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ABSTRACT

Objective: To investigate the expression of myocardium connexin 43 (Cx43) in late
exercise preconditioning (LEP) cardioprotection.
Methods: Eight-week-old adult male Sprague Dawley rats were randomly assigned into
four groups (n = 8). Myocardial injury was judged in accordance with serum levels of
cTnⅠ and NT-proBNP as well as hematoxylin basicfuchsin picric acid staining of
myocardium. Cx43 mRNA was detected by in situ hybridization and qualified by real-
time fluorescence quantitative PCR. Cx43 protein was localized by immunohistochem-
istry and its expression level was determined by western blotting.
Results: The LEP obviously attenuated the myocardial ischemia/hypoxia injury caused
by exhaustive exercise. There was no significant difference of Cx43 mRNA level between
the four groups. Cx43 protein level was decreased significantly in group EE (P < 0.05).
However, LEP produced a significant increase in Cx43 protein level (P < 0.05), and the
decreased Cx43 protein level in exhaustive exercise was significantly up-regulated by
LEP (P < 0.05).
Conclusions: LEP protects rat heart against exhaustive exercise-induced myocardial
injury by up-regulating the expression of myocardial Cx43.
1. Introduction

Cardiovascular disease, which is induced by ischemic, is the
major cause of death in the industrialized world. Repeated tran-
sient ischemia, which is called ischemic preconditioning (IP),
have been shown to protect myocardium against a subsequent
more sustained ischemic insult [1–3]. Until now, many studies
have evidenced that IP shows cardioprotection by enhancing
myocardial tolerance to ischemia-reperfusion (I/R) injury and
improving myocardial function [4,5]. Myocardium connexin
43 (Cx43) is a predominant protein forming gap junctions
and non-junctional hemichannels in ventricular myocardium,
through which ions and small molecules diffuse between cells [6].
It plays a key role in IP cardioprotection against I/R injury and IP
have been indeed documented to affect the phosphorylation
status of Cx43. Jain et al. showed that IP attenuates ischemia-
induced dephosphorylation of myocardial Cx43 and the result-
ing electrical uncoupling [7]. The preserved phosphorylation of
Cx43 during IP may be related to the enhanced association of
Cx43 with PKC and p38 mitogen activated protein kinases [8].
Furthermore, IP cardioprotection disappears in heterozygous
Cx43-deficient mice [9,10], indicating that Cx43 is very
important in relieving IP cardioprotection against I/R injury.
Like IP cardioprotection, exercise preconditioning (EP), which
is brief episode regular exercises, is also widely demonstrated
to protect heart during an I/R insult [11–15]. At present, many
researches about myocardial protection have focused especially
on EP, which includes a biphasic protection manner, i.e., early
cardioprotection of exercise preconditioning (EEP) occurring
immediately after the exercise and late cardioprotection of
exercise preconditioning (LEP) developing 24 h post exercise.
For example, EP can improve myocardial function and enhance
myocardial tolerance to I/R injury. Its endogenous myocardial
protection mechanisms may be closely related to channels
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opening, attenuation of apoptosis, and proteins activation closely
[12,15–17]. EP was also found to markedly attenuate exhaustive
exercise-induced myocardial injury, and PKC is probably
involved in EP cardioprotection [18].

Although many studies have demonstrated the protective
effect of EP against exhaustive exercise-induced myocardial
injury, its mechanisms are still unclear. Considering the same
powerful cardioprotective effects of both EP and IP as well as
the key role of increased expression of Cx43 in IP car-
dioprotection, we hypothesized that Cx43 may involve in car-
dioprotective signaling transduction of EP. It has been observed
that endurance exercise training preserves a higher expression
level of Cx43 in heart under resting conditions [19]. Moreover,
the expression level of Cx43 is down-regulated in trained mice
during acute exercise [20]. However, to our knowledge, no
research has been done to study the regulatory effects of Cx43
on EP cardioprotection against exhaustive exercise-induced
myocardial injury. Therefore, this study aimed to determine
the relationship between Cx43 and LEP cardioprotection against
exhaustive exercise-induced myocardial injury.

