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INTRODUCTION

The notion of ternary-Semiring has been introduced by D. MadhusudhameaRd M. Sajani Lavanya [5] in the
year 2015. The notion of Strongly prime ring hasrbatroduced by Handelman and Lawrence [3]. TH®naf Ternary
Semiring was introduced by T. K. Dutta and S. Kdrif the year 2003 as a natural generalizatioteofary ring which
was introduced by W. G. Lister [4] in 1971. Theliearworks of D. Madhusudhana Rao and M. Sajanidmga on
TernaryI'-Semiring may be found in [5, 6, 7, 8]. In 2007,K.. Dutta and M. L. Das [2] introduced and studright

strongly prime Semiring.
2. PRELIMINARIES
o Definition 2.1[5]: Let T andl’ be two additive commutative semigroups. T is $aitle aTernary I'-Semiring if

there exist a mapping from T'x T xI'x T to T which maps X, &, X,, ,8 X3) — [Xla'XZﬂX?,] satisfying the
conditions:
i) [[aabst]ydde] = [aafbstyd] Je] = [azbs]cydde]]
i[(a + b)ac] = [azcst] + [bacst]
i) [aa (b +c)pd] = [acbst] + [aacA]
iv) [aabs(c + d)] = [aabst] + [azbAd] for alla, b, ¢, de T andg, £, », JET.

Obviously, every ternary semiring T is a ternBrgemiring. Let T be a ternary semiring dndébe a commutative
ternary semigroup. Define a mapping T>xT xI'x T — T by asbst = abc for alla, b,c € T ande, gel. Then T is a

ternaryl’-semiring.
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» Definition 2.2[5]: An element Oof a ternafdy-semiring T is said to be absorbing zero of T provided 0 +x = x

=x + 0and0zashb = ac0pb = aab0 = 000 a, b, x I T ande, #eT.

» Definition 2.3[5] : A ternaryT'-semiring T is said to beommutative ternary I'-semiring provided al'bl'c =
bI'cl'a = cl'al'b = bl'al'c = cI'bl'a = al'cI'bfor all a, b, ¢ LI T.

» Definition 2.4[5]: A non-empty subset S of a terndigemiring T is &ernary sub I'-semiring if and only if S +
Sc Sand §srs [ s.

» Definition 2.5[5]: A nonempty subset A of a terndrysemiring T is deft ternary I'-ideal of T if and only if A is
additive sub semigroup of T andTTA [ A.

« Definition 2.6[5]: A nonempty subset of A of a terndrysemiring T is dateral ternary I'-ideal of T if and only
if A is additive sub semigroup of T and'AT'T L] A.

» Definition 2.7[5]: A nonempty subset A of a terndrysemiring T is aight ternary I'-ideal of T if and only if A
is additive sub semigroup of T andAI'T L] A.

» Definition 2.8[5]: A nonempty subset A of a terndrysemiring T is a@ernary I'-ideal of T if and only if it is left

ternaryl'-ideal, lateral ternary/-ideal and right ternary-ideal of T.
3. PRIME RIGHT TERNARY T-IDEAL

» Definition 3.1: A right ternaryI'-ideal P of ternaryr-semiring T is said to be prime right ternary I'-ideal
provided A'BI'C < P implies Ac P or B< P or Cc P, for any right ternar/-ideals A, B and C of T.

e Theorem 3.2: A right ternary I'-ideal P of ternary I'-semiring T is a prime right ternary I'-ideal of T if and

only if alTTbITlc € P impliesae Porbe P orce P, foranya, b,ceT.

Proof: Suppose that P is a prime right terndiyydeal of T. Letal TTbI'TIc < P, fora, b, c € T. Then
alTITIOI TITICITIT € P = (@ TIT)I(bI'TIT)[(cI'TIT) € P. Byal'TI'T, bI'TI'T andcI'TI'T are right ternaryl-
ideals of T and P is a prime right ternadeal,al’ TI'T € P orbI'TI'T <€ P orcI'TI'T < P. Thereforea € P orb € P orc
€EP.

Conversely, assume the given statement holds. | & and C be any three right terndiydeal of T such that
ATBI'C c P. If Ac P, then the result holds. Suppose tha R. Hence, there exists an elemeit A such that & P. For
anyb € B, andc € C,al' TI'bI'TI'c = (@' T)I'bI'TT'c € AI'BI'C c P. Therefore, by the assumptio& P orc € P implies B
C P or Cc P. Therefore, P is a prime right tern&rjdeal of T.

