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1. Introduction

  Lymphatic filariasis, one of the major common causes of 
global disability, affects an estimated 120 million people 
whereas 1.34 billion peoples are at risk in 81 countries 
according to WHO[1]. Azadirachta indica (A. indica, 
Meliaceae) is commonly an evergreen tree, widely available 
throughout the Indian subcontinent especially in India and 
Burma. A. indica is a widely diversified medicinal plant 
that have been used from immemorial time in the Indian 
subcontinent and still regarded as the village dispensary. 
Almost all the parts of this plant are important to cure 
several diseases and these properties have been well 

documented[2]. Some medicinal properties of different parts 
used in Ayurveda had been summarized in a review by 
Biswas et al[3]. The anthelmintic properties were evident 
from the preparations of leaves along with flowers, fruits, 
twigs, seed pulp oil and so on[3].
  Setaria cervi (S. cervi), a bovine filarial nematode parasite 
(family Onchocercidae and subfamily Dirofilariinae), can 
be found in the abdominal cavity of the cattle. S. cervi has 
been used routinely as a test organism for in vitro screening 
of potential antifilarial compounds[4,5].
  Evidence of plant extract induced increased generation of 
reactive oxygen species (ROS) was adequate in literature and 
also A. indica induced ROS enhancement leading to death 
was worked out in case of rat oocytes[6]. Several complex 
mechanisms are synergistically responsible for maintaining 
the delicate balance of ROS generation and elimination 
and any deregulation can lead to alterations of redox 
homeostasis either by an increase in ROS concentrations 
or by a decrease in the activity of one or more antioxidant 
systems. However, under oxidative stress, excessive ROS 
and RNS (reactive nitrogen species) constantly attack 
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lipids, proteins, and DNA, leading to severe and irreversible 
oxidative damage. These oxidative modifications may lead 
to changes in protein function, chemical fragmentation, or 
increased susceptibility to proteolytic attack[7]. According 
to Halliwell and Gutteridge[8], relatively low concentration 
antioxidants are able to significantly delay or inhibit the 
oxidation of these substrates. This definition includes the 
enzymes superoxide dismutase (SOD), glutathione peroxidase 
(GPx) and catalase as well as non-enzymatic compounds 
such as vitamin E, b-carotene, vitamin C and glutathione. 
It is well known that the roles of ROS and their regulatory 
antioxidant systems regarding cell survival are bifurcated. 
Generally, ROS at low levels act as signaling molecules 
where they can promote cell proliferation and cell survival 
but a severe increase in ROS can induce cell death[9].
  There is always a scope to find a better antifilarial agent 
through screening of plant extracts. This has tempted us 
to evaluate effectiveness of A. indica leaves on adults and 
microfilariae of S. cervi by relative motility reduction, 
percentage mortality evaluation by trypan blue dye exclusion 
test and percentage death by MTT [3-(4,5-dimethyl-thiazol-
2-yl)-2,5-diphenyl-tetrazolium bromide] reduction assay. 
Enhancement of ROS parameters was also evaluated through 
detection of changes in reduced glutathione (GSH) and 
superoxide anion levels and by estimation of changes in the 
enzymatic activity of glutatione S-transferase (GST), SOD, 
catalase and GPx.

2. Materials and methods

2.1. Chemicals and reagents

  Ethanol and other solvents of highest purity grade were 
purchased from Merck, India. Double distilled autoclaved 
water was used for the assays. FBS (Foetal bovine serum), 
HEPES buffer, streptomycin, penicillin, and amphotericin-B 
were purchased from Sigma-Aldrich Co. (St. Louis, MO, 
USA). RPMI-1640, MTT, NBT (nitroblue tetrazolium) and 
reagents required for GST and GSH assays were purchased 
from Hi-Media Laboratories, Mumbai, India. SOD assay kit 
was procured from Cayman Chemical, Ann Arbor, USA.

2.2. Preparation of aqueous extract of A. indica leaves (AEA)

  Fresh matured leaves of A. indica were collected locally 
during May-June. A voucher specimen has been deposited 
at the herbarium (Zoo/VB/SPS-52) at the Department of 

Botany, Visva-Bharati University, Santiniketan, West 
Bengal, India for future studies. Accurately weighed 100 g 
of leaves were crushed using a morter-pistle with 100 mL of 
autoclaved double distilled H2O. The thick green paste was 
further left for 2 h for complete extraction. The thick fine 
slurry thus obtained was further centrifuged at 3 000 r/min 
for 5 min and at 8 000 r/min for 15 min, respectively at 4 曟. 
The light green coloured aqueous extract was finally stored 
at 4 曟 for further use.