2. Materials and methods

2.1. Rats

Eight-week-old adult male Sprague Dawley rats weighting
220–300 g were purchased from Chinese Academy of Sciences
(Shanghai, China). All rats were housed in standard rat cages
and maintained at a constant temperature and humidity with a
12 h: 12 h light–dark cycle. They were fed and watered ad
libitum. All animal care and experimental procedures were
conducted in accordance with the Guiding Principles for the
Care and Use of Animals in the Field of Physiological Sciences
and approved by the Ethics Committee for Science Research of
the Qufu Normal University.

2.2. Experimental protocol

All rats were given an adaptive training on a treadmill for 5 d,
with an adaptive training velocity of 15 m/min and a time course
of 10–20 min/d. After 1-day rest, all rats were randomly divided
into four groups, eight in each group: (i) sedentary control group
(group C), the rats of which were placed on the treadmill without
any treadmill exercise; (ii) exhaustive exercise group (group
EE), rats of which run to exhaustion on the 0% grade treadmill at
a speed of 35 m/min to induce myocardial injury; (iii) late ex-
ercise preconditioning group (group LEP), rats of which were
allowed to run on the treadmill for four periods of 10 min, each
at 30 m/min, with intervening periods of rest of 10 min at 0%
grade. Exercise began and ended with 5-min ‘warm up’ and
‘cool down’ periods at 15 m/min and 0% grade. The rats were
sacrificed 24 h after the exercise. (iv) late exercise pre-
conditioning plus exhaustive exercise group (group LEP + EE),
rats of which were treated as those in the group LEP, except that
they run to exhaustion 24 h after the exercise and were sacrificed
0.5 h after the exhaustion.

Animals were anesthetized with trichloroacetaldehyde mon-
ohydrate (400 mg/kg intraperitoneally) and fixed in the dorsal
position on an animal operation table. After abdominal cavity
was quickly opened and heart was exposed, blood was drawn via
inferior caval vein. Partial heart was rapidly excised, and left
ventricle (LV) free wall was isolated at the level of the near apex
for real-time fluorescent quantitative PCR and western blot
analysis. Once the tissue was divided, the pieces were quick
frozen in liquid nitrogen. The rest heart was exposed to perfusion
fixation for in situ hybridization and immunohistochemistry.

2.3. Detection of serum cTnl and NT-proBNP

The serum levels of cTnⅠ and NT-proBNP in the inferior
caval vein blood samples were quantified. The serum cTnⅠ levels
were determined by automated immunochemiluminescence on
Access 2 immunoassay system (Beckman Coulter, USA), while
the serum NT-proBNP levels were determined by using rat NT-
proBNP ELISA kits (R&D Systems, Minneapolis, MN, USA) in
accordance with the manufacturer's instructions. The sensitivity
thresholds for cTnⅠ and NT-proBNP were 0.01 mg/L and 1 mg/L,
respectively.

2.4. Hematoxylin basic fuchsin picric acid (HBFP)
staining

Following deparaffinization and rehydration, tissue section
was stained in alum hematoxylin for 5 min and differentiated in
1% acid alcohol for 4–6 s. After being stained in 0.1% basic
fuchsin for 3 min, the section was rinsed with absolute acetone
for 15–22 s. Then, it was differentiated in 0.1% picric acid in
absolute acetone for 5–10 min. Finally, it was cleared with
xylene and covered with a coverslip. The ischemic/hypoxic
myocardial fibers stain a crimson red color under light
microscope.

