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ABSTRACT

Objective: To investigate the effects of Gastrodiae rhizoma, a dried root of Gastrodia
elata Blume, on proliferation and differentiation of human NSCs derived from embryonic
stem cells.
Methods: A 70% ethanol extract of Gastrodiae rhizoma (EEGR) was estimated with 4-
hydroxybenzyl alcohol as a representative constituent by HPLC.
Results: MTT assay showed that the treatment with EEGR increased the viability of NSCs
in growth media. Compared to control, EEGR increased the number of dendrites and
denritic spines extended from a differentiated NSC. Whereas EEGR decreased the mRNA
expression of Nestin, it increased that of Tuj1 and MAP2 in NSCs grown in differentiation
media. Immunocytochemical analysis using confocal microscopy also revealed the
increased expression of MAP2 in dendrites of EEGR-treated NSCs. Furthermore, EEGR
decreased mRNA expression of Sox2 in NSCs grown even in growth media.
Conclusions: In conclusion, our study demonstrates for the first time that EEGR induced
proliferation and neuronal differentiation of NSCs, suggesting its potential benefits on
NSC-based therapies and neuroregeneration in various neurodegenerative diseases and
brain injuries.
1. Introduction

Neurodegenerative diseases, such as Alzheimer's disease and
Parkinson's disease, are caused by the loss of neurons and syn-
apses in the brain and spinal cord. Adult CNS has only a limited
ability to regenerate neurons that can be substituted for the injured
neurons. The neural stem cells (NSCs) are multipotent cells to be
differentiated into many neuronal and glial cell lineages [1]. NSCs
are assumed to be the promising resource for repairing the injured
neurons in a cell-based therapy of various neurodegenerative
disorders [2]. Indeed, the transplantation of NSCs derived from
embryonic stem cells improved water maze performance in
Alzheimer's disease model rats [3] and ameliorated circling
behavior in the Huntington's disease model rats [4,5]. Despite the
importance of NSC-based therapy, it is still difficult to promote
NSC proliferation and to control neuronal differentiation. In
addition, NSCs remain in an adult brain, mainly located in the
subventricle ventricle zone [6] and hippocampal subgranular zone
[7]. Although adult NSCs are restricted to a few and small
neurogenic sites in the brain and remain relatively inactive or
replace slowly the injured neurons, they have the potential to
regenerate neurons and to repair the injured brain.
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Gastrodiae rhizoma, a dried rhizome of Gastrodia elata
(G. elata) Blume, has been widely used as oriental herbal
medicine for the treatment of various neurological symptoms,
such as vertigo, hysteria, epilepsy, and paralysis [8]. The major
constituents of this plant are 4-hydroxybenzyl alcohol, 4-
hydroxybenzaldehyde, vanillyl alcohol, vanillin, and gastrodin
[9]. Gastrodiae rhizoma extracts and its constituents have
recently been evaluated for anticonvulsive activities [10],
neuroprotective effects [11–14], antidepressant effects [15,16],
and memory improvement [17,18]. Interestingly, there is a
report showing that neuronal densities of hippocampal CA1
and CA3 increased in Gastrodiae rhizoma-administered rats
after scopolamine treatment, compared to the control [19].
Furthermore, the administration of gastrodin, one of the major
components, was reported to upregulate hippocampal NSCs
proliferation measured by BrdU immunohistochemistry in
depression rat model [20]. However, gastrodin failed to
increase NSC viability in rat hippocampal NSC culture
in vitro. In this study, we examined the effect of 70% ethanol
extract of Gastrodiae rhizoma (EEGR) on the proliferation
and differentiation of NSCs derived from human embryonic
stem cells. Our result showed for the first time that EEGR
promoted NSCs proliferation and their differentiation into
neuronal cells, in particular, dendrite formation.

2. Materials and methods

2.1. Plant material and preparation of extract

The rhizomes of G. elata BL. (Orchidaceae) were purchased
from Daehak Hanyakguk, Iksan, Korea in 2014, and authenti-
cated by Prof. Youn-Chul Kim, Wonkwang University, Iksan,
Korea. A voucher specimen (no. WP14-03) was deposited at the
herbarium of the College of Pharmacy, Wonkwang University,
Iksan, Korea. The dried rhizomes of G. elata (200 g) were
grinded and extracted with 70% ethanol (800 mL) at Soxhlet
extractor for 3 h. The solvent was removed under reduced
pressure to obtain a 70% ethanol extract (27.91 g).