2.3. Collection and treatment of parasites

  Adult male and female S. cervi were collected locally from 
the freshly slaughtered cattle (Bovis indica Linn.) and were 
taken to the laboratory in a vacuum flask containing Kreb’s 
Ringer bicarbonate buffer (Sigma) at 37 曟. In the laboratory, 
the worms were repeatedly washed to make them free of any 
extraneous materials. Microfilariae were dissected out from 
the gravid females and kept in Ringer’s solution at 37 曟 
until use.
  Adults worms (one male and one female or two females) 
were incubated in 10 mL of culture media, RPMI-1640 
supplemented with 25 mmol/L HEPES buffer, 2 mmol/L 
glutamine, 100 U/mL streptomycin, 100 毺g/mL penicillin, 
0.25 毺g/mL of amphotericin B, and 10% (v/v) FBS alone and 
in combination with AEA at different volumes, ie., 5, 10, 
25 and 50 毺L/mL in Petri plates (60 mm diameter, Tarson, 
India). Microfilariae (n=1.0×104) were incubated in 2 000 毺L 
of culture media alone and in culture media with AEA at the 
same volumetric concentrations, in a 24-well flat-bottomed 
culture plate (Tarson, India). Both the cultures were 
maintained for 24 h at 37 曟 in a humidified atmosphere of 
5% (v/v) CO2[10]. The cultures were carried out in duplicate 
for adults and in triplicate for microfilariae and repeated at 
least 4 times.

2.4. Relative motility (RM) value assessment

  RM of both adults and microfilariae of S. cervi was 
assessed according to the method of Zaridah et al[11] with 
modifications. Both adults and microfilariae of filarial 
nematodes was categorized into several phases of motility 
and activeness, ie., 0 (dead); 1 (slightly active); 2 (slightly 
active and motile); 3 (moderately active and motile); and 4 
(highly active and motile). Effectiveness of AEA against the 
filarial worm was primarily studied in accordance with the 
alteration of RM value in respect to untreated control. The 
mathematical formulae used to calculate the RM value is 
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noted as:

Motility index (MI) =
∑i=0(iNi)

∑N

4

                                                                                            (1)

                                             
Where, i=Index of motility score (0, 1, 2, 3 or 4); Ni=Number 
of parasites with the score i;  ∑N=Total parasite number for 
a particular observation.
RM = MIsample/MIcontrol×100.                                                   (2)

Where, RM value of 100=Filaricidal activity is least, and                                                          
RM value of 0=The strongest filaricidal activity.

2.5. Trypan blue dye exclusion test

  Viability of S. cervi microfilariae was checked primarily by 
trypan blue, as it can stain dead microfilariae blue whereas 
live ones remain translucent because they can exclude 
the dye. The microfilariae viability (%) was determined by 
dividing the number of live ones by the total number of 
microfilariae.

2.6. MTT assay

  Comparative assay of viability of adults and microfilariae 
were assessed by the MTT reduction assay as described 
by Comley et al[12], with slight modifications as described 
previously[13]. Twelve adult worms and microfilariae 
(n=1.3×103) were used for each treatment group. The cultures  
were carried out in duplicate for adult worms and in 
quadruplicate for microfilariae and repeated at least 3 times.

2.7. Histology and tissue staining

  After 24 h, control and AEA-treated adult worms were fixed 
in 40 g/L paraformaldehyde at 4 曟 overnight, embedded 
in paraffin, and cut into 3-毺m thick sections. The treated 
and control sections were stained with conventional 
haematoxylin-eosin (HE) staining to observe morphological 
alterations, if any.

2.8. Measurement of superoxide anion
  
  We measured superoxide anion in control and treated 
worms following the method as described elsewhere[5].

2.9. Parasite homogenate preparation

  Control and treated adult worms were washed repeatedly 
with phosphate buffered saline (PBS, pH 7.2) and eventually 
parasite homogenate was obtained using the method as 
described previously[5]. Protein content was determined by 
the method of Bradford et al[14]. The clear supernatant thus 

obtained was used for enzyme assays.

