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ABSTRACT

In this paper, we describe the Data Mining and Asgmn Rule Mining concepts. Data mining is cléiesi as a
knowledge discovery process that is specificallyduto analyze data from the different mining pihes and perspectives
and combine it into a powerful tool that is usedotml this information to increase revenue in @gality and boost the

general output of organizations.

One such principal of the data mining concept & Alssociation Rule Mining, which finds the entirder that
exists in the database which will satisfy an amalgigon of some minimum support and minimum confien
constraints.Although the target of discovery igr#-determined, this type of rule satisfies the $dp(Minimum Support)
and Minconf (Minimum confidence) controls which asgs every item in the data will behave in the saatare and will
possess similar patterns in its frequencies idats. Branching out further, the Minsupwill conttbé absolute minimum

amount of data that it has to cover for the ruldevtine Minconf will regulate predictive analytio§the rule.

However these might not be a real-time scenarioranost applications, the items will rarely appé@aisome
instances and would appear in an infrequent patteathers in the data. So if the Minsupis set teegy high state, those
rare items that these are rules are involved ihmait be found. This in turn will cause a combin&bexplosion as the

frequent items will be caught entangled with eattteoin all possible ways and outcomes.

We're going to introduce a niche technique to abesolf this issue as this specific technique withwlthe user to
guantify multiple Minsupso that it may reflect thhae natures of its items and their own variancé&eduencies found in
the database.
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INTRODUCTION

Categories and Subject Descriptors
D.3.3 [Association Rule Mining]: Frequent Itemset Generation & Rule generation.

Frequent Itemset Generation — to obtain all thestets that will satisfy the Minsup. They are calfeshuent

itemsets.

Rule Generation —its primary objective is to exti@tthose rules the frequent itemsets found eghevious step

that are high-confidence rules. These are calledgtrules.

These frequent sets plays an integral role the Dhiténg tasks as they constantly trying to find sbepatterns

from the databases, such as their sequences,at@mnsl, association rules, episodes, clusters lasdifiers.
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The identification of sets of the by-products, iteand characteristics makes the mining of assoaiatiles the

most outstandingly popular problematic equatioalbf

These often will happen in a clumped mass withendhtabase whereby they are viewed as the fundahtask
in Data Mining. An urgent need to search and amelgirge corporate franchise data which forms thséshaf the intent for

examining various customer behaviors and patterns.

Frequency of these sets of products will explaiw lane these items are bought together. Officiaéytaake | be
the set of items. Transaction over | is a coupte (fid, ) where fid is the transactional identifiand | is the set of items
from |. A database DB over | is considered as #teo§ a transactions over | which that means thatyetransaction has

been bonded with a unique identifier.

So a transaction F = (fid, 1) is said to supposea M, if M C I. The cover of a set M in DB consistf a set of
transactional identifiers of transactions in DBtthéll support M. Support of a set M in DB is thember of transactions
in the cover of Min DB. The frequency of a set MOB is the probability that M occurs in a transantior in other words,
the support of M divided by the total number ofnBactions in the database. We omit DB whenever dgar from the

context.
Algorithm

Algorithms of Associated rules discovery — Fromasgble of transactionB, the general idea is to find all rules
having support >Minsupand the confidence > Mincaevtfere the exact Minsupand Minconf are the comnrandupport

and confidence bearers.

XUuY.
Support, s(X — YY) = & ,\L_.—J )1
Confidence, e(X — Y) = i U )
a(X)

This rough approach is widely considered as thHenate evidence when it comes to getting to comfhaeexact

support and confidence required for each and epesgible rule in the database.

As there are many rules exponentially that canxb@eted from the data set, this type of computaisorigid and

valued expensively.

Specifically the exact total of possible rules agted from a data set that fthisem is

R=3-27" 1.

The proposed algorithm is called algorithm CBA @3ifiers Based on Associations). It will be of tparts, a rule
generator (called CBA-RG), which is based on tHausb algorithm Apriori for finding association rslan (Agrawal and
Srikant 1994), and a classifier builder (called GBB). This section discusses CBA-RG. The next eadaliscusses CBA-
CB.

