA_HUMAN/121-123	>gi/121-123
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
ТКК	ТКК
>LMNA_HUMAN/153-155	>gi/153-155
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
SEK	SEK
>LMNA_HUMAN/199-201	>gi/199-201

http://jbsd.in

motif_free motiDIC DUOSDUO SITE	
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
ТМК	ТМК
>LMNA_HUMAN/218-220	>gi/218-220
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
TKR	TKR
>LMNA_HUMAN/268-270	>gi/268-270
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
SAK	SAK
>LMNA_HUMAN/333-335	>gi/333-335
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
TSR	TSR
>LMNA_HUMAN/395-397	>gi/395-397
	•
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
SQR	SQR
>LMNA_HUMAN/416-418	>gi/416-418
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
ТКК	ТКК
>LMNA_HUMAN/437-439	>gi/437-439
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
SGR	SGR
>LMNA_HUMAN/480-482	>gi/480-482
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
TYR	TYR
>LMNA HUMAN/488-490	>gi/488-490
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
>LMNA_HUMAN/525-527	>gi/525-527
motif=freq_pat:PKC_PHOSPHO_SITE	motif=freq_pat:PKC_PHOSPHO_SITE
SLR	SLR
SLK	
$>I MNA HIMAN/625_627$	
>LMNA_HUMAN/625-627	
motif=freq_pat:PKC_PHOSPHO_SITE	
motif=freq_pat:PKC_PHOSPHO_SITE SYR	
motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654	
motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654 motif=freq_pat:PKC_PHOSPHO_SITE	
motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654 motif=freq_pat:PKC_PHOSPHO_SITE SPR	>gi/64-67
motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654 motif=freq_pat:PKC_PHOSPHO_SITE SPR >LMNA_HUMAN/64-67	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE
motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654 motif=freq_pat:PKC_PHOSPHO_SITE SPR >LMNA_HUMAN/64-67 motif=freq_pat:CK2_PHOSPHO_SITE	>gi/64-67
motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654 motif=freq_pat:PKC_PHOSPHO_SITE SPR >LMNA_HUMAN/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE
motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654 motif=freq_pat:PKC_PHOSPHO_SITE SPR >LMNA_HUMAN/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >LMNA_HUMAN/121-124	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE
motif=freq_pat:PKC_PHOSPHO_SITESYR>LMNA_HUMAN/652-654motif=freq_pat:PKC_PHOSPHO_SITESPR>LMNA_HUMAN/64-67motif=freq_pat:CK2_PHOSPHO_SITETESE>LMNA_HUMAN/121-124motif=freq_pat:CK2_PHOSPHO_SITE	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124
motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654 motif=freq_pat:PKC_PHOSPHO_SITE SPR >LMNA_HUMAN/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >LMNA_HUMAN/121-124	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE
<pre>motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654 motif=freq_pat:PKC_PHOSPHO_SITE SPR >LMNA_HUMAN/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >LMNA_HUMAN/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >LMNA_HUMAN/199-202</pre>	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >gi/199-202
motif=freq_pat:PKC_PHOSPHO_SITESYR>LMNA_HUMAN/652-654motif=freq_pat:PKC_PHOSPHO_SITESPR>LMNA_HUMAN/64-67motif=freq_pat:CK2_PHOSPHO_SITETESE>LMNA_HUMAN/121-124motif=freq_pat:CK2_PHOSPHO_SITETKKE	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >gi/199-202 motif=freq_pat:CK2_PHOSPHO_SITE
<pre>motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654 motif=freq_pat:PKC_PHOSPHO_SITE SPR >LMNA_HUMAN/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >LMNA_HUMAN/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >LMNA_HUMAN/199-202</pre>	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >gi/199-202 motif=freq_pat:CK2_PHOSPHO_SITE TMKE
