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In this paper we introduce the concepts of a right weakly regular Ternary Γ-semiring and a fully prime right 
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INTRODUCTION 

The notion of ternary Γ-Semiring has been introduced by D. Madhusudhana Rao and M. Sajani Lavanya [5] in the 

year 2015. The notion of Strongly prime ring has been introduced by Handelman and Lawrence [3]. The notion of Ternary 

Semiring was introduced by T. K. Dutta and S. Kar [1] in the year 2003 as a natural generalization of ternary ring which 

was introduced by W. G. Lister [4] in 1971. The earlier works of D. Madhusudhana Rao and M. Sajani Lavanya on 

Ternary Γ-Semiring may be found in [5, 6, 7, 8]. In 2007, T. K. Dutta and M. L. Das [2] introduced and studied right 

strongly prime Semiring.  

2. PRELIMINARIES 

• Definition 2.1[5]: Let T and Γ be two additive commutative semigroups. T is said to be a Ternary �-Semiring if 

there exist a mapping from T ×Γ× T ×Γ× T to T which maps (1 2 3,  , ,  , x x xα β ) → [ ]1 2 3x x xα β satisfying the 

conditions: 

i) [[ a�b�c]γd�e] = [a�[b�c�d]�e] = [a�b�[c�d�e]] 

ii)[( a + b)�c�d] = [a�c�d] + [b�c�d]  

iii) [ aα (b + c)βd] = [a�b�d] + [a�c�d] 

iv) [a�b�(c + d)] = [a�b�c] + [a�b�d] for all a, b, c, d∈ T and �, �, �, �∈ Γ. 

Obviously, every ternary semiring T is a ternary Γ-semiring. Let T be a ternary semiring and Γ be a commutative 

ternary semigroup. Define a mapping T ×Γ× T ×Γ× T ⟶ T by a�b�c = abc for all a, b, c ∈ T and �, �∈Γ. Then T is a 

ternary Γ-semiring. 
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• Definition 2.2[5]: An element 0of a ternary Γ-semiring T is said to be an absorbing zero of T provided 0 + x = x 

= x + 0and 0�a�b = a�0βb = a�b�0 = 0∀ a, b, x ∈  T and �, �∈Γ. 

• Definition 2.3[5] : A ternary Γ-semiring T is said to be commutative ternary �-semiring provided aΓbΓc = 

bΓcΓa = cΓaΓb = bΓaΓc = cΓbΓa = aΓcΓbfor all a, b, c ∈  T. 

• Definition 2.4[5]: A non-empty subset S of a ternary Γ-semiring T is a ternary sub Γ-semiring if and only if S + 

S ⊆ S and SΓSΓS ⊆  S. 

• Definition 2.5[5]: A nonempty subset A of a ternary Γ-semiring T is a left ternary Γ-ideal of T if and only if A is 

additive sub semigroup of T and TΓTΓA ⊆  A. 

• Definition 2.6[5]: A nonempty subset of A of a ternary Γ-semiring T is a lateral ternary Γ-ideal of T if and only 

if A is additive sub semigroup of T and TΓAΓT ⊆  A. 

• Definition 2.7[5]: A nonempty subset A of a ternary Γ-semiring T is a right ternary Γ-ideal of T if and only if A 

is additive sub semigroup of T and AΓTΓT ⊆  A. 

• Definition 2.8[5]: A nonempty subset A of a ternary Γ-semiring T is a ternary Γ-ideal of T if and only if it is left 

ternary Γ-ideal, lateral ternary Γ-ideal and right ternary Γ-ideal of T. 

3. PRIME RIGHT TERNARY �-IDEAL  

• Definition 3.1: A right ternary Γ-ideal P of ternary Γ-semiring T is said to be a prime right ternary Γ-ideal 

provided AΓBΓC ⊆ P implies A ⊆ P or B ⊆ P or C ⊆ P, for any right ternary Γ-ideals A, B and C of T. 

• Theorem 3.2: A right ternary Γ-ideal P of ternary Γ-semiring T is a prime right ternary Γ-ideal of T if and 

only if aΓTΓb�T�c ⊆ P implies a ∈ P or b ∈ P or c ∈ P, for any a, b, c ∈ T.  

