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1. Introduction

  Pyrroli dinedithiocarbamic acid (PDTC) ammonium salt is a 

membrane-permeant inhibitor of NF-毷B activation that participates 

in inhibiting the NF-毷B pathway in a variety of cells. Relevant 

reports showed that, as an antioxidant and metal chelator, PDTC 

is involved in the precipitation of many heavy metal ions in acidic 

environments; and PDTC can also inhibit apoptosis in smooth 

muscle cells and leukemia cell HL-60 by apoptosis-related pathway. 

Furthermore, PDTC has a molecular weight of 164.29 Daltons 

and its molecular formula is C5H9NS2•NH3. PDTC is also soluble 

in water and its solubility in DMSO is up to 100 mM. In recent 

years, some studies have shown that NF-毷B inhibitor PDTC can 

inhibit tumor cell growth and proliferation; and clinical applications 

showed that NF-毷B inhibitor PDTC has antitumor effects in 

gastrointestinal tumors[1,2]. Thus, NF-毷B inhibitor PDTC is 

expected to be an effective antitumor drug; however, this requires 

further studies. The Lewis lung cancer mice model was established 

in this study and anti-tumor effects of NF-毷B inhibitor PDTC were 

observed. Microvessel density (MVD), tumor vascular endothelial 

growth factor (VEGF) and endostatin expressions were further 

observed to explore the possible mechanism of NF-毷B inhibitor 

PDTC.

Objective: To investigate the effects of NF-毷B inhibitor pyrrolidine dithiocarbamate 
hydrochloride (PDTC) on vascular endothelial growth factor (VEGF) and endostatin 
expression in mice with Lewis lung cance; and its mechanism. Methods: Mice survival rate 
and anti-tumor effects were observed in different concentrations of NF-毷B inhibitor PDTC 
after the Lewis lung cancer mice model was established. VEGF and endostatin expressions 
were detected by immunohistochemical assay. Results: Lewis lung cancer was be inhibited 
by 0.5 mg/kg, 1.5 mg/kg and 3.0 mg/kg of NF-毷B inhibitor PDTC (P<0.05). Microvessel 
density (MVD) in 0.5 mg/kg, 1.5 mg/kg and 3.0 mg/kg NF-毷B inhibitor PDTC groups were 
significantly lower than the control group (P<0.05). Immunohistochemical assay results 
showed that VEGF and endostatin expressions in the 0.5 mg/kg, 1.5 mg/kg and 3.0 mg/kg NF-
毷B inhibitor PDTC groups were significantly lower than the control group (P<0.05). Western 
blot results also showed that NF-毷B inhibitor PDTC could inhibit VEGF and endostatin 
expressions in tumor tissues. Conclusions: NF-毷B inhibitor PDTC can inhibit tumor 
formation and reduce tumor angiogenesis in mice with Lewis lung cancer; and its mechanism 
maybe associated to VEGF and endostatin down-regulation.
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2. Material and methods

2.1. Animals and tumor strains

  Healthy, random male and female, 6-8 weeks old, weighting 18-

22 g, C57/6 mice were provided by the Experimental Animal Center 

of Southern Medical University; which was raised in a specific-

pathogen-free (SPF) laboratory. Lewis lung cancer cells were 

provided by the Guangdong Academy of Medical Sciences.

2.2. Drugs and Reagents

  NF-毷B inhibitor PDTC (Japan, Tokyo Chemical Industry 

Co., Ltd.); Dulbecco’s Modified Eagle’s Medium (DMEM) was 

purchased from Guangzhou YingJun Biotechnology Co., Ltd.; 

FBS, F12, Hanks solution, and PBS were provided by Beijing 

DingGuo Biotechnology Co., Ltd.; cyclophosphamide powders 

were purchased from Xi’an Likang Xinte Pharmaceutical Co., 

Ltd; immunohistochemistry kit and corresponding antibodies were 

purchased from American Abcam Co., Ltd.

2.3. Establishment of Lewis lung cancer transplantation 
tumor model

  Lewis lung cancer cells were diluted with sterile saline up to 

110 mL tumor cell suspension concentration and six C57/6 mice 

were intraperitoneally inoculated under sterile conditions. When 

ascites grew vigorous in mice, 3-5 mL of ascites were extracted 

with medical injectors and transferred into a clean beaker. Then, 

the ascites were diluted with sterile saline up to the applied 

concentration, centrifuged for 5 min (1 500 rpm/min.). The 

supernatant was discarded and lower layer cells were washed 2-3 

times with distilled water. Living cells were detected positive by 

Trypan Blue; Ratio of tumor cells reached 95% was considered as 

positive. Then, cells were further diluted with sterile saline until a 2

伊107/mL concentration was attained. Two hundred C57/6 mice were 

subcutaneously injected with 0.2 mL of cell suspension to establish 

the Lewis lung cancer mice model.