2.10. Enzyme assays

  SOD in the worm homogenate of control and treated 
parasites were estimated using SOD kit  (Cayman 
Chemical, USA). The detailed method had been mentioned 
previously[15]. GSH level in control and treated parasites was 
determined following the method which had been reported 
elsewhere[15]. We assessed GST activity of fresh worm extract 
spectrophotometrically according to the method essentially 
described elsewhere[5].
  We measured catalase activity in fresh adult worm 
extract using the method described by Aebi[16]. Briefly, a 
parasite homogenate (200 mg/mL) was prepared in 0.067 mol/L 
phosphate buffer ( pH 7.0) and then centrifuged at 10 000 r/min
for 20 min at 4 曟. Subsequently, 40 毺L of parasite 
supernatant was rapidly added and mixed with 3 mL H2O2 

phosphate buffer (2 mmol/L H2O2 in phosphate buffer) in a 
cuvette.  Absorbance was monitored in 240 nm using an UV-
VIS spectrophotometer (Shimadzu, UV 1601, Japan). Enzyme 
activity was expressed as U/mg of protein.
  We also estimated GPx activity of fresh worm extract 
spectrophotometrically following the method of Castro et 
al[17], with brief modifications. In detail, 1 mL OPD (Ortho-
phenylenediamine) in phosphate citrate buffer (pH 5.0) 
was added with 100 毺L worm supernatant, mixed with 
0.9 mL H2O2 (0.013%, v/v) properly, and incubated at room 
temperature for 30 min. Absorbance was measured at 492 nm.
For comparison, 100 毺L extra OPD solution was used 
instead of worm supernatant as the blank. The enzymatic 
activity was expressed in units. One unit produced an 
increase in absorbance at 492 nm of 1.0 under the assay 
conditions.

2.11. Statistical analysis

  All experiments were repeated at least 3 times and data 
expressed as the mean±SEM. The results were analyzed 
by Student’s t-test and a P value <0.05 was considered as 
statistically significant.

3. Results

3.1. Reducing effect of AEA on S. cervi RM

  Reduction in movement of adults and microfilariae of S. 
cervi treated with AEA is presented in Figure 1. Control 
panel (adults and microfilariae) gave RM value of 100 after 
24 h of incubation, showing that worm was not affected. 
However, AEA produced a significant decreased pattern of 
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RM value in a dose-dependent manner. In the adult worms, 
AEA gave RM values of 75.2, 62.5 and 25.0 for the doses 5, 
10 and 25 毺L/mL, respectively, after 24 h of incubation. 
The adult worms were found to have lost all its movement 
when exposed to AEA at 50 毺L/mL (RM=0) (Figure 1A). In 
microfilariae, AEA at 5 毺L/mL gave significant (P<0.05) 
RM value of about 73.1 after 24 h of incubation, which is 
considered as minimum effective concentration in this 
panel. At higher concentrations, ie., 10, 25 and 50毺L/mL, 
AEA reduced RM values to 60.1, 30.6 and 5.63, respectively 
(Figure 1B).
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Figure 1. Reduction in RM value of S. cervi as a result of exposure to 
AEA. 
(A) AEA caused a dose-dependent decrease in the RM value of S. 
cervi adults. (B) S. cervi microfilariae also showed reduction in RM 
value in a dose-dependent manner. In all cases, concentrations of 
AEA were 5, 10, 25 and 50 毺L/mL, and RM value was evaluated up 
to 24 h at regular intervals. Each point is the mean of three replicate 
assays and repeated 4 times.

3.2. Decreasing effect of AEA on mortality of S. cervi at a 
primary level

  Mortality in control and treated microfilariae of S. cervi 
was detected primarily by trypan blue dye exclusion test. 
Microfilariae (treated) viability was decreased significantly 
in a dose-dependent manner (Figure 2A) showing viability of 
just 1.87% after 24 h of incubation at the highest dose of AEA 
(50 毺L/mL). Data were expressed as viable microfilariae 
percentage (Figure 2A). At 5毺L/mL, AEA was found to be 
effective, showing viability of 67.07%. At higher doses, ie., 10 
and 25 毺L/mL, viability was reduced to 48.08% and 18.07%, 

respectively (Figure 2A).