2.2. High-performance liquid chromatography (HPLC)

Chromatographic experiments were performed on a YL-9100
series HPLC instrument equipped with a sample injector and a
photodiode array UV/Vis detector (PDA) (YoungLin, Korea).
For all experiments, an SHISEIDO CAPCELL PAK C-18 col-
umn (4.6 nm × 250 nm; 5 mm, SHISEIDO CO., Tokyo, Japan)
was used as the stationary phase, and the injection volume was
20 mL. Samples were prepared to contain 5 mg/mL concentra-
tion of EEGR or 1 mg/mL concentration of 4-hydroxybenzyl
alcohol (Sigma–Aldrich). The mobile phase was composed of
water (contain 0.1% formic acid) (A) and acetonitrile (B), with
gradient system; 0–40 min linearly changed 10% B to 30% B,
40–50 min linearly changed 30% B to 100% B, 50–60 min held
at 100% B. Flow rate was 0.7 mL/min, and the detection
wavelength was adjusted to 280 nm.

2.3. Cell culture

Human embryonic NSCs were obtained from Life Technol-
ogies as a commercially available product (N7800-200). The
cells were cultured in KnockOut DMEM/F-12 media
supplemented with Neural Supplement, 2 mM GlutaMAX,
20 ng/mL recombinant Human EGF, 20 ng/mL recombinant
Human bFGF (Life Technologies) according to the manufac-
turer's instructions. The cells were maintained at 37 �C in a
humidified atmosphere of 95% air and 5% CO2. For NSCs
differentiation, the cells were cultured for 4 d in Neurobasal
media supplemented with B-27 supplement, 2 mM GlutaMAX
without EGF and bFGF.

2.4. MTT assay

Cell viability was calculated by the reduction of 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT).
NSCs were seeded at 1 × 104 cells per well in 96-well plate a
day before the treatment. The cells were treated with various
concentrations of EEGR (0.1, or 0.2 mg/mL) in 100 mL cell
media for 24 h. After the treatment, MTT solution (1 mg/mL in
stem cell media) was added to each well. The plates were then
incubated at room temperature for 2 h, and reduced purple-blue
MTT formazan crystals were solubilized by adding 100 mL of
DMSO to each well. The absorbance was measured at 540 nm
using a microplate ELISA reader.

2.5. Real-time RT-PCR

Total RNA was extracted from NSCs using a Trizol RNA
extraction kit (Promega). Complimentary DNA was synthesized
from 2 mg of total RNA using the SuperScript III system with an
oligo-dT primer (Invitrogen). The primers were as follows: for
Nestin, forward 50-CAG CGT TGG AAC AGA GGT TGG-30,
reverse 50-TGG CAC AGG TGT CTC AAG GGT AG-30; for
MAP2, forward 50-AAT GGG ATC AAC GGA GAG CT-30,
reverse 50-TCT TCA GCT GCT AAA GGC AG-30; for Tuj1,
forward 50-AAC AGC ACG GCC ATC CAG GA-30, reverse 50-
CTT GGG GCC CTG GGC CTC CGA-30; for Sox2, forward 50-
ATG CAC CGC TAC GAC GTG A-30, reverse 50-CTT TTG
CAC CCC TCC CAT TT-30; for GAPDH, forward 50-TGC
ACC ACC AAC TGC TTA GC-30, reverse 50-GGC ATG GAC
TGT GGT CAT GAG-30. All primers were purchased from
Macrogen. The real-time PCRs were performed using Power
SYBR Green PCR Master Mix (Applied Biosystems) with
StepOnePlus Real-Time PCR system (Applied Biosystems) ac-
cording to the manufacturer's instructions. All reactions were
performed in triplicate using GAPDH as an internal control.

2.6. Dendritic number counting

NSCs were treated with 0.2 mg/mL of EEGR, or DMSO for
control and incubated for 4 d in differentiation media. The im-
ages were randomly taken in 3 different places of plates using
optical microscope (Olympus). The number of dendrites was
counted in the images and divided by the numbers of cell bodies.

2.7. Double-labeled immunocytochemistry

NSCs seeded on cover-glass bottom dish were treated with
0.2 mg/mL of EEGR, or DMSO for control and incubated for
2 d in differentiation media. After the treatment, the cells were
fixed in 4% paraformaldehyde in PBS pH 7.4 for 15 min at room
temperature and washed in PBS. The cells were then incubated
in PBS containing 0.25% Triton X-100 (PBST) at room



Figure 2. Effect of EEGR on NSC viability in growth media.
Each bar represents the mean percentage increase above control (DMSO)
(n = 3). Differences were statistically significant at *P < 0.05 and
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temperature for 10 min. After blocking with 1% BSA in PBST,
the cells were incubated first with a mouse Nestin monoclonal
antibody and a rabbit MAP2 antibody (Abcam) for overnight at
4 �C, and second with goat anti-mouse antibody coupled to
Alexa Fluor 488 and goat anti-rabbit antibody coupled to Alexa
Fluor 568 (Life Technologies) for 1 h at room temperature. The
images were taken afterwards for Nestin and MAP2 expression
separately, and combined Nestin and MAP2 using confocal
microscopy (Olympus).