2.4. Grouping

  In this study, 40 C57/6 mice were randomly divided into five 

groups (n=8). After 48 hours of subcutaneous inoculation, the 

control group was injected with equivalent amounts of normal 

saline; the experimental group or NF-毷B inhibitor PDTC group 

was administered with 0.5 mg/kg, 1.5 mg/kg and 3.0 mg/kg doses, 

respectively; the cyclophosphamide group or the positive control 

group was administered with a 20 mg/kg dose by intraperitoneal 

injection, 0.2 mL, once a day.

2.5. Tumor inhibition rate

  After 15 days of continuous injections, mice were sacrificed by 

breaking their cervical vertebra. Metastasis sites were dissected, 

and inhibiting rates of the experimental and control groups were 

calculated as follows: Inhibiting Rate = [(Tumor weight of control 

group -Tumor weight of treatment group)/Tumor weight of control 

group] 伊100%.

2.6. Determination of MVD in tumor microvessels

  After mice were sacrificed, tumors were isolated and sliced into 

paraffin sections. Detailed procedures and staining method for MVD 

was according to the kit instructions. MVD measurement methods 

are as follows: appropriate regions or “hot spots” (rich in tumor 

microvessels) were first selected under a low magnification optical 

microscope, the low magnification field was then adjusted into high 

magnification (400伊), and the number of brown dyed microvessels 

were counted. Five were randomly selected from the field of view; 

values were averaged and used as MVD values.

2.7. Protein expression determination by immunohistochemistry

  After mice were scarified, tumors were isolated and sliced into 5 

毺m paraffin sections. Immunohistochemical staining method was 

used to measure MVD according to the kit instructions. Positive 

cells were brown-yellow particles. Immunohistochemical results 

were determined by semi-quantitative method or by the percentage 

of positive cells and dye depth. Positive cells: <10% is 1 point, 10%-

50% is 2 points, >50% is 3 points; dye depth: non-positive cells has 

0 point, yellow is 1 point, brownish yellow is 2 points, chocolate 

brown is 3 points. Total immune response score is equal to the 

percentage of positive cells times dye depth. The strongest staining 

results were represented by the following: negative (-): 0 point, weak 

positive (+): 1-3 points, positive (+ +): 4-6 points, and strong positive 

(+ + +): 7-9 points.

2.8. Vascular endothelial growth factor (VEGF) and 
endostatin expressions detected by western blot

  After grinding tumor tissue samples in liquid nitrogen, tissues were 

placed in RIPA lysis buffer for lysis. A protease inhibitor cocktail 

was added, tissues were beat by a pipette, and mixed.

  After they were placed on ice for 30 min, short shocks of ultrasonic 

waves at an appropriate frequency were used to break the cells on 

ice using a probe-type ultrasound. The mixture was extracted at              

4 曟 and centrifuged at 13 000 rpm for 20 min. The supernatant was 

transferred into a new centrifuge tube and protein concentration was 

determined by Protein Assay Kit.

  After SDS-PAGE electrophoresis, the gel was immersed into a 

transfer buffer and equilibrated for 10 min. Sandwiched films were 

assembled and transferred, transfer buffer was added, and electrodes 

were inserted. After transmembrane, the PVDF membrane was 

rinsed with TBS for 10-15 min, placed in a TBS/T blocking buffer 

containing 5% (w/v) skim milk powder, shaked at room temperature 

for one hour, and an appropriately diluted primary antibody was 
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added; which was diluted by TBST containing 1% (w/v) skim milk 

powder. Then, the membranes was incubated at room temperature 

for two hours and rinsed three times by TBST every 5-10 min. 

The membranes were incubated with a secondary antibody (1:10 

000, HRP labeled), which was diluted by TBST with 0.05% (w/

v) skimmed milk powder at room temperature for one hour. Then, 

the membranes were rinsed three times with TBST every 5-10 min. 

They were exposed, and photographed. Quantity one v4.62 software 

molecular bands were used for gray value (Trace Tracking). The 

optical density curve was drawn according to different subunit bands. 

Areas under the optical density curves were calculated as a quantity 

reference for electrophoretic bands and results were statistically 

analyzed.

2.9. Statistical analysis

  All data was analyzed with SPSS 19.0 software. Data were 

expressed as mean依SD values and compared with single factor 

analysis of variance. Enumeration data were compared with the chi-
square test. P<0.05/P<0.01 has statistical significance.