» Definition 3.3: A right ternaryl'-ideal P of ternary{-semiring T is said to be semiprime right ternary I'-ideal
Provided A'/ATA < P implies Ac P, for any right ternary/-ideal A of T.

Obviously, every prime right ternafrideal in T is a semiprime right ternaryideal.

* Theorem 3.4: A right ternary I'-ideal P of a ternary-semiring T is a semiprime right ternary I'-ideal of T

if and only if al'Tr'alTra < P implies a€ P, foranya€eT.
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Proof: Suppose that P is a semiprime right terndryideal of T. Let al'Tl'alTla < P, for
a€eT. Thenal TITralTITralTIT € P= (@ TIT)I'(@ TIT)['(@al'TI'T) < P. Byal'TI'T is a right ternary-ideal of
ternaryl’-semiring T and P is a semiprime right ternBrigleal,al TT'T < P. Thera € P.

Conversely, assume given statement holds. Let Anyeright ternary-ideal of ternaryl’-semiring T such that
ATATA C P. Foranya € A, al'Tlral' TT'a = (@' T)['(al'T)I'a € ATAT'A < P. Therefore, by assumptiare P implies Ac

P. Hence P is a semiprime right ternBrideal of T.

Theorem 3.5: If P is a prime right ternary I'-ideal of ternary I'-semiring T, then (P :a) = {x € T : al'tl'x €
P} is also a prime right ternary I'-ideal of T for any,a € T\P, t €T.

Proof. Let P be a prime right terndryideal of ternaryr-semiring Tand (P : a) ={e T : dtlx<c P }. Letx,y €
(P :a). Thereforealtrx € P,altl'y € P.al'tl'(x + y) =a/tI'x + altl'y € P impliesx+ y € (P :a). Letxe (P :a),t,se T
anda, F € I'. Then,al'(xatps) € al'(XI'tl's) = @/ xIY)['s = (@/UX)['s < P givesxat € (P : a). This shows (Pa) is a right
ternaryl'-ideal. To show (P : a) is a prime right ternfrideal, let A, B and C be any three right ternBsigleals of T such
that AFBI'C < (P : a). Then, albI'(AIBI'C) < P. al'bl’A, al'bI'B and al'bI'C are right ternaryl-ideals of T.
(arbrA)I'(arbl'B)I'(al'bl'C) < al'bl’A T'BI'C =al'bI'(AI'BI'C) < P. As P is a prime right ternaFyideal of T,al'bl’'A &
P oral'bl'B oral'blI'C & P. Therefore, &= (Pa) or B S (P :a) or C & (P :a), which shows that (Pd) is a prime right

ternaryl'-ideal of T.

Lemma 3.6: Every prime right ternary I-ideal A of a ternary I'-semiring T is Semiprime right ternary I'-
ideal of T.

Proof: Suppose that A is a prime right terndydeal of a ternary-semiring T. Let X be a right ternafyideal
of T such that XXTX € A. Since A is prime, X2 A. Hence A is Semiprime right ternaFyideal of T.

The following example will show that there existBgrimeternaryl-idealthat are not primeernaryr-ideal
Example 3.7:A set Z of non-negative integers and Z T is ternaryl’-semiring.

Let < 6 > denote the ternafyideal generated by & Z" and P = < 12 > is a ternafyideal generated by 12 Z*
For 1€Z"it follows that < 6 > = {&n : ne Z*, z € T}.

Since 2¢ <6 >,3¢ <6 >and 2 .4.2.5.3 = 240< 6 >. Itis clear that < 6 > is not prime.

The only prime ternary-ideals in Z that contains < 6 > are <2 >, <3 > and {0}x € Z" : x> 1}. Since < 2 >

N<3>N{xeZ :x>1}<c <6 > Itfollows that < 6 > 3/ < 6 >. Therefore < 6 > is semi-prime.

Definition 3.8: A right ternaryl'-ideal P of T is said to be arreducible right ternary /~ideal provided A0BNC
=P implies A=P or B=P or C =P, for any rigdtnaryl'-ideals A, B and C of T.

Definition 3.9: A right ternaryl'-ideal P of T is said to besrongly irreducible right ternary I~ideal if ANBNC
C P implies Ac P or BS P or Cc P, for any right ternarj}-ideals A, B and C of T.