motif=freq_pat:PKC_PHOSPHO_SITESYR>LMNA_HUMAN/652-654motif=freq_pat:PKC_PHOSPHO_SITESPR>LMNA_HUMAN/64-67motif=freq_pat:CK2_PHOSPHO_SITETESE>LMNA_HUMAN/121-124motif=freq_pat:CK2_PHOSPHO_SITETKKE>LMNA_HUMAN/199-202motif=freq_pat:CK2_PHOSPHO_SITE	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >gi/199-202 motif=freq_pat:CK2_PHOSPHO_SITE TMKE >gi/458-461
<pre>motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654 motif=freq_pat:PKC_PHOSPHO_SITE SPR >LMNA_HUMAN/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >LMNA_HUMAN/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >LMNA_HUMAN/199-202 motif=freq_pat:CK2_PHOSPHO_SITE TMKE</pre>	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >gi/199-202 motif=freq_pat:CK2_PHOSPHO_SITE TMKE >gi/458-461 motif=freq_pat:CK2_PHOSPHO_SITE
<pre>motif=freq_pat:PKC_PHOSPHO_SITE SYR >LMNA_HUMAN/652-654 motif=freq_pat:PKC_PHOSPHO_SITE SPR >LMNA_HUMAN/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >LMNA_HUMAN/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >LMNA_HUMAN/199-202 motif=freq_pat:CK2_PHOSPHO_SITE TMKE >LMNA_HUMAN/458-461 motif=freq_pat:CK2_PHOSPHO_SITE</pre>	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >gi/199-202 motif=freq_pat:CK2_PHOSPHO_SITE TMKE >gi/458-461 motif=freq_pat:CK2_PHOSPHO_SITE SNED
motif=freq_pat:PKC_PHOSPHO_SITESYR>LMNA_HUMAN/652-654motif=freq_pat:PKC_PHOSPHO_SITESPR>LMNA_HUMAN/64-67motif=freq_pat:CK2_PHOSPHO_SITETESE>LMNA_HUMAN/121-124motif=freq_pat:CK2_PHOSPHO_SITETKKE>LMNA_HUMAN/199-202motif=freq_pat:CK2_PHOSPHO_SITETMKE>LMNA_HUMAN/458-461motif=freq_pat:CK2_PHOSPHO_SITESNED	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >gi/199-202 motif=freq_pat:CK2_PHOSPHO_SITE TMKE >gi/458-461 motif=freq_pat:CK2_PHOSPHO_SITE SNED >gi/533-536
motif=freq_pat:PKC_PHOSPHO_SITESYR>LMNA_HUMAN/652-654motif=freq_pat:PKC_PHOSPHO_SITESPR>LMNA_HUMAN/64-67motif=freq_pat:CK2_PHOSPHO_SITETESE>LMNA_HUMAN/121-124motif=freq_pat:CK2_PHOSPHO_SITETKKE>LMNA_HUMAN/199-202motif=freq_pat:CK2_PHOSPHO_SITETMKE>LMNA_HUMAN/458-461motif=freq_pat:CK2_PHOSPHO_SITESNED>LMNA_HUMAN/533-536	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >gi/199-202 motif=freq_pat:CK2_PHOSPHO_SITE TMKE >gi/458-461 motif=freq_pat:CK2_PHOSPHO_SITE SNED >gi/533-536 motif=freq_pat:CK2_PHOSPHO_SITE
motif=freq_pat:PKC_PHOSPHO_SITESYR>LMNA_HUMAN/652-654motif=freq_pat:PKC_PHOSPHO_SITESPR>LMNA_HUMAN/64-67motif=freq_pat:CK2_PHOSPHO_SITETESE>LMNA_HUMAN/121-124motif=freq_pat:CK2_PHOSPHO_SITETKKE>LMNA_HUMAN/199-202motif=freq_pat:CK2_PHOSPHO_SITETMKE>LMNA_HUMAN/199-202motif=freq_pat:CK2_PHOSPHO_SITESNED>LMNA_HUMAN/458-461motif=freq_pat:CK2_PHOSPHO_SITESNED>LMNA_HUMAN/533-536motif=freq_pat:CK2_PHOSPHO_SITE	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >gi/199-202 motif=freq_pat:CK2_PHOSPHO_SITE TMKE >gi/458-461 motif=freq_pat:CK2_PHOSPHO_SITE SNED >gi/533-536 motif=freq_pat:CK2_PHOSPHO_SITE STGE
motif=freq_pat:PKC_PHOSPHO_SITESYR>LMNA_HUMAN/652-654motif=freq_pat:PKC_PHOSPHO_SITESPR>LMNA_HUMAN/64-67motif=freq_pat:CK2_PHOSPHO_SITETESE>LMNA_HUMAN/121-124motif=freq_pat:CK2_PHOSPHO_SITETKKE>LMNA_HUMAN/199-202motif=freq_pat:CK2_PHOSPHO_SITETMKE>LMNA_HUMAN/458-461motif=freq_pat:CK2_PHOSPHO_SITESNED>LMNA_HUMAN/533-536	>gi/64-67 motif=freq_pat:CK2_PHOSPHO_SITE TESE >gi/121-124 motif=freq_pat:CK2_PHOSPHO_SITE TKKE >gi/199-202 motif=freq_pat:CK2_PHOSPHO_SITE TMKE >gi/458-461 motif=freq_pat:CK2_PHOSPHO_SITE SNED >gi/533-536 motif=freq_pat:CK2_PHOSPHO_SITE