Basic Concepts Used In the CBA-RG Algorithm

The keynote operation of the CBA-RG is to find @fllits ruleitems that have the framework of suppirbve
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Minsup. A ruleitem is of the form: where condsetiset of items, s TS is a class label. The supmamt of the condset
(called Cond supCount) is the number of cases intfE#B contain the condset. The exact support cofitite ruleitem

(called rulesupCount) is the number of cases intB# contain the condset and are labeled with dagsach ruleitem
basically represents a rule: condset s, whose susp@ules upCount / |DB|) *100%, where |DB|he size of the dataset,

and whose confidence is (rules upCount / Cond suptL00%.
One of the most important class of regularities #id be found in the databases are Associatidesiu

Its problems has widely received some great feddaad attention throughout the data mining sph@ere of the

classic ones is the market basket analysis.

This analyzes on how the items are being purchbgeatiose customers that are associated. One exahple
association rule is as follows, dairy alcohol [sup = 10%, conf = 80%)] This rule sayst th@% of customers buy dairy
and alcohol together, and those who buy dairy petsdalso buy alcohol 80% of the time. The basic ehafl association
rules is as follows: Let O = {01,02, ..., om} be & s¢items. Let G be a set of transactions (thalkate), where each
transaction g (d data case) is a set of items thathg= O. An association rule is an implication of thenfip X — Y, where
X cO,Yc O, and XNY =@. The rule X— Y holds in the transaction set G with confident# cf% of transactions in
G that support X also support Y. The rule has suppin G if s% of the transactions in G containg X. Given a set of
transactions G (the database), the problem of mimissociation rules is to discover all associatiges that has the

confidence and support is definitely greater asijtersedes the user-specified of Minsupand Minconf.
MODEL EXTENSION

The extended model has been defined as the rubkessaiciation rules remains the same. The definitibn
Minsuphas changed dramatically however becauskliheupof a rule is expanded in terms of the mininitem supports
(MTS) of the items that will appear in the rule.iFfs so because, each item existing in the da¢atas have a MTS that
is specified by the user. Providing different MT&8lues for each and every item, the user basicallyesses different

support requirements for different rules.

Let MTS (i) denote the MTS value of item it. Thenimium support of a rule U is the lowest MTS valumeoag
the items in the rule. That is, a rule U, al , a2,,ak— ak+1, ..., ar where & IT, satisfies its minimum support if the
rule’s actual support in the data is greater thaequal to: min(MTS (al ), MTS (a2 ), ..., MTS (ar Jhis allows the
Minimum item supports to achieve the goal of haviigher minimum supports for rules that only inwelthose frequent

items, and having lower minimum supports for rulest involve less frequent items.

Example 1 Consider the following items in a database, cbeshorts, and clothes. The user-specified MTS
values are as follows: MTS (cheese) = 2% MTS (shoeds1% MTS (clothes) = 0.2% the following ruleedm’t satisfy its
minimum support: clothes> cheese [sup = 0.15%, conf = 70%)] because min (lfh8ese), MTS (clothes)) = 0.2%. The
following rule satisfies its minimum support: cleth— shorts [sup = 0.15%, conf = 70%)] because min (Mdi8thes),
MTS (shorts)) = 0.1%
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3. THE MINING OF LARGE ITEMSETS WITH MULTIPLE MTSS

3 1 Downward Closure Property

The existing algorithms for mining association sutgpically consists of two steps: (1) finding hugamsets; and

(2) generating association rules using the hugasiess.

Nearly all research material for association rulaing algorithms are solely targeted on the fitsfpssince it is
considered computationally more expensive. Alse, gbcond step does not automatically extend itselivell to smart
algorithms as confidence does not possess therelpsoperty that is necessary. Support, on ther dtdwed, is downwardly
closed, which means that if a set of items satdfie Minsup, then all of its subsets also wiltdady satisfy the Minsup.

Downward closure property holds the key to reducalliexisting mining algorithms.

These effective algorithms for finding large itetssare based on level-wise search [3]. Let I-itdndemote an
itemset with | items. At level 1, all large 1-iteets are generated. At level 2, all large 2-itemastggenerated and so on. If
an itemset is not large at level I-1, it is disetdas any addition of items to the set cannot fgelédownward closure
property). All the potentially large itemsets avde k are generated from large itemsets at leviel However, in the

proposed model, if we use an existing algorithrfirtd all large itemsets, the downward closure propeo longer holds