3. Results

3.1. Effect of NF-毷B inhibitor PDTC on survival rate of 
mice with Lewis lung cancer

  Figure 1 illustrates that each group had 40 mice with Lewis lung 

cancer that all died over time. After 15 days of administration, 

survival rates of the control group, cyclophosphamide group, 0.5 

mg/kg NF-毷B inhibitor PDTC group, 1.5 mg/kg NF-毷B inhibitor 

PDTC group and 3 mg/kg NF-毷B inhibitor PDTC group were 

60.0%, 65.0%, 80.0%, 77.5% and 72.5%, respectively. There were 

significant differences between the control group, 0.5 mg/kg NF-

毷B inhibitor PDTC group and NF-毷B inhibitor PDTC 1.5 mg/kg

group (P<0.05). There was also significant differences between the 

cyclophosphamide group and 0.5 mg/kg NF-毷B inhibitor PDTC 

group (P<0.05).
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Figure 1. Effect of NF-毷B inhibitor PDTC on survival rate of mice with 
Lewis lung cancer.

3.2. Inhibition effect of NF-毷B inhibitor PDTC on mice 
with Lewis lung cancer

  Tumor weight of the NF-毷B inhibitor PDTC group was 

significantly lower than that in the control group; and the 0.5 mg/

kg NF-毷B inhibitor PDTC group has shown significant tumor 

suppression effects. There was a significant difference between the 

0.5 mg/kg NF-毷B inhibitor PDTC group and the control group 

(P<0.05); and its antitumor effect was enhanced as dosage increased. 

At high concentrations, NF-毷B inhibitor PDTC had significant 

inhibitory effects on mice with Lewis lung cancer (Table 1).

3.3. Effect of NF-毷B inhibitor PDTC on MVD of tumor 
tissue in mice with Lewis lung cancer

  Figure 2 illustrates that there was no significant difference on the 

number of MVD between the 0.5 mg/kg NF-毷B inhibitor PDTC 

group and control group; however, the number of MVD in the 

1.5 mg/kg NF-毷B inhibitor PDTC group and 3.0 mg/kg NF-毷
B inhibitor PDTC group were significantly lower than that in the 

control group (P<0.05).

Table 1
Inhibition effect of NF-毷B inhibitor PDTC on mice with Lewis lung cancer.

Groups Dosage n Tumor weight (g) Inhibiting rate
Control group 0 12 1.79依0.47
Cyclophosphamide group 20 12   0.44依0.21** 75.42
NF-毷B inhibitor PDTC 0.5 12 1.34依0.34* 25.14
NF-毷B inhibitor PDTC 1.5 12 1.15依0.25* 35.75
NF-毷B inhibitor PDTC 3.0 12  0.96依0.21** 46.37

Note: * P<0.05, * * P<0.01 compared with the control group.

Table 2
Effect of NF-毷B inhibitor PDTC on VEGF expression in mice with Lewis lung cancer.

Groups Dosage n
VEGF protein

Positive rate
- + ++ +++

Control group   0 24   4 7 7 6 83.33
Cyclophosphamide group 20 24 13 6 4 1 45.83
NF-毷B inhibitor PDTC     0.5 24   9 6 6 3 62.50
NF-毷B inhibitor PDTC    1.5 24 11 6 5 2 54.17
NF-毷B inhibitor PDTC    3.0 24 13 6 4 1 45.83
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Figure 2. Effect of NF-毷B inhibitor PDTC on MVD of tumor tissue in mice 
with Lewis lung cancer.
Note: * P<0.05, * * P<0.01 compared with control group.

3.4. Effect of NF-毷B inhibitor PDTC on VEGF and 
endostatin expressions in mice with Lewis lung cancer

  There were significant differences of VEGF protein expression 

between the NF-毷B inhibitor PDTC group and control group 

(P<0.05) on a dose-dependent manner. VEGF positive rate 

decreased as NF-毷B inhibitor PDTC dose increased. Moreover, 

the 3.0 mg/kg NF-毷B inhibitor PDTC group had the lowest VEGF 

positive expression (Table 2). VEGF and endostatin expressions 

in tumor tissues were determined by Western blot. Western blot 

results revealed that NF-毷B inhibitor PDTC can inhibit VEGF and 

endostatin expressions in tumor tissues (Figure 3).

  Quantity one statistical analysis showed that relative signals in 

the NF-毷B inhibitor PDTC group and control group were 10.7 依 

1.9 and 17.5 依 2.3, respectively (P<0.05); and relative signals of 

endostatin in the NF-毷B inhibitor PDTC group and control group 

were 3.01 依 6.8 and 22.3 依 1.1, respectively. 

PDTC

IB: Endostatin

IB: VEGF

IB: GAPDH

-                         +

 

Figure 3. VEGF and endostatin expressions in tumor tissue determined by 
Western blot.

4. Discussion

  Surgery and chemotherapy are currently the main treatments for 
lung cancer. However, obvious defects exist in both treatments. 