Proof: Suppose that P is a prime right ternary Γ-ideal of T. Let aΓTΓb�T�c ⊆ P, for a, b, c ∈ T. Then 

aΓTΓTΓbΓTΓTΓcΓTΓT ⊆ P ⇒ (aΓTΓT)Γ(bΓTΓT)Γ(cΓTΓT) ⊆ P. By aΓTΓT, bΓTΓT and cΓTΓT are right ternary Γ-

ideals of T and P is a prime right ternary Γ-ideal, aΓTΓT ⊆ P or bΓTΓT ⊆ P or cΓTΓT ⊆ P. Therefore, a ∈ P or b ∈ P or c 

∈ P.  

Conversely, assume the given statement holds. Let A, B and C be any three right ternary Γ-ideal of T such that 

AΓBΓC ⊆ P. If A ⊆ P, then the result holds. Suppose that A ⊈ P. Hence, there exists an element a ∈ A such that a ∉ P. For 

any b ∈ B, and c ∈ C, aΓTΓb�T�c = (aΓT)ΓbΓTΓc ⊆ AΓBΓC ⊆ P. Therefore, by the assumption b ∈ P or c ∈ P implies B 

⊆ P or C ⊆ P. Therefore, P is a prime right ternary Γ-ideal of T. 

• Definition 3.3: A right ternary Γ-ideal P of ternary �-semiring T is said to be a semiprime right ternary Γ-ideal 

Provided AΓAΓA ⊆ P implies A ⊆ P, for any right ternary Γ-ideal A of T.  

Obviously, every prime right ternary Γ-ideal in T is a semiprime right ternary Γ-ideal. 

• Theorem 3.4: A right ternary Γ-ideal P of a ternary �-semiring T is a semiprime right ternary Γ-ideal of T 

if and only if aΓTΓa�T�a ⊆ P implies a ∈ P, for any a ∈ T.  
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Proof: Suppose that P is a semiprime right ternary Γ-ideal of T. Let aΓTΓaΓTΓa ⊆ P, for  

a ∈ T. Then, aΓTΓTΓaΓTΓTΓaΓTΓT ⊆ P ⇒ (aΓTΓT)Γ(aΓTΓT)Γ(aΓTΓT) ⊆ P. By aΓTΓT is a right ternary Γ-ideal of 

ternary Γ-semiring T and P is a semiprime right ternary Γ-ideal, aΓTΓT ⊆ P. Then a ∈ P.  

Conversely, assume given statement holds. Let A be any right ternary Γ-ideal of ternary Γ-semiring T such that 

AΓAΓA ⊆ P. For any a ∈ A, aΓTΓaΓTΓa = (aΓT)Γ(aΓT)Γa ⊆ AΓAΓA ⊆ P. Therefore, by assumption a ∈ P implies A ⊆ 

P. Hence P is a semiprime right ternary Γ-ideal of T. 

Theorem 3.5: If P is a prime right ternary �-ideal of ternary �-semiring T, then (P : a) = {x ∈ T : aΓt�x ⊆ 

P} is also a prime right ternary �-ideal of T for any, a ∈ T\P, t ∈T.  

Proof. Let P be a prime right ternary Γ-ideal of ternary Γ-semiring T and (P : a) = { x ∈ T : aΓt�x ⊆ P }. Let x, y ∈ 

(P : a). Therefore, aΓtΓx ⊆ P, aΓtΓy ⊆ P. aΓtΓ(x + y) = aΓtΓx + aΓtΓy ⊆ P implies x + y ∈ (P : a). Let x ∈ (P : a), t, s ∈ T 

and α, � ∈ Γ. Then, aΓ(xαtβs) ⊆ aΓ(xΓtΓs) = (aΓxΓt)Γs = (aΓtΓx)Γs ⊆ P gives xαt ∈ (P : a). This shows (P : a) is a right 

ternary Γ-ideal. To show (P : a) is a prime right ternary Γ-ideal, let A, B and C be any three right ternary Γ-ideals of T such 

that AΓBΓC ⊆ (P : a). Then, aΓbΓ(AΓBΓC) ⊆ P. aΓbΓA, aΓbΓB and aΓbΓC are right ternary Γ-ideals of T. 