Example 2 Consider these four items a, b, ¢ and d in abd&® Their minimum item supports are: MTS (a) =
10% MIS (b) = 20% MTS (c) = 5% MTS (d) = 6% If wiad that itemset {a, b} has 9% of support at legthen it does
not satisfy either MTS (a) or MTS (b). Using anstixig algorithm, this itemset is discarded sinds itot large. Then, the
potentially large itemsets {a, b, c} and {a, b, @}l not be generated for level 3. Clearly, itenss@d, b, c} and {a, b, d}
may be large because MTS (c) is only 5% and MTSs(@fs. It is thus wrong to discard {a, b}. Butvi do not discard

{a, b}, the downward closure property is lost.
3 2: The Algorithm Specifics

The proposed algorithm generalizes the Apriori athm for finding huge itemsets given in [3]. Welldhe new
algorithm, MTSapriori. When there is only one MT&lue (for all items), it reduces to the Apriori atghm. Like
algorithm Apriori, our algorithm is also based @vel wise search. It generates all large itemsgtsnaking multiple
passes over the data. In the first pass, it cahetsupports of individual items and determinestivethey are large. In
each subsequent pass, it starts with the seed getrosets found to be large in the previous pHasses this seed set to
generate new possibly large itemsets, called catelidlem sets. The actual supports for these cateliiemsets are
computed during the pass over the data. At theoéitde pass, it determines which of the candid@imsets are actually

large. However, there is an important exceptiothénsecond pass as we will see later.

A key operation in the proposed algorithm is theisg of the items in | in ascending order of theif' S values.
This ordering is used in all subsequent operatafrithe algorithm. The items in each itemset aldtofo this order. For
example, in Example 2 of the four items a, b, c dndnd their given MTS values, the items are sloatefollows: c, d, a,
b. this will help the ordering to solve the probletantified in Section 3.1.

Let Mk denote the set of large k-itemsets. Eaamstet ¢ is of the following form, , which consisfsitems, c[1],
c[2], ..., c[k], where MTS(c[1]x MTS(c[2]) < ... < MTS(c[K]). The algorithm is given below:
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Algorithm MtSapriori
« M =sort (I, MS); /* according to MIS (i)'s storéd MS */
* F =init-pass (M, T); /* make the first pass ovet/T
e Ll1={|feF f.count= MTS (N};
o for (k =2; Mk -1# @; k++) do
» if k=2 then C2 = level2-candidate-gen (F)
» else Ck = candidate-gen (Mk -1)
* end
» for each transactiona T do
» Ct=subset (Ck, t);
+ for each candidate& Ct do c.count++;
+ end
» Lk={c € Ck|c.count MTS (c [1])}
* end
*  Answer =uk Mk

Line 1 performs the sorting on | according to th& $ivalue of each item (stored in MS). Line 2 matkesfirst
pass over the data using the function init-passchvitakes two arguments, the database T and thiedsdems M to
produce the seeds for generating the set of catedigige itemsets of length 2, i.e., C2. Init-plaas two steps: 1. it makes
a pass over the data to record the actual suppont©f each item in M. 2. It then follows the saftorder to find the first
item i in M that meets MTS (i). i is inserted info For each subsequent item j in M after i, if jwo> MTS (i) then j is
also inserted into F (j.count means the count ofNdte that for simplicity, we use the terms suppand count

interchangeably (actually, support = count/|T|, reH&]| is the size of the database T)
3 3: Candidate Generation

The level2-candidate-gen takes as argument H (hptdnd returns a superset of the set of all I&rfemsets.
The algorithm is as follows: 1 for each item g inrtthe same order do 2 if f.countMTS (h) then 3 for each item g in H
that is after f do 4 if h.coupt MTS (h) then 5 insert into C2

Example 4 Let us continue witfExample 3 We obtain, C2 = {,} is not a candidate 2-itemisetause the support
count of item 1 is only 9 (or 9%), which is lesathMTS (1) (= 10%). Hence, cannot be large. No& e must use H
rather than L1 because L1 does not contain thesesithat may satisfy the MTS of an earlier itentliig sorted order) but
not the MTS of itself (see the difference betweeartd L1 in Example 3). Using H, the problem disedss Section 3.1

is solved for C2.
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3 4: Function Subsets

The subset function checks to see which itemse@kimre in transaction t. Item sets in Ck are stdrea tree
similar to that in [3]. Each tree node containsitam (except the root). By depth first traversirigtee tree against t, we
can find if an item set is in t. At each node, weak whether the item in the node is in t. If se,go down the tree. If not,
we backtrack. When a leaf node is reached, we kimaivthe item set represented by the path is This method for
finding Ct is different from that in [3]. The metthdn [3] uses each item in t to traverse the theeur extended model,
this, however, requires the items in each transadtito be sorted according to their MTS valuessoending order in
order to achieve the sorted closure property. Thmputation can be substantial if the databasegeland resides on hard
disk. Most databases for association rule mining aery large. (This is, however, considered an rradtive

implementation).