CK2_PHOSPHO_SITE CK2_PHOSPHO_SITE CK2_PHOSPHO_SITE

http://jsrr.net

motif=freq_pat:CK2_PHOSPHO_SITE	TVVE
TVVE	>gi/572-575
>LMNA_HUMAN/572-575	motif=freq_pat:CK2_PHOSPHO_SITE
motif=freq_pat:CK2_PHOSPHO_SITE	SSGD
SSGD	
>LMNA_HUMAN/636-639	
motif=freq_pat:CK2_PHOSPHO_SITE	
SFGD	>gi/260-267
>LMNA_HUMAN/260-267	motif=freq_pat:TYR_PHOSPHO_SITE
motif=freq_pat:TYR_PHOSPHO_SITE	KKEIEKTY
KKEIEKTY	>gi/13-18 motif=freq_pat:MYRISTYL
>LMNA_HUMAN/13-18	
motif=freq_pat:MYRISTYL	GAQASS
GAQASS	- >gi/76-81 motif=freq_pat:MYRISTYL
>LMNA_HUMAN/76-81	
motif=freq_pat:MYRISTYL	GIKAAY
GIKAAY	>gi/412-417 motif=freq_pat:MYRISTYL
SIKAAT >LMNA_HUMAN/412-417	- GGSVTK
—	>gi/492-497 motif=freq_pat:MYRISTYL
motif=freq_pat:MYRISTYL	- GQVVTI
GGSVTK	>gi/501-506 motif=freq_pat:MYRISTYL
>LMNA_HUMAN/492-497	GAGATH
motif=freq_pat:MYRISTYL	>gi/521-526 motif=freq_pat:MYRISTYL
GQVVTI	GCGNSL
>LMNA_HUMAN/501-506	>gi/567-572 motif=freq_pat:MYRISTYL
motif=freq_pat:MYRISTYL	- GSHCSS
GAGATH	
>LMNA_HUMAN/521-526	
motif=freq_pat:MYRISTYL	
GCGNSL	
>LMNA_HUMAN/567-572	
motif=freq_pat:MYRISTYL	
GSHCSS	
>LMNA_HUMAN/604-609	
motif=freq_pat:MYRISTYL	
GAQVGG	motif=freq_pat:LEUCINE_ZIPPER
>LMNA_HUMAN/614-619	
motif=freq_pat:MYRISTYL	LIAAQARLKDLEALLNSKEAAL
GSSASS	- >gi/306-327
>LMNA HUMAN/630-635	motif=freq_pat:LEUCINE_ZIPPER
motif=freq_pat:MYRISTYL	LSQLQKQLAAKEAKLRDLEDSL
GGSGGG	>gi/611-614 motif=freq_pat:PRENYLATION
>LMNA HUMAN/127-148	
motif=freq_pat:LEUCINE_ZIPPER	
LIAAQARLKDLEALLNSKEAAL	
>LMNA HUMAN/306-327	
motif=freq_pat:LEUCINE_ZIPPER	
LSQLQKQLAAKEAKLRDLEDSL	
>LMNA_HUMAN/661-664	
_	
motif=freq_pat:PRENYLATION	
CSIM	