(aΓbΓA)Γ(aΓbΓB)Γ(aΓbΓC) ⊆ aΓbΓA ΓBΓC = aΓbΓ(AΓBΓC) ⊆ P. As P is a prime right ternary Γ-ideal of T, aΓb ⊆ΓA  

P or aΓbΓB or aΓb ⊆ ⊆ΓC  P. Therefore, A  (P : a) or B ⊆ (P : a) or C ⊆ (P : a), which shows that (P : a) is a prime right 

ternary Γ-ideal of T. 

Lemma 3.6: Every prime right ternary �-ideal A of a ternary �-semiring T is Semiprime right ternary �-

ideal of T. 

Proof: Suppose that A is a prime right ternary Γ-ideal of a ternary Γ-semiring T. Let X be a right ternary Γ-ideal 

of T such that XΓXΓX ⊆ A. Since A is prime, X ⊆ A. Hence A is Semiprime right ternary �-ideal of T. 

The following example will show that there exist semi-prime ternary �-ideal that are not prime ternary �-ideal. 

Example 3.7: A set Z+ of non-negative integers and Z+ = Γ is ternary Γ-semiring.  

Let < 6 > denote the ternary Γ-ideal generated by 6 ∈ Z+ and P = < 12 > is a ternary Γ-ideal generated by 12 ∈ Z+ 

For 1 ∈Z+ it follows that < 6 > = {6αn : n ∈ Z+, � ∈ Γ}.  

Since 2 ∉ < 6 >, 3 ∉ < 6 > and 2 .4.2.5.3 = 240 ∈ < 6 >. It is clear that < 6 > is not prime.  

The only prime ternary Γ-ideals in Z+ that contains < 6 > are < 2 >, < 3 > and {0} ∪ {x ∈ Z+ : x > 1}. Since < 2 > 

∩ < 3 > ∩ {x ∈ Z+ : x > 1} ⊆ < 6 >. It follows that < 6 > = √ < 6 >. Therefore < 6 > is semi-prime. 

Definition 3.8: A right ternary Γ-ideal P of T is said to be an irreducible right ternary Γ-ideal provided A∩B⋂C 

= P implies A = P or B = P or C = P, for any right ternary Γ-ideals A, B and C of T.  

Definition 3.9: A right ternary Γ-ideal P of T is said to be a strongly irreducible right ternary Γ-ideal if A∩B⋂C 

⊆ P implies A ⊆ P or B ⊆ P or C ⊆ P, for any right ternary Γ-ideals A, B and C of T. 

 The necessary condition for a right ternary Γ-ideal to be prime is given in the following theorem. 

Theorem 3.10: Every semiprime and strongly irreducible right ternary Γ-ideal is a prime right ternary Γ-
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ideal of ternary Γ-semiring T. 

Proof: Let P be a strongly irreducible and a semiprime right ternary Γ-ideal of ternary Γ-semiring T. For any right 

ternary Γ-ideals A, B and C of T, (AΓBΓC) ⊆ P. A∩B⋂C is a right ternary Γ-ideal of T. Hence (A∩B⋂C)Γ(A∩B⋂C) ⊆ 

A∩B⋂C ⊆ P. By P is a semiprime right ternary Γ-ideal, A∩B⋂C ⊆ P. Therefore, A ⊆ P or B ⊆ P or C ⊆ P, since P is a 

strongly irreducible right ternary Γ-ideal. Thus P is a prime right ternary Γ-ideal of T. 

Definition 3.11 A proper ternary Γ-ideal M of ternary Γ-semiring T is said to be a maximal ternary Γ-ideal 

provided there does not exist any other proper ternary Γ-ideal of T containing M properly. 

Theorem 3.12: Any maximal right ternary Γ-ideal of ternary Γ-semiring T is a prime right ternary Γ-ideal. 