2.5. In situ hybridization

The tissue section was first deparaffinized and rinsed with
distilled water and phosphate-buffered saline (PBS). After that,
it was soaked in 3% hydrogen peroxide for 30 min, followed by
pepsin digestion for 5–7 min. After the second washing with
PBS and distilled water and prehybridization at 42 �C thermo-
stat, the section was hybridized, blocked with serum, incubated,
washed with PBS, colorated, counterstained with hematoxylin,
dehydrated in graded series of ethanol and mounted. Serial
adjacent sections were hybridized, and probe hybridization so-
lution was replaced by PBS as a negative control. Cx43 in situ
hybridization kit and DAB chromogenic reagents were pur-
chased by Wuhan Boster Biological Engineering (Wuhan,
China). The sequences of three intermediate mRNA fragment
probes for rat Cx43 gene are as follows: 50-TCT CTC ACG TGC
GCT TCT GGG TCC TTC AGA TCA TA-30, 50-CTC ATC
CAG TGG TAC ATC TAT GGG TTC AGC TTG AG-30, and
50-AAC AAT TCC TCG TGC CGC AAT TAC AAC AAG
CAA GC-30.

2.6. Real-time fluorescent quantitative PCR

Total RNA was isolated from LV myocardium using a
commercial kit (RNeasy, Mini Kit, Qiagen) according to the
manufacturer's instructions. Strand cDNA was synthesized with
random hexanucleotides from 1.5 mg of total RNA using a
reverse transcription system kit (SuperScript™ Ⅲ Reverse
Transcriptase, Invitrogen). Real-time quantitative PCR was done
using Biorad's iQ 10000× SYBR Green Supermix (Invitrogen).
The primer sequences are as follows: 50-AAA GGC GCG TTA
AGG ATC GCG TG-30 (the first primer for Cx43 gene), 50-GTC
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ATC AGG CCG AGG CCT-30 (the second primer for Cx43
gene), 50-TGA CGT GGA CAT CCG CAA AG-30 (the first
primer for GAPDH gene), and 50-CTG GAA GGT GGA CAG
CGC GAG G-30 (the second primer for GAPDH gene). The
quality of the RT-PCR product was routinely checked by the
thermal denaturation curve following RT-PCR reactions. The
expression of RNA encoding the channel subunits was
normalized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and relative mRNA levels were quantified by the
DCT method.

2.7. Western blotting

The LV tissue was homogenized in lysis buffer and centri-
fuged at 14000× g for 15 min at 4 �C. Then the supernatant was
collected to get total Cx43. Electrophoresis was performed on
10% SDS-polyacrylamide gels to transfer proteins to 0.2 mm
Sequi-Blot PVDF membranes (200 Ma, 4 �C). After incubation
with 5% BSA, the membranes were incubated with rabbit anti-
rat Cx43 antibodies (1:5000 dilution, Boster Biological Engi-
neering, Wuhan, China). Rabbit anti-rat GADPH antibodies
(1:10000 dilution, Kang Biological Engineering, Shanghai,
China) overnight at 4 �C. After being washed, the membranes
were incubated with horseradish peroxidase (HRP)-conjugated
goat anti-rabbit IgG antibodies (1:5000 dilution, Boster Bio-
logical Engineering, Wuhan, China). Results were visualized by
the enhanced chemiluminescence method and evaluated by
Image J software (NIH, Bethesda, MD, USA).

2.8. Immunohistochemistry

The tissue section was deparaffinized, rehydrated, washed,
immersed in 3% hydrogen peroxide, and then digested with pepsin
for antigen retrieval. After the blocking of unspecific binding by
serum, the section was incubated with rabbit anti-rat Cx43 anti-
bodies (1:200, Boster Biological Engineering, Wuhan, China) at
4 �C overnight. Then, it was detected using the streptavidin-biotin
complex kit (1:200, goat anti-rabbit IgG, Boster Biological Engi-
neering, Wuhan, China). Diaminobenzidine/peroxidase substrate
was used to produce a brown-colored signal. The section was
counterstained, dehydrated, cleared, and coverslipped. PBS was
used to replace primary antibody and adjacent sections were used
as negative control.

2.9. Statistical analysis

Results are expressed as mean ± SD, and values were
compared using the one-way analysis of variance (SPSS 10.0;
SPSS, Chicago, IL). Upon confirmation of a significant main
effect, individual differences were determined with post hoc
analysis. A value of P < 0.05 was considered significant.
Table 1

Effects of LEP on biomarkers of myocardial injury and Cx43 expression.