Firstly, surgical treatment can cause physiological and psychological 

burden, affecting the patient’s quality of life; and secondly, 

chemotherapy has strong toxicities that brings serious risks to a 

patient’s health[3]. Traditional Chinese medicine can acquire better 

results; the best choice for patients in clinical treatment. Traditional 

Chinese medicine has weaker effects and complicated compositions; 

but combined with Western medicine or chemotherapy, its 

effectiveness can be improved and side effects reduced. Traditional 

Chinese Medicine is the inevitable trend for lung cancer prevention 

and treatment[4]. NF-毷B inhibitor PDTC contains many active 

ingredients such as flavonoids, phenylpropanoids, and tannins. 

These ingredients have many good effects such as anti-viral, anti-

inflammatory and anti-oxidation of free radicals, and so on[5,6]. It 

has been confirmed that NF-毷B inhibitor PDTC can inhibit tumor 

growth, which works through the ethyl acetate extract at the roots of 

NF-毷B inhibitor PDTC; however, its mechanism is not yet clear.

  NF-毷b is an important nuclear transcription factor that has a 

variety of biological effects, playing a role in immune response, 

progress of inflammation and tumor genesis. NF-毷b mediates anti-

apoptotic signal transduction; thereby, inhibiting cell apoptosis 

and enabling the cells to lose their normal cell apoptosis process, 

which subsequently develops into tumor cells. PDTC is a strong 

antioxidant that can specifically inhibit NF-毷b activity. Specific 

mechanisms of PDTC include inhibiting the NF-毷b subunit P65 

expression and inhibiting I毷b degradation to reduce the nuclear 

translocation of NF-毷b[5-7]. PDTC is also a metal ion chelating 

agent (metal chelator), which can precipitate heavy metals such as 

As, Bi, Cd, Co, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V, Zn in acidic solutions. 

PDTC can induce vascular smooth muscle cells apoptosis in rats and 

inhibit HL-60 leukemia cell apoptosis[8-10]. Therefore, PDTC can 

suppress the excessive activation of NF-毷b and inhibit tumor cell 

proliferation as a NF-毷b inhibitor[11].

  Results of this study revealed that in the NF-毷B inhibitor PDTC 

treatment groups, NF-毷B inhibitor PDTC can inhibit Lewis 

lung cancer. Inhibition effects were positive dose dependent and 

tumor weight in the NF-毷B inhibitor PDTC high dose group was 

significantly lower than that in the control group (P<0.01). These 

results suggest that NF-毷B inhibitor PDTC has an important effect 

in treating mice with Lewis lung cancer. In terms of side effects, 

its toxicity is minimal compared to the cyclophosphamide group. 

Studies have not only shown that tumor growth is dependent on 

blood vessel formation, but it has also shown that angiogenesis 

plays a crucial role in solid tumor production, development and 

metastasis[12-15]. Further, the number of capillaries within a tumor 

tissue is the most objective reference standard in evaluating the 

tumor angiogenesis index.

  The Lewis lung cancer mice model was established in this study. 

The number of MVD in the NF-毷B inhibitor PDTC treatment 

groups was lower than that in the control group. The number of 

MVD in the 1.5 mg/kg NF-毷B inhibitor PDTC group and 3.0 mg/

kg NF-毷B inhibitor PDTC group was significantly lower than that 

in the control group (P<0.05). However, there are no significant 

differences on the number of MVD between the 0.5 mg/kg NF-毷B 

inhibitor PDTC group and control group. These results suggest that 

NF-毷B inhibitor PDTC can inhibit blood vessel formation in mice 

with Lewis lung cancer and inhibit angiogenesis. In addition, studies 

have shown that positive regulating factor plays an important role 

in tumor angiogenesis, such as bFGF, VEGF, PD-ECGF; which can 

promote the occurrence and development of tumor vessels[16-21]. 

In recent years, studies have shown that tumor angiogenesis factors 

such as VEGF can directly induce endothelial cells (ECs) to divide, 

so as to induce rapid tumor angiogenesis[22-25].

  Results of this study has revealed that the percentage of positive 
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cells and dye depth in the NF-毷B inhibitor PDTC treatment group 

and cyclophosphamide group were lower than that in the control 

group, which has significant difference (P<0.05). The percentage 

of positive cells and dye depth in the NF-毷B inhibitor PDTC high-

dose group were significantly lower than that in the control group, 

which has significant difference (P<0.05). These results suggest that 

NF-毷B inhibitor PDTC can inhibit VEGF expression in mice with 

Lewis lung cancer and further inhibit tumor cells to release VEGF; 

thus, inhibiting tumor angiogenesis.

  In conclusion, NF-毷B inhibitor PDTC can down-regulate the 

expression of VEGF, and subsequently inhibit tumor formation 

and reduce tumor angiogenesis in mice with Lewis lung cancer. 

Hence, VEGF has a single factor effect or is jointly coordinated with 

other protein molecules; that is, our future research would focus in 

studying the mechanisms of VEGF inhibition by PDTC.
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