The necessary condition for a right ternBsigleal to be prime is given in the following theore

Theorem 3.10: Every semiprime and strongly irredudble right ternary TI'-ideal is a prime right ternary I'-
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ideal ofternary I'-semiring T.

Proof: Let P be a strongly irreducible and a semipriigbtrternaryl'-ideal ofternaryl’-semiringT. For any right
ternaryl-ideals A, B and C of T, (BBI'C) € P. AABNC is a rightternaryl'-ideal of T. Hence (RABNC)I'(ANBNC) <
ANBNC c P. By P is a semiprime right terndrjideal, AABNC < P. Therefore, A= P or B€ P or Cc P, since P is a
strongly irreducible right ternamy-ideal. Thus P is a prime right terndiydeal of T.

Definition 3.11 A proper ternary-ideal M of ternaryl'-semiring T is said to be maximal ternary /-ideal

provided there does not exist any other propeatgiirideal of T containing M properly.
Theorem 3.12: Any maximal right ternary I'-ideal of ternary I'-semiring T is a prime right ternary T-ideal.

Proof: Let M be any maximal ternaf+ideal of T. To show that M is a prime ETI'bI'C € M. Suppose tha

¢ M. aI'TI'T is a right ternary-ideal of T which contains an elememtBy M is a maximal right ternary-ideal, M +

alTIT = T. As 1€ S, 1=m+) ag,xBY,. Then, kbst = mubfc + (D aaxAY, Jabfc € M + aI'TI'bl'c € M.

Thereforep, ¢c € M. This shows that M is a prime terndhydeal.

Theorem 3.13: If R is a right ternary I'-ideal of ternary I'-semiring T and a is a nonzero element of T such

that a ¢ R, then there exists an irreducible right ternaryT-ideal P of T such that Rc P anda & P.

Proof: Let B be the family of all right ternaniy-ideals of S containing | and not containing amelata. Then B
is nonempty as R B. This family of all right ternary-ideals of T forms a partially ordered set underititlusion of sets.
Hence, by Zorn’s lemma there exists a maximal rightaryl'-ideals P in B. Therefore, R P anda ¢ P. Now, to show
that P is an irreducible right ternaryideal of T let A, B and C be any three right teyng-ideals of T such thatABNC =
P. Suppose that A, B and C are contained in P pisoggince P is a maximal right ternafyideal in B, we gea € A, a €
B anda € C. Thereforea € ANBNC = P which is an absurd. Thus, either A = P or B er C = P. Therefore, P is an

irreducible right ternary-ideal of T.

Theorem 3.14: Any proper right I'-ideal of T is the intersection of irreducible right T-ideal of T which

contain it.

Proof. Let R be any proper ternafyideal of T and {X/I € A}be a family of irreducible right ternary-ideals of
T which contain R, whera denotes the indexed set. Then clearlg® X,. To show thath, X, € R. Suppose thd X, c
R. Therefore, there is an elemargN X, such that ¢ R. Then by theorem 3.13, there exists an irredei¢tdynaryl-ideal
P such that RE P anda ¢ P. This establishes the existence of irreducilglet ternaryl'-ideal P such that ¢ P and RS P.
Thereforea & N X, for everya € R. Hence, by the contrapositive metha&, € R. ThereforeN, X, = R.

4. RIGHT WEAKLY REGULAR TERNARY TI'-SEMIRING

Definition 4.1: A ternaryI’-semiring T is said to beght weakly regular if a€ (@ TTT)[(@al' TI'T) ['(al' TI'T), for

anya€eT.
In the following theorems we characterize forghtiweakly regular ternary-semiring.

Theorem 4.2: In the ternary'-semiring T, the following statements are equivalen
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(1) T is right weakly regular.

(2) RTRTR = R, for each right ternary I'-ideal R of T.

(3) RNI = RT'ITI, for any right ternary T-ideal R and ternaryT-ideal | of T.
Proof: (1) = (2) Suppose that T is right weakly regular.

For any right ternary-ideal R of T, FRTR € RI'TIT € R.

Conversely, le € R. As T is right weakly regulag € (Al TTT)[(@ TTT)[(@'TI'T).
Thenae (@ TIT)[(@ TIT)[(@'TIT) € (RCTIT)[(RCTIT)I(RCTIT) € RCRCR.
Thus, R'RTR = R, for each right ternafi+ideal R of T.