Supplementary table 2: The docking score table of selected 18 natural compound	ls with Progerin.
Supplementary tuble 21 The docking score tuble of selected to hatara compound	10 WIGHT LUGCIIII

SR No	plementary table 2: The d Agents	Pub Chem Ligand ID	Lead IT Docking Score	Docking Match	Lipoph ilic Score	Ambig Score	Clash	Rotational Angle
1	Allyl methyl thiosulfonate	6913086	-13.3609	-14.8397	-3.9760	-5.2213	3.8761	1.4000
2	Magnesium lactate	6536825	-13.1754	-18.6343	-1.8951	-3.6225	2.7765	2.8000
3	Salicylates	450660	-13.0279	-16.9388	-1.7745	-4.2590	3.1445	1.4000
4	γ-L-glutamyl-S-alkyl-L- cysteine	123938	-12.5291	-20.0430	- 4.34314	-6.4057	3.1510	9.8000
5	S-allylcysteine (SAC)	98280	-11.6864	-19.5532	-3.6129	-4.1827	3.2624	7.0000
6	Kaempferol	5280863	-11.3815	-13.7362	-4.5889	-5.7918	1.7355	5.6000
7	Isoflavones	25201420	-11.3772	-12.6041	-5.9131	-5.9501	3.4901	4.2000
8	Resveratrol	445154	-11.1511	-13.1147	-5.1044	-3.6870	2.1550	4.2000
9	Anthraquinones	25201450	-9.8032	-11.7712	-4.6837	-6.7862	3.8378	4.2000
10	Epicatechin	72276	-9.1247	-16.9805	-1.9922	-4.4702	0.5182	8.4000
11	Quercetin	5280343	-7.5688	-13.6693	-2.0791	-4.8969	0.6765	7.0000
12	α -Lipoic acid (1,2- dithiolane-3-pentanoic acid)	864	-7.1280	-10.9294	-4.9886	-5.5041	1.8941	7.0000
13	Allixin	86374	-4.7176	-10.8685	-6.0261	-6.0748	44517	8.4000
14	S-allylmercaptocysteine	25201750	-4.3408	-8.9747	-3.5953	-5.0567	0.8853	7.0000
15	Hydroxytyrosol (3,4- dihydroxyphenylethanol)	10844647	-4.0577	-8.9649	-3.6920	-4.8005	0.9998	7.0000
16	Hydroxytyrosol	82755	-3.7564	-13.5310	-1.3577	-2.3167	1.0490	7.0000
17	Sulforaphane	5350	-3.0942	-8.7473	-4.4493	-4.6787	2.3811	7.0000
18	1-propenyl allyl thiosulfonate	529388	-2.3764	-9.2798	-4.5352	-4.5173	3.5558	7.0000

We selected 32 compounds from natural sources with Molecular formula and Molecular weight which are satisfying Lipiniski rule. It is a rule of thumb to evaluate drug likeness or determine if a chemical compound with a certain pharmacological or biological activity has properties that would make it a likely orally active drug in humans. We found 32 natural compounds and checked its Lipinski Rule used for cardiovascular diseases listed in Table 1. Out of these 32 we selected 18 molecules as ligand to dock with Progerin to check its affinity of binding (supplementary Table 2). Out of 18, 11 ligands were showing good docking score in expected energy score (Emin and Emax) (Table 2).