Group Serum cTnⅠ level (mg/L) Serum NT-proBNP

C 0.02 ± 0.01 46.99 ± 4.
EE 3.86 ± 2.05a 50.73 ± 3.
LEP 0.02 ± 0.01 42.20 ± 3.
LEP + EE 0.83 ± 0.63b 45.75 ± 2.

a P < 0.05 vs. the group C. b P < 0.05 vs. the group EE. c Cx43 protein le
3. Results

3.1. Establishment of animal model

Table 1 shows the serum levels of cTnⅠ and NT-proBNP. The
serum levels of both cTnⅠ and NT-proBNP were significantly
higher in the group EE than in the group C (P < 0.05). However,
the serum levels of cTnⅠ and NT-proBNP were significantly
lower in the group LEP + EE than in the group EE (P < 0.05).
No significant difference in the serum cTnⅠ level was found
between the group C and group LEP.

HBFP-stained cardiomyocytes of the LV free wall are rep-
resented in Figure 1. The ischemic cardiomyocytes were stained
vivid crimson red, and the non-ischemic tissues were stained
light brown. A light brown color was seen in the cardiomyocytes
of the group C, while crimson red displayed in the majority of
cardiomyocytes of the group EE. There is less crimson red color
and the red patchy stain was scattered in the cardiomyocytes of
the group LEP + EE, compared with that of the group EE. Thus,
detection of serum cardiac biomarkers and an obvious HBFP
staining pattern in cardiomyocytes confirmed the successful
establishment of rat model of exhaustive exercise-induced
myocardial injury and cardiopretection induced by exercise
preconditioning.

3.2. Observation of myocardial Cx43 mRNA by in situ
hybridization

The Cx43 mRNA in the cardiomyocytes of the LV anterior
free wall at the level of the near apex was detected by in situ
hybridization (Figure 2). The cardiomyocytes of the group C
displayed a light brown color and granular distribution in the
cytoplasm, while those of the group EE showed no obvious
changes, and No obvious difference in the Cx43 mRNA was
found between the group EE and group LEP + EE.

3.3. Changes of Cx43 mRNA and protein levels in
myocardium

No miscellaneous peak and abnormal broadening of the main
peak was found in the myocardial Cx43 melting curve, indi-
cating that Cx43 was the only product of PCR amplicon. Table 1
represents the real-time fluorescent quantitative PCR results of
myocardial Cx43 gene. No significant differences in the Cx43
mRNA level in myocardium were found between the four
groups.

As shown by the western blotting (Table 1), the Cx43 protein
level in myocardium was significantly lower in the group EE
than in the group C (P < 0.05), but it was significantly higher in
the group LEP and group LEP + EE than in the group EE
(P < 0.05).
level (mg/L) Cx43 mRNA level Cx43 protein levelc

72 2.00 ± 0.34 0.58 ± 0.16
42a 1.55 ± 0.26 0.30 ± 0.10a

64 1.93 ± 0.26 0.57 ± 0.25b

86b 1.51 ± 0.15 0.52 ± 0.18b

vel is revised using GADPH level.



Figure 1. Myocardial ischemia detected by HBFP staining (×400).

Figure 2. Cx43 mRNA in rat myocardium detected by in situ hybridization (×400).

Figure 3. Cx43 protein in cardiomyocytes detected by immunohistochemistry (×400).
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3.4. Immunohistochemical detection of myocardial Cx43

The Cx43 protein in cardiomyocytes was also detected by the
immunohistochemical method (Figure 3). The Cx43 protein in the
cardiomyocytes of the group C displayed a light brown color and
the cardiomyocytes showed a rod-shaped or punctate distribution
pattern in end-to-end connection (intercalated disc) and side to
side connection. Similar appearance was found in the rest groups.
Compared with the group C, the group EE showed only less rod-
shaped or punctate Cx43 in the cardiomyocytes. In contrast, the
group LEP and group LEP + EE had considerable more
rod-shaped or punctate Cx43 in the cardiomyocytes, compared
with the group EE, and more Cx43 can be found in intercalated
disc than in side to side connection of cardiomyocytes.