(2) = (1) Suppose thatIlRI'R = R, for each right ternaifyrideal R of T. For anp € T,a€ al' TI'T andal' TI'T is
a right ternaryr-ideal of T.

Thereforeae (@ TITT)I(al TTT)I'(al' TI'T), which shows that T is right weakly regular.

(2) = (3) Let R be a right ternafy-ideal and | be a ternai+ideal of T. Then RINI is a right ternary-ideal of
T. By assumption (R)T(RNI)N( RNI) € RTITI.

Clearly, R'ITlI € R and R'ITI < I. Therefore, RITI € RNI. Thus we get RI = RTITI.

(3) = (2) Let R be a right ternaff-ideal of T and (R) be a ternafyideal generated by R. Then we write (R) =
TITIRITIT. By assumption R(R)N(R) = RC(R) T'(R).

Then, R = R(TCTTRITIT)I(TITIRITIT) = (RCTIT)(RCTTTITIT)I(RITIT)
= (RTIT)[(RITTT)I(RITIT) € RTRIR = R. Therefore, RRIR = R.

Theorem 4.3: A ternary I'-semiring T is right weakly regular if and only if every right ternary I'-ideal of T

is semiprime.

Proof: Suppose that T is right weakly regular. Let R ight ternaryl’-ideal of T such that BATA c R, for any
right ternaryl-ideal A of T. A = A'ATA as T is right weakly regular. Therefore, AR. Hence R is a semiprime right

ternaryl-ideal of T.

Conversely, suppose that every right ternBrigleal of T is semiprime. Let R be right terndrjideal of T.
RI'RIR is also a right ternarl-ideal of T. By assumptionIRR['R is a semiprime right ternaifytideal of T. R'RTR <
RI'RI'R implies R€ RI'RI'R. Therefore, RRI'R = R. Hence, T is right weakly regular.

Theorem 4.4: If ternary I'-semiring T is right weakly regular, then a ternaryI'-ideal P of T is prime if and

only if P is irreducible.

Proof: Let T be a right weakly regular terndrysemiring and P be a ternaryideal of T. If P is a prime ternary
I'-ideal of T, then clearly P is an irreducible tesnB-ideal. Suppose that P is an irreducible terdaryeal of T. To show
P is a prime ternarjJ-ideal, let A, B and C be any three tern&@rideals of T such thatI/BI'C € P. Then, by Theorem
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4.2, we have ABNC c P. Therefore, (ABNC)+P = P. But k lattice of all ternary-ideals of T being distributive (A +
P)N(B + PN(A + C) =P. As P is an irreducible terndrydeal, A+P =P or B+P =P or A+ C = P. ThereA or B€ P

or Cc P. Therefore, P is a prime terndydeal of T.
Now we define a fully prime right ternafysemiring and a fully semiprime right terndrsemiring.

Definition 4.5: A ternaryl'-semiring T is said to be flly prime right ternary I'-semiring provided all right

ternaryl'-ideals of T are prime right ternafyideals.

Definition 4.6: A ternaryl'-semiring T is said to befally semiprime right ternary I'-semiring if all right ternary

I'-ideals of T are semiprime right terndideals.

The relation between a fully prime right terndfysemiring and a right weakly regular terndrysemiring is

furnished in the following theorems.

Theorem 4.7: If a ternary I'-semiring T is a fully prime right ternary I'-semiring, then T is right weakly

regular and the set of ternaryl-ideals of T is totally ordered.

Proof: Let T be a fully prime right ternarfy-semiring. Therefore, every right terndiyideal of T is a prime right
ternaryT-ideal. But every prime right ternafrideal is a semiprime right ternafyideal. Hence, by theorem 4.3, T is
right weakly regular. Let A, B and C be any thremaryT-ideals of T. Then ABNC is a right ternary-ideal of T. By
hypothesis ABNC is a prime right ternarf-ideal of T. A'BI'C € ANBNC implies A< ANBNC or B€ ANBNC or C
c ANBNC. Therefore, ABNC = A or AABNC = B or AABNC = C. Thus we get either & B, C or BS A, C or C< A,

B. Hence, the set of ternafyideals of T is totally ordered.

Theorem 4.8: If a ternary I'-semiring T is right weakly regular and the set oternary T-ideals of T is totally

ordered, then T is a fully prime right ternary I'-semiring.