Large ReamSets
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Figure 1: Number of Large Itemsets Found
3 5: Evaluation

This is the section that evaluates the extendedefsodhat we can show how the model allows usnd fules
with very low supports (involving rare items) yeitlout generating a large number of meaninglesssrulith frequent

items.
3 6: Synthetic Data Experimentation

The synthetic test data is generated with the gaterator in [3], which is widely used for evalagtiassociation
rule mining algorithms. For our experiments, wechaanethod to assign MTS values to items in tha dat. We use the
actual frequencies (or the supports) of the itemthe data as the basis for MTS assignments. $qabif we use the

following formulas:

M) M) > LS

MIS() =
W { LS Otherwise

M@ = Bfii)
g (i) is the actual frequency (or the support egpeel in percentage of the data set size) of iferthe data. US is
the user-specified lowest minimum item supportwdld. (0< B < 1) is a parameter that controls how the MTS vafoes
items should be related to their frequencies. Ttauset MTS “values for items we use two paramgfeand US. Iff = 0,

we have only one minimum support, US, which isshene as the traditional association rule minin@. # 1 and g(i>
USs, g(i) is the MTS value for i.
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4 APPLICATION TO REAL-LIFE DATA

We tested the algorithm using a number of realdifé¢éa sets. Here, we only use one application skttaThe
results with the others are similar. Due to confitidity agreement, we are unable to provide thaitteof the application.
Here, we only give the characteristics of the date data set has 55 items and 700 transactioe. tEansaction has 14-
16 items. Some items can appear in 500 transactishte some may only appear in 30 transactione $tandard
deviation of item frequencies in the data is 2548& mean is 24.3%). For this application, the &g LS = 1%. The
results are shown in Figure 3, which include bl humbers of candidate itemsets and large itenfisetsl. The two
thick lines show the number of candidate itemsets the number of large itemsets found respectibgiythe single
Minsup (= 1%) method. Our new method reduces tmehbeus dramatically. For this application, the usdrappy with the
large itemsets found at= 4. The number of large item sets found by outhoe ato. = 4 is only 8.5% of that found by the

existing single Minsupmethod. The drop in the nundfecandidate item sets as it’'s even more drastic.

Candidate ltemsets and Large ltemsets ,;"'_Ca"“"’a" Remaets
& Large ilemsals
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Figure 2: Number of Candidates Itemsets and Largetémsets
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Figure 3: Comparison of Execution Times in Percentge

Figure 3 shows the execution time comparison ircergage. The execution time used by the single Biins
method is set to 100%. We can see that the proposétibd also reduces the execution time signifigasince this data
set is small, the itemsets generation dominatesvtiide computation). Note that for application® tlser can also assign

MTS values manually rather than using the formingSection 3.1
4.1 Relative Works

Association rule mining has been studied extengiwethe past [e.g., 2, 3, 5, 11, 4, 14, 10, 12 Hdwever, the

model used in all these works is the same, i.eh anly one user-specified minimum support thregha]. Multiple-level
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association rule mining in [5] can use differennimium supports at different levels of hierarchy.wéwer, at the same
level it uses only one Minsup. For example, we hisneetaxonomy: milk and cheese are Dairy produad; gork and beef
are Meat. At the level of Dairy product and Meaisaciation rules can have one Minsup, and at tred & milk, cheese,
pork and beef, there can be a different Minsups Tinbdel is essentially the same as the originalainad?2] because each
level has its own association rules involving iteofighat level. Our proposed model is more flexialewe can assign a
MTS value for each item. [13] Presents a genemdlizaultiple-level association rule mining techniquehere an
association rule can involve items at any levehefhierarchy. However, the model still uses omlg Minsup. It is easy to
see that our algorithm MTSapriori is a general@atf the Apriori algorithm [3] for single Minsupining. That is, when
all MTS values are the same as LS, it reducesdaoAipriori algorithm. A key idea of our algorithm NE&priori is the
sorting of items in | according to their MTS valuesorder to achieve the closure property. Althowggh still use level-
wise search, each step of our algorithm is diffefeom that of algorithm Apriori, from initializadin, candidate item sets

generation to pruning of candidate item sets.
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