The results of this project show that Mutations causing LMNA to form progeria. In splicing LMNA mRNA, therefore producing abnormal lamin A protein, also known as progerin. Hutchinson-Gilford progeria syndrome (HGPS) is caused by a mutant prelamin A that cannot be processed to lamin A (Reddy and Comai, 2012). The hallmark cellular abnormality in HGPS is misshapen nuclei (Worman and Bonne, 2009).

Table 1: Natural	compounds	satisfying	Lipinski Rule:
I dolo It I tatal di	compounds	Sectory man	Lipinoin ituitt

Sr No.	Natural compound	Natural compound Sources	Molecular Formula	Molecular weight	Lipinskey rule
1	Allicin (allyl 2- propenethiosulfinate or diallyl thiosulfinate)	aqueous garlic extract	C ₆ H ₁₀ OS ₂	162.273	Yes
2	Allyl methyl thiosulfonate	garlic homogenate	C ₁₄ H ₁₅ N ₃ O ₂ S	321.4178	Yes
3	1-propenyl allyl thiosulfonate	garlic homogenate	$C_6H_{14}O_2S_2$	182.30416	Yes
4	γ-L-glutamyl-S-alkyl-L- cysteine	garlic homogenate	$C_8H_{14}N_2O_5S$	250.27216	Yes
5	S-allylcysteine (SAC)	aged garlic extract	C ₆ H ₁₁ NO ₂ S	161.22204	Yes
6	S-allylmercaptocysteine	aged garlic extract	C ₅ H ₉ NOS ₂	163.26106	Yes
7	Allixin	aged garlic extract	C ₁₂ H ₁₈ O ₄	226.26892	Yes
8	Selenium	aged garlic extract	Se	78.96	No
9	β-carotene	Carotenoids (fruits and vegetables)	C ₄₀ H ₅₆	536.87264	No
10	Lycopene	Carotenoids (fruits and vegetables)	C ₄₀ H ₅₆	536.87264	No
11	Resveratrol	Wine	C ₁₄ H ₁₂ O ₃	228.24328	Yes
12	Hydroxytyrosol (3,4- dihydroxyphenylethanol)	Wine	$C_8H_{10}O_3$	157.181685	Yes
13	Isoflavones	Soybeans	C ₁₅ H ₉ O ₅	269.22896	Yes
14	Quercetin	Tea	C ₁₅ H ₁₀ O ₇	302.2357	Yes
15	Kaempferol	Tea	$C_{15}H_{10}O_{6}$	286.2363	Yes
16	Myrecitin	Tea	$C_{15}H_{10}O_8$	318.2351	No
17	Epigallocatechin gallate	Tea	$C_{22}H_{18}O_{11}$	458.37172	No
18	Hydroxytyrosol	Olive oil	$C_8H_{10}O_3$	154.1632	Yes
19	Epicatechin	Chocolate	$C_{15}H_{14}O_{6}$	290.26806	Yes
20	Salicylates	Aloe vera	C ₇ H ₆ O ₃	137.121474	Yes
21	Magnesium lactate	Aloe vera	C ₆ H ₁₀ MgO ₆	202.445	Yes
22	Acemannan	Aloe vera	C ₆₆ H ₁₀₀ NO ₄₉	1691.4775	No
23	Lupeol	Aloe vera	C ₃₀ H ₅₀ O	426.7174	No
24	Campestrol	Aloe vera	C ₂₈ H ₄₈ O	400.68012	No
25	b-sitosterol	Aloe vera	C ₂₉ H ₅₀ O	414.7067	No
26	g-linolenic acid	Aloe vera	$C_{18}H_{30}O_2$	278.4296	No
27	Anthraquinones	Aloe vera	$C_{15}H_9O_5$	269.22896	Yes
28	Policosanols	Sugarcane wax.	C ₂₈ H ₅₈ O	410.75952	No
29	Pterostilbene	Blueberries	$C_{16}H_{16}O_3$	256.29644	Yes
30	Oligomeric proanthocyanidin	Grape seed extract	$C_{31}H_{28}O_{12}$	592.54682	No
31	Lipoic acid (1,2-dithiolane-3- pentanoic acid)	Yeast	$C_8H_{14}O_2S_2$	206.32556	Yes
32	Sulforaphane	Broccoli	C ₆ H ₁₁ NOS ₂	177.28764	Yes