Proof: Let T be a right weakly regular terndrysemiring and the set of terndryideals of T is totally ordered. To
show that T is a fully prime right ternafi¢semiring, let P be any right ternaPyideal of T. To prove P is a prime right
ternaryl-ideal of T, let A, B and C be any three ternBsigleals of T such thatI/BI'C < P. By assumption, either @ B,
CorBc A, Cor Cc A Band A'/ATA= A, BI'BI'B =B and TCI'C = C. We consider A B, C. Then, A = AATA
AT'BI'C c P. Therefore, P is a prime right tern&rideal of T. Hence, T is a fully prime right tergdr-semiring.

Definition 4.9: An elementa of a ternary-semiring. T is said to beegular if there exisx,y € T anda, 5, y, 6 €
I' such thabaexgayyda = a.

Definition 4,10: A ternaryI'-semigroup T is said to beegular ternary I'-semiring provided every element is

regular.
Note 4.11:A ternaryI’-semiring is said to be regulardfe al' TTal'TTa, for anya e T.

Note 4.12:In general, the family of regular ternarysemirings forms a proper subclass of the familyigifit
weakly regular ternary-semirings. But if T is a commutative terndmsemiring, then T is regular ternarysemiring if

and only if T is right weakly regular ternarysemiring.
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Theorem 4.13: If T is a commutative ternaryI'’-semiring, then T is regular if and only if T is right weakly

regular.

Proof: Let T be a commutative ternafiysemiring. Suppose that T is a right weakly regtéanaryl'-semiring.
Therefore, foranp e T,a€ (@' TIT)[(al' TILT) I'(al' TI'T).

a€ (@TIrMr(@TIT) I'(al'TIT) < al'Tral'Tra. Therefore, T is a regular terndrysemiring. Conversely, suppose T is a
regular ternary’-semiring. Leta € T. Hencea € al'Tl'al'Tla. Then,a € al'Tl'al'Trac (@' TrT)r(al' TrT) I'(al'TrT).
This shows that T is a right weakly regular ternaigemiring.

Theorem 4.14: Each ternaryTl-ideal of a right weakly regular ternary I'-semiring T is a right weakly

regular (as a ternaryI'-semiring).

Proof: Let R be any ternary-ideal of a right weakly regular ternarysemiring T. Hence R itself is a ternary sub-
I'-semiring of T. For any elemeate R, al'RI'R is a right ternary-ideal of T. T is a right weakly regular ternary
semiring impliesa € (@' TIT)I(@ ' TIT) I'(@al'TrT) and @FRIR)I(al’ RTR)['(al’RIFR) = al'RIFR. Hence we havey €
(@ TTT)@TIT)[(@TIT) = al(TTTral TrT)[(@ TIT) € a(TTRITIR) € alRIR = @ RIR)I(a’RTR)[(al RIR).
Thereforea € (alRTR)I'(al’RTR)['(al'RIR) implies R is itself a right weakly regular terp&-semiring.

Bi-ternaryT-ideals of a ternary'-semiring are defined by Sajani Lavanya, MadhusualiReo and Syam Julius

Rajendra in [7] as follows:

Definition 4.15 A ternary'-subsemiring B of a ternarf-semiring T is called &i-ternary I'-ideal of T if
BITrBITBCSB.

Theorem 4.16: T is right weakly regular if and onlyif BNINl < BI'ITI, for any bi-ideal B and an ideal | of

Proof: Suppose that T is a right weakly regular ternBrgemiring. Let B be a bi-ternafyideal and | be a
ternaryT-ideal of T. Leta € BNINI. Thereforea e (@ TIT)I(al' TIT) I'(al'TI'T), since T is a right weakly regular. Then
a € @TITI(@TIT) [(@'TIT) € (@ TrTr@ TITI(@ TITITIT € (BITIBITIB)I(TTITTITITII) <€ BIITI.
Therefore, BINI < BIITI.

Conversely, suppose thatBNl < BI'ITI, for any bi- ternary'-ideal B and a ternarp-ideal | of T. Let R be a
right ternaryl'-ideal of T. Then R itself a bi- ternafyideal of T. By assumption R =IRTTTTRITIT)[(TTTTRITIT) =
(RCTTT)I(RCTTTITIT)I(RTTLT)

= (RCTTT)[(RTTIT)I(RITIT) € RIRTR = R. Therefore, R = RI'R. Then by Theorem 4.2, T is a right

weakly regular ternarf/-semiring.