Proof: Let M be any maximal ternary Γ-ideal of T. To show that M is a prime let aΓTΓbΓC ⊆ M. Suppose that a 

∉ M. aΓTΓT is a right ternary Γ-ideal of T which contains an element a. By M is a maximal right ternary Γ-ideal, M + 

aΓTΓT = T. As 1 ∈ S, 1 i i i i
i

m a x yα β= +∑ . Then, 1αb�c = mαbβc + ( i i i i
i

a x yα β∑ )αbβc ⊆ M + aΓTΓbΓc ⊆ M. 

Therefore, b, c ∈ M. This shows that M is a prime ternary Γ-ideal. 

Theorem 3.13: If R is a right ternary Γ-ideal of ternary Γ-semiring T and a is a nonzero element of T such 

that a ∉ R, then there exists an irreducible right ternary Γ-ideal P of T such that R ⊆ P and a ∉ P. 

Proof: Let B be the family of all right ternary Γ-ideals of S containing I and not containing an element a. Then B 

is nonempty as R ∈ B. This family of all right ternary Γ-ideals of T forms a partially ordered set under the inclusion of sets. 

Hence, by Zorn’s lemma there exists a maximal right ternary Γ-ideals P in B. Therefore, R ⊆ P and a ∉ P. Now, to show 

that P is an irreducible right ternary Γ-ideal of T let A, B and C be any three right ternary Γ-ideals of T such that A∩B⋂C = 

P. Suppose that A, B and C are contained in P properly. Since P is a maximal right ternary Γ-ideal in B, we get a ∈ A, a ∈ 

B and a ∈ C. Therefore, a ∈ A∩B⋂C = P which is an absurd. Thus, either A = P or B = P or C = P. Therefore, P is an 

irreducible right ternary Γ-ideal of T. 

Theorem 3.14: Any proper right Γ-ideal of T is the intersection of irreducible right Γ-ideal of T which 

contain it.  

Proof. Let R be any proper ternary Γ-ideal of T and {XI/I ∈ ∆}be a family of irreducible right ternary Γ-ideals of 

T which contain R, where ∆ denotes the indexed set. Then clearly R ⊆∩I XI. To show that ∩IX I ⊆ R. Suppose that ∩IX I ⊂ 

R. Therefore, there is an element a ∈∩IX I such that a ∉ R. Then by theorem 3.13, there exists an irreducible ternary Γ-ideal 

P such that R ⊆ P and a ∉ P. This establishes the existence of irreducible right ternary Γ-ideal P such that a ∉ P and R ⊆ P. 

Therefore, a ∉ ∩IX I for every a ∉ R. Hence, by the contrapositive method ∩IX I ⊆ R. Therefore ∩IX I = R. 

4. RIGHT WEAKLY REGULAR TERNARY Γ-SEMIRING 

Definition 4.1: A ternary Γ-semiring T is said to be right weakly regular if a ∈ (aΓT�T)�(aΓT�T) Γ(aΓT�T), for 

any a ∈ T. 

 In the following theorems we characterize for a right weakly regular ternary Γ-semiring. 

Theorem 4.2: In the ternary Γ-semiring T, the following statements are equivalent. 
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(1) T is right weakly regular.  

(2) RΓRΓR = R, for each right ternary Γ-ideal R of T.  

(3) R∩I = RΓI�I, for any right ternary Γ-ideal R and ternary Γ-ideal I of T.  

Proof: (1) ⇒ (2) Suppose that T is right weakly regular.  

For any right ternary Γ-ideal R of T, RΓRΓR ⊆ RΓTΓT ⊆ R. 

Conversely, let a ∈ R. As T is right weakly regular, a ∈ (aΓT�T)�(aΓT�T)Γ(aΓT�T).  

Then a ∈ (aΓT�T)�(aΓT�T)Γ(aΓT�T) ⊆ (RΓTΓT)Γ(RΓTΓT)Γ(RΓTΓT) ⊆ RΓRΓR. 

Thus, RΓRΓR = R, for each right ternary Γ-ideal R of T.  