We hypothesized that the farnesylation of prelamin A is important for its targeting to the nuclear envelope in HGPS and that blocking farnesylation would ameliorate the nuclear shape abnormalities. The FTI (Lonafarnib) can help in blocking the progerin protein which is responsible for progeria. ADMET properties also shows that its safe drug for use. Generally progerian patient's death occurs due to cardiovascular problems in 90% cases so we have gathered some natural compounds which can help progerian patients in their cardiovascular problems (Coutinho et al., 2009). The few natural compounds exhibit the antioxidant properties which can help for their longer survival. Out of these 32 we selected 18 molecules as ligand to dock with Progerin to check its affinity of binding and we concluded that 11 compounds listed here can we used as natural

compounds for cardiovascular disorders occurred in Hutchinson-Gilford progeria syndrome. Laminopathies are a group of rare genetic disorders caused by mutations in genes encoding proteins of the nuclear lamina (Worman and Bonne, 2007). In future prospective we have to study the other laminopathies disorders Emery-Dreifuss muscular dystrophy because emerins role in muscular dystrophy is unknown moreover, recent research have found that the absence of functional emerin may decrease the infectivity of HIV-1. Thus, it is speculated that patients suffering from Emery-Dreifuss muscular dystrophy may have immunity to or show an irregular infection pattern to HIV-1.So want to study their interaction so from that we could get clue for making drug on AIDS.

Sr No	Natural Agent	Hex Score (Energy range)	Receptor
1.	Quercetin	Emin = -291.61,	1BAK
		Emax = -158.76	
2.	Salicylates	Emin = -215.69,	
		Emax = -134.74	
3.	Allyl methyl thiosulfonate	Emin = -214.21,	
		Emax = -108.88	
4.	Isoflavones	Emin = -203.51,	
		Emax = -103.31	
5.	Anthraquinones	Emin = -203.11,	
	-	Emax = -106.06	
6.	Kaempferol	Emin = -201.79,	
	-	Emax = -104.63	
7.	Magnesium lactate	Emin = -199.48,	
		Emax = -91.26	
8.	Epicatechin	Emin = -191.65,	
	-	Emax = -97.96	
9.	Sulforaphane	Emin = -189.13,	
	1	Emax = -97.99	
10.	Resveratrol	Emin = -183.81,	
		Emax = -94.70	
11.	Allixin	Emin = -183.50,	
		Emax = -96.57	

Table 2: the docking score table of 18 natura	l compounds using Hex Dock
---	----------------------------

REFERENCES

Barthélémy F, Navarro C, Fayek R, Da Silva N, Roll P, Sigaudy S, Oshima J, Bonne G, Papadopoulou-Legbelou K, Evangeliou AE, Spilioti M, 2015. Truncated prelamin A expression in HGPS-like patients: a transcriptional study. *European Journal of Human Genetics*. **Burke B, Stewart CL, 2014.** Functional architecture of the cell's nucleus in development, aging, and disease. *Curr Top Dev Biol.*, 109:1-52.

Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga R, Conneely KN, Gordon LB, Der CJ, Cox AD, Collins FS, 2005. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America., **102**(36):12879-84.

Coutinho HD, Falcão-Silva VS, Gonçalves GF, da Nóbrega RB, 2009. Molecular ageing in progeroid syndromes: Hutchinson-Gilford progeria syndrome as a model. *Immun Ageing.*, **6**(4).

Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD, 2008. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. *Genes & development.*, **22**(7):832-53.

Eriksson BM, Collins FS, Gordon LB, Brown WT, 2007. LMNA gene and its involvement in Hutchinson-Gilford Progeria Syndrome (HGPS) and arteriosclerosis. *United States patent US* 7,297-492.