3.3. Decreasing effect of AEA on mortality of S. cervi at a 
cellular level

  MTT assay is considered as a convenient method for 
estimating mortality of adults and microfilariae at a 
cellular level and is used frequently[5,13,15]. Effects of AEA 
on viability of both adults and microfilariae had been 
summarized in Figure 2B. AEA at different concentrations 
(5, 10, 25 and 50 毺L/mL) showed significant reduction in 
worm viability in a dose-dependent manner. Viability of 
adult worms treated with AEA at 5, 10, 25 and 50 毺L/mL was 
significantly decreased (P<0.05) to 94.5%, 65.2%, 46.7% 
and 30.09%, respectively. AEA at 5, 10, 25 and 50 毺L/mL 
produced similar effect on microfilariae showing viability of 
87.33%, 58.17%, 41.06% and 29.19%, respectively. Viability 
percentage was calculated in respect to control. LC50 values 
of AEA for both adults and microfilariae were estimated 
(following 24 h exposure) using OriginPro6.1 software and 
were found to be 22.22 and 17.00 毺L/mL, respectively. Thus, 
AEA produced a strong micro- as well as macrofilaricidal 
effects on S. cervi.
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Figure 2. Mortality of S. cervi as a result of exposure to AEA.
(A) Trypan blue dye exclusion test. Mortality of S. cervi microfilariae 
was evaluated at 4 h intervals at the doses of 5, 10, 25 and 50 毺L/mL 
of AEA up to 24 h. P<0.05. (B) Effect of AEA on parasite mortality 
was evaluated by MTT reduction assay. Mortality of both adults and 
microfilariae of S. cervi was expressed at increasing concentrations of 
AEA as mentioned earlier after 24 h exposure and was evaluated in 
comparison to untreated control. P<0.05.



Niladri Mukherjee et al./Asian Pacific Journal of Tropical Medicine (2014)841-848 845

3.4. Morphological alteration of S. cervi after exposure to 
AEA

  Prominent alterations were found in AEA treated adults 
and microfilariae. In case of treated adult sections, 
changes in epithelial lining and muscle layers (longitudinal 
and hypodermal) were visible; in case of sections with 
higher magnification in epicuticle layer, alterations were 
demonstrated with presence of syncytial hypodermis in 
treated sections. Higher haematoxylin staining in treated 
sections indicated disintegration in chromatin structure 
(Figure 3).
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Figure 3. Haematoxylin-eosin stained light photographs of S. cervi 
adult female sections. 
Control sections (A and C) showed no significant morphological 
damage, whereas several morphological alterations were visible in 
treated (50 毺L/mL aqueous extract of A. indica leaves) sections (B 
and D) particularly at the region of cuticle with disintegrated epicuticle 
lining. Longitudinal muscle layer, intestine and hypodermis also got 
morphologically altered with the presence of syncytial hypodermis. 
Longitudinal muscle layer was also deformed after AEA exposure. 
Photographs were representative of three separate examinations and 
scale bar was given using Dewinter Biowizard 4.2 software (Scale 
bar=100.0 毺m).

  In case of microfilariae as compared to control (Figure 4A), 
presence of dead cells became more in treated microfilariae 
in a dose-dependent manner when observed under phase 
contrast or light microscope (Dewinter, Italy). As shown in 
Figure 4B, AEA at 5 毺L/mL caused death to that proportion 
of cells that could be hardly visible, whereas at a higher 
dose (50 毺L/mL), almost all the cells were dead (Figure 4E). 
For the other two doses, ie., 10 and 25 毺L/mL, death of cells 
was recorded in between (Figure 4C and 4D).

3.5. Changes in the redox parameters

  Alterations in the enzymatic parameters related with the 
regulation of ROS status were studied to elucidate its role in 
AEA mediated death of S. cervi with reference to untreated 
ones. For this purpose, changes in the enzymatic regulators 
were calculated and expressed.

3.5.1. Changes in the superoxide anion level redox parameters
  A colorimetric NBT assay was done to measure superoxide 
anion production in the worms after 24 h exposure to the 
indicated concentrations of AEA. Results have been shown 
in Figure 5A. Significant enhancement of (2.29%, 7.84%, 
14.18% and 20.26%) superoxide anion production was 
recorded in the parasites treated with AEA (5, 10, 25 and
50 毺L/mL) over the control worms.