3. Results

3.1. HPLC estimation of EEGR

4-Hydroxybenzyl alcohol is one of the major components in
Gastrodiae rhizoma with neuroprotective effects [11,17].
Therefore, we estimated whether EEGR contained 4-
hydroxybenzyl alcohol or not. In Figure 1A, the peak of 4-
hydroxybenzyl alcohol appeared clearly in its HPLC
chromatogram.

3.2. Effect of EEGR on proliferation of embryonic NSCs
under growth media

We first assessed whether EEGR altered NSC viability. MTT
assay was performed using NSCs treated with 0, 0.1, 0.2 mg/mL
of EEGR for 24 h. As shown in Figure 2, EEGR significantly
increased NSC viability in a dose-dependent manner. Compared
with control, 0.2 mg/mL of EEGR increased cell viability by
Figure 1. HPLC chromatogram of EEGR. HPLC chromatogram of EEGR (A
Absorbance was measured at 280 nm. The arrow marks indicate the location o
more than 20% point. These data suggest that EEGR increases
NSC proliferation.

3.3. Effects of EEGR on dendrite extension of NSCs

To elucidate whether EEGR affects NSC differentiation,
NSCs were treated with differentiation media with DMSO or
0.2 mg/mL EEGR for 4 d. The images taken by optical micro-
scopy clearly showed that EEGR-treated NSCs had more
extended dendritic spines, a small membranous protrusion from
dendrite, than DMSO-treated NSCs did (Figure 3A). Next, we
) and 4-hydroxybenzyl alcohol (B).
f 4-hydroxybenzyl alcohol peak.

**P < 0.01.



Figure 3. Effect of EEGR induces dendrite formation.
(A) The images of NSCs under optical microscopy; (B) Quantitative analysis of the number of dendrites. The number of dendrites was counted in the images
and divided by the numbers of cell bodies. The bar graph shows the mean dendrite number per a NSC (n = 3). Differences were statistically significant at
*P < 0.05.
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counted the dendrite number per a cell body. An EEGR-treated
NSC extended 1.42 dendrites per a cell, whereas a DMSO-
treated NSC had 1.07 dendrites per a cell (Figure 3B). These
data suggest that EEGR promotes the formation of dendrites and
dendritic spines, possibly neuronal differentiation.

3.4. Effects of EEGR on neuronal differentiation of
NSCs

In order to evaluate whether EEGR promotes neuronal dif-
ferentiation of NSCs in a molecular level, we tested mRNA
expression of marker genes such as Nestin, Tuj1 and MAP2 in
differentiation process. As shown in Figure 4, EEGR decreased
mRNA expression of Nestin, a specific marker for NSC, while it
increased that of Tuj1 and MAP2, neuronal differentiation
markers. In accordance with optical microscopy experiment,
EEGR induced 7.1-fold increase in MAP2 expression, which is
correlated with the branching ability of the neurons.
Figure 4. Effect of EEGR on mRNA expression of Nestin, Tuj1 and MAP2 in
(A): mRNA expression of Nestin, (B): mRNA expression of Tuj1; (C): mRNA e
with respect to control (n = 3). Differences were statistically significant at **P
Next, we further examined double-labeled immunocyto-
chemistry with Nestin and MAP2 antibodies (Figure 5). The
expression of Nestin was shown as a button-like cluster in the
cytoplasm and that of MAP2 was found associated with den-
dritic microtubules. MAP2 expression in EEGR-treated NSCs
was localized in dendritic spines with higher area density and
optical density (Figure 5B), compared to that in DMSO-treated
NSCs (Figure 5A).

Because EEGR has the potent ability to differentiate NSCs, we
finally examined whether EEGR induced alteration of specific
gene expression even in growth media. After NSCs were cultured
in growth media treated with 0, 0.1, 0.2 mg/mL of EEGR for 72 h,
real-time RT-PCR anlaysis was conducted. Although we failed to
find significant alterations in MAP2 mRNA expression under
growth media (Data not shown), EEGR decreased the mRNA
expression of SOX2, a transcription factor essential for main-
taining self-renewal, or pluripotency (Figure 6), suggesting
reduction in the feature of undifferentiated stem cell.
differentiation media.
xpression of MAP2. Each bar represents the mean fold increase or decrease
< 0.01 and ***P < 0.005.



Figure 5. Effect of EEGR on MAP2 expression in dendrites.
(A): NSCs treated with DMSO; (B): NSCs treated with 0.2 mg/mL of EEGR. Double-labeled immunocytochemistry was performed using antibodies against
Nestin (green) and MAP2 (red). The images are representative of at least three experiments.