4. Discussion

In the present study, we evaluated the expression of Cx43 in
the cardioprotection of LEP against exhaustive exercise induced
myocardial injury, by using the established rat model. Exercise
training, a way for progressive adaptation of the organism to
physical activity, can make the subject to acquire new abilities
and increase resistance for better performances. A lot of studies
have also proved that endurance exercise is the practical and
sustainable countermeasure which can provide cardioprotection
against myocardial injury [21–25]. Moreover, some studies have
documented that EP which is brief episode regular exercise
training, can protect the heart against a subsequent ischemic
insult [12,14,16,18,26]. Especially, EP cardiopretection against
exhaustive exercise induced myocardial injury have been
recently reported in rats trained in a once EP program. Some
researchers have been proved that exhaustive exercise renders
heart injury in rats, and EP markedly attenuates exhaustive
exercise-induced myocardial injury [18,27,28].

Our study showed that the serum levels of NT-proBNP and
cTnⅠ, which are biomarkers of myocardial injury, increased
when the rats suffered the exhaustive exercise program, but their
levels were reduced in the LEP group. In particular, a decrease in
the serum levels of NT-proBNP and cTnⅠ appeared in the hearts
of rats in the group LEP before the exhaustive exercise induced
myocardial injury. The HBFP staining also demonstrated
myocardial ischemia in the rat hearts, with the ischemic fibers
being stained a vivid crimson color, and crimson red was found
in majority of cardiomyocytes in hearts of rats suffering the
exhaustive exercise program. However, less crimson red color
and red patchy stain were found scattered in the cardiomyocytes
of the group LEP before the exhaustive exercise. These results
indicated that the successful establishment of animal model of
exhaustive exercise-induced myocardial injury and car-
diopretection induced by exercise preconditioning. Our results
conform to those of Shen et al. [18], and similar results have been
documented by other researchers [29,30].

In recent years, many studies related to myocardial protection
have focused especially on EP, and a few studies have stated the
powerful beneficial effect of EP [15,17,31]. Nevertheless, its
effectiveness and mechanisms have not yet been clearly
demonstrated. Therefore, it is necessary to explore the protective
effects of EP on exhaustive exercise-induced myocardial injury.

Functional gap junctions are necessary for the cell-to-cell
electrical coupling which is required for synchronized cardiac
contraction. Cx43, the main gap junction protein, is predomi-
nantly localized at the sarcolemma in myocardium of rats, and it
also appears to be one vital element of the signal transduction
cascade of the protection by preconditioning. Cx43 in car-
dioprotection induced by preconditioning to attenuate myocar-
dial I/R injury have been probed in previous studies [8,32–34].
Schwanke et al. pointed out that Cx43 knockout mice
presented a disappeared cardioprotection by IP [10], which
demonstrated that myocardial Cx43 plays a very important
role in cardioprotection.

To our knowledge, the effect of EP on Cx43 expression in
the cardioprotection against exhaustive exercise-induced
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myocardial injury have not been examined yet, and this is the
first study to probe into the relationship between Cx43 and
cardioprotection which is induced by LEP to alleviate exhaus-
tive exercise-induced myocardial injury.

The RT-PCR results showed that no significant differences in
the Cx43 mRNA levels were found between the groups, as
supported by the in situ hybridization detection. Obvious
decreased expression of Cx43 mRNA was found in trained mice
during acute exercise [20,35], while chronic exercise training has
no effect on the expression of Cx43 mRNA in intact blood
vessels in vivo [36]. Therefore, we speculated that different
exercise intensity has different effects on the expression of
Cx43 mRNA. Further studies are needed to describe the
related explicit mechanisms.