(2) ⇒ (1) Suppose that RΓRΓR = R, for each right ternary Γ-ideal R of T. For any a ∈ T, a ∈ aΓT�T and aΓT�T is 

a right ternary Γ-ideal of T.  

Therefore, a ∈ (aΓT�T)�(aΓT�T)Γ(aΓT�T), which shows that T is right weakly regular.  

(2) ⇒ (3) Let R be a right ternary Γ-ideal and I be a ternary Γ-ideal of T. Then R∩I⋂I is a right ternary Γ-ideal of 

T. By assumption (R∩I)Γ(R∩I)⋂( R∩I) ⊆ RΓIΓI.  

Clearly, RΓIΓI ⊆ R and RΓIΓI ⊆ I. Therefore, RΓIΓI ⊆ R∩I. Thus we get R∩I = RΓIΓI.  

(3) ⇒ (2) Let R be a right ternary Γ-ideal of T and (R) be a ternary Γ-ideal generated by R. Then we write (R) = 

TΓTΓRΓTΓT. By assumption R∩(R)⋂(R) = RΓ(R) Γ(R).  

Then, R = RΓ(TΓTΓRΓTΓT)Γ(TΓTΓRΓTΓT) = (RΓTΓT)Γ(RΓTΓTΓTΓT)Γ(RΓTΓT)  

              = (RΓTΓT)Γ(RΓTΓT)Γ(RΓTΓT) ⊆ RΓRΓR = R. Therefore, RΓRΓR = R. 

Theorem 4.3: A ternary Γ-semiring T is right weakly regular if and only if every right ternary Γ-ideal of T 

is semiprime. 

Proof: Suppose that T is right weakly regular. Let R be a right ternary Γ-ideal of T such that AΓAΓA ⊆ R, for any 

right ternary Γ-ideal A of T. A = AΓAΓA as T is right weakly regular. Therefore, A ⊆ R. Hence R is a semiprime right 

ternary Γ-ideal of T.  

Conversely, suppose that every right ternary Γ-ideal of T is semiprime. Let R be right ternary Γ-ideal of T. 

RΓRΓR is also a right ternary Γ-ideal of T. By assumption RΓRΓR is a semiprime right ternary Γ-ideal of T. RΓRΓR ⊆ 

RΓRΓR implies R ⊆ RΓRΓR. Therefore, RΓRΓR = R. Hence, T is right weakly regular. 

Theorem 4.4: If ternary Γ-semiring T is right weakly regular, then a ternary Γ-ideal P of T is prime if and 

only if P is irreducible. 

Proof: Let T be a right weakly regular ternary Γ-semiring and P be a ternary Γ-ideal of T. If P is a prime ternary 

Γ-ideal of T, then clearly P is an irreducible ternary Γ-ideal. Suppose that P is an irreducible ternary Γ-ideal of T.  To show 

P is a prime ternary Γ-ideal, let A, B and C be any three ternary Γ-ideals of T such that AΓBΓC ⊆ P.  Then, by Theorem 
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4.2, we have A∩B⋂C ⊆ P. Therefore, (A∩B⋂C)+P = P. But LT lattice of all ternary Γ-ideals of T being distributive (A + 

P)∩(B + P)⋂(A + C) = P.  As P is an irreducible ternary Γ-ideal, A+P = P or B+P = P or A + C = P.  Then A ⊆ P or B ⊆ P 

or C ⊆ P. Therefore, P is a prime ternary Γ-ideal of T. 

 Now we define a fully prime right ternary Γ-semiring and a fully semiprime right ternary Γ-semiring. 

Definition 4.5: A ternary Γ-semiring T is said to be a fully prime right ternary Γ-semiring provided all right 

ternary Γ-ideals of T are prime right ternary Γ-ideals. 

Definition 4.6: A ternary Γ-semiring T is said to be a fully semiprime right ternary Γ-semiring if all right ternary 

Γ-ideals of T are semiprime right ternary Γ-ideals. 

The relation between a fully prime right ternary Γ-semiring and a right weakly regular ternary Γ-semiring is 

furnished in the following theorems. 