Figure 6. Effect of EEGR on mRNA expression of Sox2 in growth media.
The mRNA expression of Sox2 was detected by real-time RT-PCR and
normalized to that of GAPDH. Each bar represents the mean fold decrease
below control (n = 3). Differences were statistically significant at *P < 0.05
and **P < 0.01.
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4. Discussion

NSCs, with their self-renewal and multiple differentiation
ability, are a promising resource in cell therapies for various
neurodegenerative diseases and neural tissue injuries. Although
NSC properties have been extensively researched for clinical
applications over the last decade [2,21], the unsolved problem is
how to promotes NSC proliferation effectively and induce
complete differentiation into neurons, which is critical for an
accurate and safe cell therapy. In this study, we demonstrate
that EEGR promotes NSC proliferation and neuronal
differentiation, in particular, dendrite formation; EEGR
increased NSC viability under growth condition. In addition,
EEGR decreased mRNA expression of Nestin and increased
that of Tuj1 and MAP2, along with increased number of
dendrites and dendritic spines in differentiation process.

Similarly, Panax notoginseng saponins was reported to pro-
mote the proliferation and differentiation of NSCs isolated from
rat hippocampus [22]. Panax notoginseng saponins increased the
mRNA expressions of Nestin, vimentin, and Tuj1, suggesting
differentiation of NSCs into both neurons and glial cells. In
our study, EEGR decreased mRNA expression of Nestin and
had no mRNA expression of GFAP detected (Data not
shown), while it increased that of Tuj1 and MAP2. These
results suggest that EEGR promotes NSCs differentiation into
neurons, not into glial cells.

One of the most important finding in this study is that EEGR
increases MAP2 expression, along with the protrusion of den-
drites and dendritic spines. MAP2 has been shown to be critical
for dendritic differentiation. The suppression of MAP2 using
antisense oligonucreotides inhibits the outgrowth of dendrites in
primary neuronal cultures [23] and MAP2 overexpression
promotes the formation of cytoplasmic processes similar to
dendrites in non-neuronal cells [24,25]. Therefore, it is very
likely that the increased number of dendrites and dendritc
spines in EEGR-treated NSCs is attributable to EEGR-induced
MAP2 expression. In addition, EEGR decreased mRNA
expression of Sox2 and Nestin, suggesting that the properties of
stem cells, self-renewal and pluripotency, disappeared in EEGR-
treated NSCs. In particular, Sox2 is a transcription factor which
plays an important role in maintaining the properties of NSCs
[26]. The expression of Sox2 is localized to undifferentiated
precursors, and it is generally decreased with differentiation
[27]. Taken together, EEGR-mediated regulation of these gene
expressions led to the differentiation of NSCs into neuronal
cells, implicating its beneficial effects in NSC-based therapies.

Because Gastrodiae rhizoma has been widely used as a safe
oriental herbal medicine for the treatment of various neurolog-
ical disorders [8], the effects of its oral administration on adult
NSCs should be considered. G. elata and its active
constituents have been reported to exert neuroprotective effects
[11–14], antidepressant effects [15,16], and memory improvement
[17,18]. Several studies showing their beneficial effects revealed
that the extracts of G. elata [13,19,28] or their constituents such
as 4-hydroxybenzyl alcohol [11] increased neuronal cells of
hippocampal CA1 region in neuronal damage or global
ischemia, compared to the control. Because brain damages
such as ischemic insults trigger neurogenesis from NSCs and
migrate to the damaged CA1 [23], these effects on hipocampal
CA1 region might be due to not only the protection from cell
death, but also neurogenesis from NSCs. In a good agreement
with these data, the administration of gastrodin upregulated
BrdU-positive proliferation of hippocampal NSCs in depres-
sion rat model [20]. Panax notoginseng saponins, reported
activator on NSCs proliferation and differentiation in vitro,
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induced proliferation, migration and differentiation of adult
NSCs in subventricle ventricle zone and subgranular zone of
rat hippocampus after ischemia in vivo [29,30]. In this regard,
EEGR administration also might regulate the fate of adult
NSCs in the brain. Because EEGR contains various active
constituents, it is likely that EEGR exhibits additive or
synergistic effects of its constituents on both NSC
proliferation and differentiation. To clarify this issue, further
in vivo study will be needed.

In conclusion, EEGR increased NSC viability under growth
condition, decreased expression of Nestin, and increased that of
Tuj1 and MAP2, thereby, increasing the number of dendrites
and dendritic spines of NSC in the differentiation process. Our
data demonstrate, for the first time, that EEGR may regulate
NSC proliferation and differentiation into neuronal cells. On the
basis of our results, EEGR is likely to be registered as a NSC
regulator in cell-based therapies for neuronal regeneration.
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