A

B C

D E

Figure 4. Bright field and phase contrast photographs of S. cervi 
microfilariae. 
(A) Control microfilariae of S. cervi. (B-E) Microfilariae of S. cervi 
treated with aqueous extract of A. indica leaves (5-50 毺L/mL) 
showed presence of dead blue coloured cell clusters (Arrows) that 
increased in a dose-dependent manner and was shrunk inside the 
outer sheath. Photographs were taken after 24 h of exposure and were 
representative of three independent experiments (Scale bar=100.0 

毺m). 

3.5.2. Altered SOD activity
  As shown in Figure 5B, AEA caused a significant 
increase of SOD level in a dose-dependent manner 
causing enhancement of 1.33, 1.41, 1.47 and 1.57 folds 
for the corresponding doses of 5, 10, 25 and 50 毺L/mL, 
respectively. The results indicate an alteration in internal 
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redox in the treated parasites.

3.5.3. Changes in the GSH level
  Alteration in the level of GSH indicates misbalance of 
internal redox as it is the primary internal redox regulator 
and a known antioxidant. We found a decrease in GSH level 
in AEA treated adult worms in comparison to that in control 
when examined after 24 h (Figure 5C). At 5, 10, 25 and
50 毺L/mL, AEA reduced GSH level by 12.81%, 20.79%, 
28.80% and 35.70%, respectively. 

3.5.4. Altered GST activity
  GST, a phase 栻 enzyme of detoxification cascade, catalyzes 
GSH dependent conjugation during redox regulation by the 
organism. Our experimental evidence showed that AEA at 
5, 10 and 25 毺L/mL caused up regulation in GST activity in 
the treated worms by 6.19%, 11.49% and 13.89%, respectively. 
Interestingly, an elevated level of GST (24.49%) was recorded 
at the highest dose applied (50 毺L/mL) as compared to that 
in control parasites (Figure 5D).
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Figure 5. Alteration in the redox regulation parameters in S. cervi 
adults after 24 h exposure to AEA. 
(A) Superoxide anion production got enhanced dose-dependently. (B) 
A significant dose dependent increase of SOD activity was tabulated. 
(C) We had found a decrease in GSH level in AEA treated adult 
worms in comparison to that in control. (D) AEA dose-dependently 
caused up regulation in GST activity in the treated worms. (E) A 
dose-dependent elevation of catalase activity was recorded in the 
treated worms. (F) A dose-dependent elevation of GPx activity in the 
parasites treated with AEA at 5, 10, 25 and 50 毺L/mL was marked. 

3.5.5. Alteration in catalase activity
  Catalase catalyzes the decomposition of hydrogen peroxide 
into oxygen and water and protects the organisms from the 
obnoxious effects of hydrogen peroxide. A dose-dependent 

elevation of catalase activity was recorded in the treated 
worms as compared to that in control. At 5, 10, 25 and
50 毺L/mL, AEA increased catalase activity by 1.13, 1.64, 
2.25 and 3.15 folds, respectively (Figure 5E).

3.5.6. Alteration in GPx activity
  GPx protects the organisms by reducing free hydrogen 
peroxides into water and lipid hydroperoxides to their 
corresponding alcohols. We noticed a dose-dependent 
elevation of GPx activity in the parasites treated with 
AEA for 24 h (Figure 5F). At 5, 10, 25 and 50 毺L/mL, AEA 
increased GPx activity by 1.04, 1.18, 1.24 and 1.36 folds, 
respectively. 

4. Discussion

  It is of great significance that even in this modern era of 
medicine about 80% of the total world population still relies 
on traditional medicine which has been around for centuries 
for their day-to-day medicinal needs. Even many of the 
modern medicines that are effective against infectious 
agents are derivatives of natural products or from structures 
suggested by them. With the recent emphasis of the WHO on 
the development of antifilarial drugs from natural products, 
we are engaged in the screening of a large number of 
extracts obtained from terrestrial plants used in traditional 
medicine. Accumulative data from research with medicinal 
plants has brought out into the basic assumption that any 
plant bearing clinical efficacy must contain an active 
compound that can completely replace the plant extract is 
not always true[18]. This assumption has to be changed in 
the light of the observations that there are, in many cases, 
adjuvant substances in the plant that increase the activity of 
the components actually responsible for the effectiveness[19].
  Primarily reduction of worm motility, MTT assay and 
dye exclusion test indicate usefulness of both micro- and 
macrofilaricidal potential of A. indica leaves. Prominent 
morpho-physiological alterations were also detected in 
both microfilariae and adults of S. cervi treated with AEA. 
Recently, Tripathi et al[6] have shown that treatment with 
the extract of A. indica leaves caused death in rat oocytes 
through generation of ROS. This has prompted us to evaluate 
whether AEA-induced death is due to alteration in the 
parasitic redox regulation. Generation of ROS, namely, 
hydrogen peroxide (H2O2), superoxide (O2