Theorem 4.7: If a ternary Γ-semiring T is a fully prime right ternary Γ-semiring, then T is right weakly 

regular and the set of ternary Γ-ideals of T is totally ordered. 

Proof: Let T be a fully prime right ternary Γ-semiring. Therefore, every right ternary Γ-ideal of T is a prime right 

ternary Γ-ideal. But every prime right ternary Γ-ideal is a semiprime right ternary Γ-ideal.  Hence, by theorem 4.3, T is 

right weakly regular. Let A, B and C be any three ternary Γ-ideals of T. Then A∩B⋂C is a right ternary Γ-ideal of T. By 

hypothesis A∩B⋂C is a prime right ternary Γ-ideal of T. AΓBΓC ⊆ A∩B⋂C implies A ⊆ A∩B⋂C or B ⊆ A∩B⋂C or C 

⊆ A∩B⋂C. Therefore, A∩B⋂C = A or A∩B⋂C = B or A∩B⋂C = C. Thus we get either A ⊆ B, C or B ⊆ A, C or C ⊆ A, 

B. Hence, the set of ternary Γ-ideals of T is totally ordered. 

Theorem 4.8: If a ternary Γ-semiring T is right weakly regular and the set of ternary Γ-ideals of T is totally 

ordered, then T is a fully prime right ternary Γ-semiring. 

Proof: Let T be a right weakly regular ternary Γ-semiring and the set of ternary Γ-ideals of T is totally ordered. To 

show that T is a fully prime right ternary Γ-semiring, let P be any right ternary Γ-ideal of T. To prove P is a prime right 

ternary Γ-ideal of T, let A, B and C be any three ternary Γ-ideals of T such that AΓBΓC ⊆ P.  By assumption, either A ⊆ B, 

C or B ⊆ A, C or C ⊆ A, B and AΓAΓA = A, BΓBΓB = B and CΓCΓC = C. We consider A ⊆ B, C. Then, A = AΓAΓA ⊆ 

AΓBΓC ⊆ P. Therefore, P is a prime right ternary Γ-ideal of T. Hence, T is a fully prime right ternary Γ-semiring. 

Definition 4.9: An element a of a ternary Γ-semiring. T is said to be regular if there exist x, y ∈ T and α, β, γ, δ ∈ 

Γ such that a�x�a�y�a = a. 

Definition 4,10: A ternary Γ-semigroup T is said to be regular ternary �-semiring provided every element is 

regular. 

Note 4.11: A ternary Γ-semiring is said to be regular if a ∈ aΓTΓaΓTΓa, for any a ∈ T. 

Note 4.12: In general, the family of regular ternary Γ-semirings forms a proper subclass of the family of right 

weakly regular ternary Γ-semirings. But if T is a commutative ternary Γ-semiring, then T is regular ternary Γ-semiring if 

and only if T is right weakly regular ternary Γ-semiring. 
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Theorem 4.13: If T is a commutative ternary Γ-semiring, then T is regular if and only if T is right weakly 

regular. 

Proof: Let T be a commutative ternary Γ-semiring. Suppose that T is a right weakly regular ternary Γ-semiring. 

Therefore, for any a ∈ T, a ∈ (aΓT�T)�(aΓT�T) Γ(aΓT�T).  

a ∈ (aΓT�T)�(aΓT�T) Γ(aΓT�T) ⊆ aΓTΓaΓTΓa. Therefore, T is a regular ternary Γ-semiring. Conversely, suppose T is a 

regular ternary Γ-semiring.  Let a ∈ T. Hence, a ∈ aΓTΓaΓTΓa. Then, a ∈ aΓTΓaΓTΓa ⊆ (aΓT�T)�(aΓT�T) Γ(aΓT�T). 

This shows that T is a right weakly regular ternary Γ-semiring. 

Theorem 4.14: Each ternary Γ-ideal of a right weakly regular ternary Γ-semiring T is a right weakly 

regular (as a ternary Γ-semiring). 