Theorem 4.17: A ternaryI'-semiring T is right weakly regular if and only if BNINR < BI'IT'R, for any bi-

ternary I-ideal B, a ternaryT-ideal | and a right ternary I'-ideal R of T.

Proof: Suppose that T is a right weakly regular terdassemiring. Let B be a bi-ternafyrideal, | be a ternary-
ideal and R be a right ternaryideal of T. Leta € B Nl NR. Thereforea € (al TIT)I'(al' TI'T) I'(al'TI'T), since T is a

right weakly regular.
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Thena € (@ TIT)I(@ TIT)I(l' TIT) € @ TIT)(@ TrT)I(@ TIT)ITIT
€ BI(TITTITTIT)[(RICTIT) € BIITR. Therefore, BY 1 N RS BIITR.

Conversely, suppose B 1 N R € BI'IT'R, for any bi-ternary-ideal B and a ternarly-ideal | and a right ternary
I'-ideal R of T. For a right ternaiffyrideal R of T, R itself being a bi- ternaryideal and T itself is being a terndryideal
of T. By assumption RT NR € RI'TT'R = (RFT)I'R € RI'RIT'R. Therefore, RE RT'RT'R. Therefore, R = RRI'R. Then,
by Theorem 4.2, T is a right weakly regular ternaisemiring.

5. RIGHT PURE TERNARY TI-IDEALS

In this section we define a right pure terndiydeal of a ternaryl-semiring T and furnish some of its

characterizations.

Definition 5.1: Let T be a ternary-semiring. A ternary - ideal A of T is said to beight pure ternary I-ideal if

n
for eachx €A there existy;, z € A, &, £ € I wherei €A such that X = Z Xa,y, Bz . Similarly, we define one-sided
i=1

right pure ternary-ideals.

Note 5.2:A ternaryl'- ideal A of ternaryr-semiring T is said to be a right pure ternBrydeal if for anyx € A, x
€ XTATA.

Theorem 5.3: A ternary I'- ideal | of T is right pure if and only if RNl = RTITI, for any right ternary TI'-
ideal R of T.

Proof: Let | be a right pure ternafy ideal and R be a right ternary ideal of T. Then clearly RTI € RN 1.
Now leta € RN I, givesa € R anda e I. As | is a right pure ternary- ideal,a € al'lT'l € RIIT|. This gives RN | ©
RTITI. By combining both inclusions we gef)R= RI'IT.

Conversely, supposeR = RT'IT'l, for a right ternary - ideal R and a ternafly- ideal | of T. Let | be a ternaiy-
ideal of T andca € I. (a), denotes the right ternafy ideal generated by and given byd), = Npa+al'IT'l, where N is a set
of non-negative integers. Thame (a) 1Tl = (Nga + al'lT)TITI € ar'lT’l. Therefore, | is a right pure ternary ideal of T.

Theorem 5.4: The intersection of right pure ternaryI'- ideals of ternary I'-semiring T is a right pure

ternary I'- ideal of T.

Proof: Let A and B be right pure ternafy ideals of T. Then for any right ternary ideal R of T we have, R A
= RIC'ATA and RN B = R('BI'B by theorem 5.2, We consideNRANB) = (RNA)NB = (RCATA)NB = (RCAT'A)TBI'B =
RT(ATA)T'(BI'B) = RI'(AT'B) = RI'(ANB). Therefore, AB is a right pure ternarly- ideal of T.

We characterize right weakly regular tern&rgemiring in terms of right pure ternafy ideals in the following

theorem.

Theorem 5.5: A ternary I'-semiring T is right weakly regular if and only if any ternary I'- ideal of T is right

pure.
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Proof: Suppose that T is a right weakly regular terriasgemiring. Let | be a ternaiy- ideal and R be a right

ternaryl'- ideal of T. Then by Theorem 4.20R= RI'IT’l. Therefore, a ternary- ideal | of T is right pure by theorem 5.3.

Conversely, suppose that any ternBrydeal of T is right pure. Then, from theorem &8 Theorem 4.2 we get

T is a right weakly regular ternafy¢semiring.

CONCLUSIONS

In this paper, #orts are made to introduce and characterize a vighakly regular ternarly/-semiring and a fully

prime right ternary’-semiring.
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