As demonstrated by the western blotting, the group EE had
less myocardial Cx43 than the group C, while the group LEP
and group LEP + EE had more myocardial Cx43 than the group
EE. The results demonstrated that LEP could relieve exhaustive
exercise-induced myocardial injury by maintaining the spatial
distribution of Cx43-formed gap junction channels, through
which possibly protecting electrophysiological properties of
myocardial tissues. Similar results have been reported [34,37].
Thus, redistribution of Cx43 and remolding of Cx43-based
gap junction channels play a very important role in myocar-
dium preconditioning. Different from the variation of Cx43
mRNA, the Cx43 protein level markedly decreased in the rats
with exhaustive exercise-induced myocardial injury, which is
consistent with the results of Tiscornia et al. [20]. Cx43
expression is regulated by a variety of factors, and the reasons
why Cx43 expression was decreased in the rats with
exhaustive exercise-induced myocardial injury are unknown.

Cx43 becomes dephosphorylated with prolongation of
ischemia [8,38], and its expression area and fluorescence intensity
in hypertrophied myocardium are reduced after I/R, compared
with non-I/R hypertrophied myocardium [34]. Therefore,
dephosphorylation of Cx43 and reduced Cx43 expression in
myocardium ischemia injury suggested that modification of
gap junction conductance by dephosphorylation of Cx43
induces electrical uncoupling companied with ischemia.

Like I/R injury, exhaustive exercise may render myocardial
ischemia injury, and the ischemia injury can decrease Cx43
expression, which suggested that both I/R injury and exhaustive
exercise-induced myocardial injury may have the same mecha-
nism to cause myocardial ischemia injury. In addition, LEP
alleviated exhaustive exercise-induced myocardial injury, and a
remarkable increased Cx43 expression was found in the LEP
group. And a higher Cx43 protein level was found in the group
LEP + EE than in the group EE. Bellafiore et al. also reported
similar results, and they found there is a progressive increase of
Cx43 expression levels in response to endurance training that
reached a peak in ventricular myocardium of mice exercised for
30 d [19].

IP can reduce Cx43 dephosphorylation compared to non-
preconditioned myocardium [7,8] and almost completely
abolish the Cx43 dephosphorylation-related electrical uncou-
pling [39] in rat hearts [7]. Moreover, IP can alleviate ischemia/
reperfusion-induced arrhythmias by up-regulating Cx43
expression [34]. The same results of Cx43 expression from
cardioprotection of IP and LEP indicated the possible presence
of similar signal transduction pathways. LEP can preserve
phosphorylation of Cx43, and the putative mechanism may be
related to an enhanced association of Cx43 with protein
kinases such as PKC and PKA. Bao et al. showed that the
phosphorylation of Cx43 at Ser368 by PKC induces a closure
of hemichannels, whereas the inhibition of PKC induces their
opening [40]. In contrast, Ek-Vitorin et al. pointed out that
phosphorylation of Cx43 at Ser368 by PKC increases gap
junctional permeability [41] indicating that Cx43 is a target
protein of several kinases. Furthermore, Cx43 is associated not
only with protein kinases but also with a variety of other
proteins [42–44]. The finding that Cx43 can interact with
several proteins and exert different functions indicated that
Cx43 not only acts as a channel-forming protein but also is
involved in intracellular signaling. More recently, the activation
of protein kinase C has been reported as an important element in
myocardial protection with EP [18]. In addition, we also found
Cx43 was involved in myocardial protection with LEP. Hence,
the relationship between Cx43 and protein kinase C in
myocardial protection with LEP needs further exploration in
future work.

In summary, the LEP attenuated the exhaustive exercise-
induced myocardial injury in the cardioprotection. Cx43-
formed channels are involved in protection against exercise-
induced myocardial injury and exercise preconditioning. Cx43
was markedly up-regulated in the LEP rat myocardium. The
exact underlying mechanism, how in fact Cx43 mediates pro-
tection, remains to be established. Cx43 can quickly translocate
between several organelles under pathologic conditions such as
ischemia and exercise. The changes in membrane connexin or
gap junction plaque density and the relationship between Cx43
and protein kinase C in myocardial protection with LEP should
be further elucidated by other techniques.
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