Proof: Let R be any ternary Γ-ideal of a right weakly regular ternary Γ-semiring T. Hence R itself is a ternary sub-

Γ-semiring of T.  For any element a ∈ R, aΓRΓR is a right ternary Γ-ideal of T. T is a right weakly regular ternary Γ-

semiring implies a ∈ (aΓT�T)�(aΓT�T) Γ(aΓT�T) and (aΓR�R)�(aΓR�R)Γ(aΓR�R) = aΓR�R.  Hence we have, a ∈ 

(aΓT�T)�(aΓT�T)Γ(aΓT�T) = aΓ(T�T�aΓT�T)Γ(aΓT�T) ⊆ aΓ(TΓRΓTΓR) ⊆ aΓR�R = (aΓR�R)�(aΓR�R)Γ(aΓR�R). 

Therefore, a ∈ (aΓR�R)�(aΓR�R)Γ(aΓR�R) implies R is itself a right weakly regular ternary Γ-semiring. 

Bi-ternary Γ-ideals of a ternary Γ-semiring are defined by Sajani Lavanya, Madhusudhana Rao and Syam Julius 

Rajendra in [7] as follows: 

Definition 4.15: A ternary Γ-subsemiring B of a ternary Γ-semiring T is called a bi-ternary �-ideal of T if 

BΓTΓBΓTB⊆B. 

Theorem 4.16: T is right weakly regular if and only if B∩I⋂I ⊆ BΓI�I, for any bi-ideal B and an ideal I of 

T. 

Proof: Suppose that T is a right weakly regular ternary Γ-semiring.  Let B be a bi-ternary Γ-ideal and I be a 

ternary Γ-ideal of T. Let a ∈ B∩I⋂I. Therefore, a ∈ (aΓT�T)�(aΓT�T) Γ(aΓT�T), since T is a right weakly regular. Then 

a ∈ (aΓT�T)�(aΓT�T) Γ(aΓT�T) ⊆ (aΓT�T)�(aΓT�T)Γ(aΓT�T)ΓTΓT ⊆ (BΓTΓBΓTΓB)Γ(TΓIΓTΓTΓTΓI) ⊆ BΓIΓI. 

Therefore, B∩I⋂I ⊆ BΓI�I.  

Conversely, suppose that B∩I⋂I ⊆ BΓIΓI, for any bi- ternary Γ-ideal B and a ternary Γ-ideal I of T. Let R be a 

right ternary Γ-ideal of T. Then R itself a bi- ternary Γ-ideal of T. By assumption R = RΓ(TΓTΓRΓTΓT)Γ(TΓTΓRΓTΓT) = 

(RΓTΓT)Γ(RΓTΓTΓTΓT)Γ(RΓTΓT)  

 = (RΓTΓT)Γ(RΓTΓT)Γ(RΓTΓT) ⊆ RΓRΓR = R. Therefore, R = RΓRΓR. Then by Theorem 4.2, T is a right 

weakly regular ternary Γ-semiring. 

Theorem 4.17: A ternary Γ-semiring T is right weakly regular if and only if B∩I∩R ⊆ BΓIΓR, for any bi-

ternary �-ideal B, a ternary �-ideal I and a right ternary �-ideal R of T. 

Proof: Suppose that T is a right weakly regular ternary Γ-semiring. Let B be a bi-ternary Γ-ideal, I be a ternary Γ-

ideal and R be a right ternary Γ-ideal of T.  Let a ∈ B ∩I ∩R. Therefore, a ∈ (aΓT�T)�(aΓT�T) Γ(aΓT�T), since T is a 

right weakly regular.  
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Then a ∈ (aΓT�T)�(aΓT�T)Γ(aΓT�T) ⊆ (aΓT�T)�(aΓT�T)Γ(aΓT�T)ΓT�T  

            ⊆ BΓ(TΓTΓIΓTΓT)Γ(RΓTΓT) ⊆ BΓIΓR. Therefore, B ∩ I ∩ R ⊆ BΓIΓR.  