Eriksson BMH, Collins FS, Gordon LB and Brown WT, 2007. U.S. Patent No. 7,297,492. Washington, DC: U.S. Patent and Trademark Office.

Kudlow BA, Kennedy BK, Monnat RJ, 2007. Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases. *Nature Reviews Molecular Cell Biology*, **8**(5):394-404.

Kudlow BA, Kennedy BK, and Monnat RJ, 2007. Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases. *Nature Reviews Molecular Cell Biology*, **8**(5), 394-404.

Lopez-Mejia IC, Vautrot V, De Toledo M, Behm-Ansmant I, Bourgeois CF, Navarro CL, Osorio FG, Freije JM, Stévenin J, De Sandre-Giovannoli A, Lopez-Otin C, 2011. A conserved splicing mechanism of the LMNA gene controls premature aging. *Human molecular genetics.*, 20(23):4540-55.

McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS, Djabali K, 2007. The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. *PloS one.*, **2**(12):e1269.

Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, and Brooks BP, 2008. Phenotype and course of Hutchinson–Gilford progeria syndrome. *New England Journal of Medicine*, *358*(6), 592-604.

Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, Brooks BP, 2008. Phenotype and course of Hutchinson–Gilford progeria syndrome. *New England Journal of Medicine*, **358**(6):592-604.

Raska I, 2010. Importance of molecular cell biology investigations in human medicine in the story of the Hutchinson-Gilford progeria syndrome. *Interdisciplinary toxicology*, **3**(3):89-93.

Raska I, 2010. Importance of molecular cell biology investigations in human medicine in the story of the Hutchinson-Gilford progeria syndrome. *Interdisciplinary toxicology, 3*(3), 89-93.

Reddy S, Comai L, 2012. Lamin A, farnesylation and aging. *Experimental cell research.*, **318**(1):1-7.

Rodriguez S, Eriksson M, 2010. Evidence for the involvement of lamins in aging. *Current aging science.*, **3**(2):81-9.

Sagelius H, Rosengardten Y, Hanif M, Erdos MR, Rozell B, Collins FS, Eriksson M, 2008. Targeted transgenic expression of the mutation causing Hutchinson-Gilford progeria syndrome leads to proliferative and degenerative epidermal disease. *Journal of cell science.*, **121**(7):969-78.

Schirmer EC, Foisner R, 2007. Proteins that associate with lamins: many faces, many functions. *Experimental cell research.*, **313**(10):2167-79.

Stratmann HG, 2016. The Biology of Immortality. *Medicine in Science Fiction.*, 281-320.

Taimen P, Pfleghaar K, Shimi T, Moller D, Ben-Harush K, Erdos MR, Adam SA, Herrmann H, Medalia O, Collins FS, Goldman AE, 2009. A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. *Proceedings of the National Academy of Sciences*, **106**(49):20788-93.

Taimen P, Pfleghaar K, Shimi T, Möller D, Ben-Harush, K, Erdos MR, and Goldman AE, 2009. A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. *Proceedings of the National Academy of Sciences*, **106**(49): 20788-20793.

Webster M, Witkin KL, Cohen-Fix O, 2009. Sizing up the nucleus: nuclear shape, size and nuclearenvelope assembly. *Journal of cell science.*, **122**(10):1477-86.

Wilson KL, Foisner R, 2010. Lamin-binding proteins. *Cold Spring Harbor perspectives in biology.*, 2(4):a000554.

Worman HJ, Bonne G, 2007. Laminopathies: a wide	basic cell biology to therapy. The Journal of clinical
spectrum of human diseases. Experimental cell	investigati., 119 (7):1825.
research., 313 (10):2121-33.	
Worman HJ, Fong LG, Muchir A, Young SG,	
2009. Laminopathies and the long strange trip from	
How to Cite this Article:	

Shraddha Mulange, Satish Kulkarni, Vaishali Wadekar and LH Kamble, 2016. Insilico analysis of Progeria: A genetic disease and natural cardiovascular disorders preventive compounds. *Bioscience Discovery*, 7(1):74-85.