-), and hydroxyl 
radicals (OH˙), is common during cellular metabolism. 
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Superoxide anions are generated when diatomic O2 

simultaneously gets two electrons and with H2O2 generates 
highly reactive hydroxyl radicals (OH˙) and cause oxidative 
damage[20]. A number of intracellular enzymes like catalase, 
SOD and GST are responsible for controlling the generated 
ROS[8]. An altered activity in the enzymatic antioxidant 
status is the marker of the altered ROS production in the 
concerned organism and a defect in the inherent ability 
to counteract the production of ROS generates a state 
commonly referred as oxidative stress. Potentially damaging 
alterations in bio-macromolecules (proteins, nucleic acids 
and lipids) are common during ROS exposure[21]. The ability 
of parasite antioxidant system to combat and neutralize 
ROS is essential for their survivability during altered 
metabolism[22] particularly for parasitic nematodes that 
are long lived and involved in chronic infections. Filarial 
parasites are furnished with marked supply of antioxidant 
enzymes and non-enzymatic small antioxidant molecules. 
Presence of SOD, catalase and GPx in different filarial 
parasites including S. cervi[23] is well established. GST, a 
phase II detoxification enzyme that also help in developing 
resistance in parasites against anthelmintics, antibiotics 
and drugs[24] was also reported in S. cervi[25]. GSH, an 
ubiquitous tripeptide and metabolic intermediate involved 
in antioxidant defense and xenobiotics detoxification has 
been reported in S. cervi[26]. In our study, we found a dose-
dependent increase of superoxide anion in adult S. cervi 
treated with AEA, which was at par with our previous 
findings with curcumin[15] and ferulic acid[5] and provides 
indication of upregulation in ROS generation. An increased 
level of SOD was also recorded in AEA-treated parasites. 
Involvement of SOD in neutralizing superoxide anion was 
previously reported in case of parasites[27]. GST along 
with glutathione reductase are redox regulating enzymes 
to detoxify ROS by decreasing peroxide levels or by 
maintaining a steady supply of metabolic intermediates like 
glutathione to primary defense enzymes[28]. AEA caused a 
dose-dependent depletion of GSH level in the treated worms 
as compared to that in control. Therefore, it is a marker 
that possibly indicates the inhibition of enzymes involved 
in the synthesis of GSH and metabolism, and it is probably 
depriving the parasites of its major defensive molecule 
against oxidative stress. GST, an enzyme class present at 
different locations, catalyzes the conjugation of GSH via 
sulphyhydryl group to electrophilic centers of a number of 
substrates[29] and thus comprises of very important member 

of redox regulation cascade. We observed up-regulation 
of GST in a dose dependent way of AEA treatment. Several 
observations suggested that an increased level of GST 
during onset of apoptosis is associated with the alteration 
of oxidative stress and measured a strategy of protection 
by the cells undergoing programmed cell death[30]. It is 
worthy of mention that catalase along with GPx is known 
to attenuate the generation of ROS by removing potential 
oxidants or by transforming ROS into stable compounds[31]. 
Our observations revealed a dose-dependent increase in 
catalase and GPx levels as compared to control, confirming 
a change in the oxidative stress response of parasite 
exposed to AEA. Thus, in totality, antioxidant proteins 
have the ability to directly interact with cellular signaling 
molecules and can control their activity, and ROS can also 
trigger apoptosis and proliferation and influence immune 
response[32]. Any alteration in the total ROS measurement 
and enzymatic profile in redox regulation cascade can lead 
to all these detrimental effects.
  In summary, the results obtained from the present study 
demonstrate that aqueous formulation of A. indica leaves 
possesses strong macro- and microfilaricidal activity against 
S. cervi. This antifilarial activity generated by AEA is likely 
due to an increase in the level of ROS. In future, it would 
be interesting to evaluate the antifilarial property of AEA 
against human filarial worms, find out the lead compound 
and further dissect the molecular mechanism involved in 
mediating the antifilarial activity against filarial worms. It 
will help us evolve a new strategy for the management of 
human filariasis. 
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