Conversely, suppose B ∩ I ∩ R ⊆ BΓIΓR, for any bi-ternary Γ-ideal B and a ternary Γ-ideal I and a right ternary 

Γ-ideal R of T.  For a right ternary Γ-ideal R of T, R itself being a bi- ternary Γ-ideal and T itself is being a ternary Γ-ideal 

of T. By assumption R∩T ∩R ⊆ RΓTΓR = (RΓT)ΓR ⊆ RΓRΓR. Therefore, R ⊆ RΓRΓR. Therefore, R = RΓRΓR. Then, 

by Theorem 4.2, T is a right weakly regular ternary Γ-semiring. 

5. RIGHT PURE TERNARY Γ-IDEALS 

In this section we define a right pure ternary Γ-ideal of a ternary Γ-semiring T and furnish some of its 

characterizations. 

Definition 5.1: Let T be a ternary Γ-semiring. A ternary Γ- ideal A of T is said to be right pure ternary �-ideal if 

for each x ∈A there exist yi, zi ∈ A, �i, �i ∈ Γ where i ∈∆ such that  
1

n

i i i i
i

x x y zα β
=

=∑ . Similarly, we define one-sided 

right pure ternary Γ-ideals. 

Note 5.2: A ternary Γ- ideal A of ternary Γ-semiring T is said to be a right pure ternary Γ- ideal if for any x ∈ A, x 

∈ xΓAΓA. 

Theorem 5.3: A ternary Γ- ideal I of T is right pure if and only if R∩I = RΓIΓI, for any right ternary Γ- 

ideal R of T. 

Proof: Let I be a right pure ternary Γ- ideal and R be a right ternary Γ- ideal of T. Then clearly RΓIΓI ⊆ R ∩ I.  

Now let a ∈ R ∩ I, gives a ∈ R and a ∈ I.  As I is a right pure ternary Γ- ideal, a ∈ aΓIΓI ⊆ RΓIΓI.  This gives R ∩ I ⊆ 

RΓIΓI.  By combining both inclusions we get R∩I = RΓIΓI.  

Conversely, suppose R∩I = RΓIΓI, for a right ternary Γ- ideal R and a ternary Γ- ideal I of T.  Let I be a ternary Γ- 

ideal of T and a ∈ I. (a)r denotes the right ternary Γ- ideal generated by a and given by (a)r = N0a+aΓIΓI, where N0 is a set 

of non-negative integers. Then, a ∈ (a)rΓIΓI = (N0a + aΓIΓI)ΓIΓI ⊆ aΓIΓI. Therefore, I is a right pure ternary Γ- ideal of T. 

Theorem 5.4: The intersection of right pure ternary Γ- ideals of ternary Γ-semiring T is a right pure 

ternary Γ- ideal of T. 

Proof: Let A and B be right pure ternary Γ- ideals of T. Then for any right ternary Γ- ideal R of T we have, R ∩ A 

= RΓAΓA and R ∩ B = RΓBΓB by theorem 5.2, We consider R∩(A∩B) = (R∩A)∩B = (RΓAΓA)∩B = (RΓAΓA)ΓBΓB = 

RΓ(AΓA)Γ(BΓB) = RΓ(AΓB) = RΓ(A∩B). Therefore, A∩B is a right pure ternary Γ- ideal of T. 

We characterize right weakly regular ternary Γ-semiring in terms of right pure ternary Γ- ideals in the following 

theorem. 

Theorem 5.5: A ternary Γ-semiring T is right weakly regular if and only if any ternary Γ- ideal of T is right 

pure. 
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Proof: Suppose that T is a right weakly regular ternary Γ-semiring.  Let I be a ternary Γ- ideal and R be a right 

ternary Γ- ideal of T. Then by Theorem 4.2, R∩I = RΓIΓI.  Therefore, a ternary Γ- ideal I of T is right pure by theorem 5.3.  

Conversely, suppose that any ternary Γ- ideal of T is right pure. Then, from theorem 5.3 and Theorem 4.2 we get 

T is a right weakly regular ternary Γ-semiring. 

CONCLUSIONS 

In this paper, efforts are made to introduce and characterize a right weakly regular ternary Γ-semiring and a fully 

prime right ternary Γ-semiring. 
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