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ABSTRACT

Objective: To observe the effect of subarachnoid nerve block anesthesia on glutamate
transporter glutamate-aspartate transporter (GLAST) and GLT-1 expressions in rabbits,
and to investigate the effect of peripheral nerve anesthesia on the morphology and
function of the spinal cord.
Methods: Twenty healthy New Zealand white rabbits were randomly divided into two
groups: the experimental group and control group; with 10 rabbits in each group. For
spinal nerve anesthesia, 5 g/L of bupivacaine was used in the experimental group, and
sterile saline was used in the control group. After 30 min of cardiac perfusion, GLAST
and GLT-1 protein expression in spinal neurons were detected by immunohistochemistry
and immunofluorescence staining.
Results: GLAST and GLT-1 protein-positive cells increased in neurons in the experi-
mental group, compared with the control group (P < 0.05).
Conclusions: After subarachnoid nerve block anesthesia, rabbit glutamate transporter
GLAST and GLT-1 expression is increased; and spinal cord nerve cell function is
inhibited.
1. Introduction

Subarachnoid nerve block anesthesia (lumbar anesthesia) is
an anesthetic widely used in clinical practice. This method is
simple, provides reliable results, and has few side effects.
However, its effect and mechanism in blocking nerve cells re-
mains unclear. Amino acid neurotransmitters are important
neurotransmitters in the central nervous system of mammals,
and the most important excitatory neurotransmitters are gluta-
mate (Glu) and aspartate (Asp) [1]. When the nerve is excited,
glutamate concentrations in the synaptic cleft elevate and act
on the postsynaptic membrane of the glutamate receptor; and
glutamate in the synaptic cleft could be uptake by glutamate
transporters to terminate its efficacy of synaptic transmission.
Glutamate transporters accurately regulates glutamate to ensure
proper nerve excitatory synaptic transmission [2,3]. The current
study shows that glutamate transporters is related to various
brain and spinal pathological processes and play an important
role in the process of glutamate transporters [4,5]. In the
present study, New Zealand white rabbits were used in
preparing the spinal anesthesia model to observe the
expressions of astrocytes and microglial cells in the two types
of glutamate transporters, Glutamate-aspartate transporter
(GLAST) and GLT-1, after anesthesia and to investigate the
potential regulatory mechanisms of anesthesia in spinal nerve
cell function for guidance in clinical practice.

2. Materials and methods

2.1. Animals and groupings

Twenty male 6–8 month New Zealand white rabbits,
weighing 2.5–3.5 kg, were provided by the Experimental Ani-
mal Center, Zhongnan Hospital of Wuhan University.
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2.2. Rabbit subarachnoid nerve block anesthesia

Rabbits were injected with 30 mg/kg sodium pentobarbital
(20 g/L) from the ear. Rabbits were fixed in a prone position and
a needle was inserted into the subarachnoid space at the side
edges of the L6-L7 spinous process. After the needle was
secured, 0.8 mL of 0.5% bupivacaine (Shanghai Harvest Phar-
maceutical Co., Ltd.) was injected in rabbits in the experimental
group, while saline was injected in rabbits in the control group.

2.3. Prepared sections after routine perfusion

After 30 min of anesthesia, rabbits were fixed on backand the
chest was opened. After exposing the heart, the left ventricle was
punctured from the apex with a syringe and then fixed with
hemostatic forceps, cut a small opening in the right atrium for
bloodletting, 500 mL normal saline was injected into the left
ventricle until the right ventricle outflow of transparent liquid,
reperfusion in 1L of 4% paraformaldehyde, and the L6-L7 spinal
cord segments were cut and obtained. Then, corresponding
segments of the spinal cord were taken out from rabbits in the
normal control group as described above.

2.4. HE staining and observation

The L6-L7 spinal cord segment was obtained, embedded in
paraffin, cross-section sliced with a thickness of about 5 mm,
HE-stained, and the form of soft meninges of the spinal cord
segments were observed under a microscope.

2.5. Immunohistochemical staining and analysis

L6-L7 spinal cord segments were placed and fixed in 4%
paraformaldehyde for three hours, and dehydrated in 30% su-
crose solution overnight. After tissue masses were sunk to the
bottom, a transverse plane was made by frozen section machine,
and sliced with a thickness of about 6–7 mm. Slices were placed
in 3% hydrogen peroxide for 15 min to inactivate endogenous
peroxidase, and washed three times with 1 × PBS. Segments
were divided into three groups: experimental group and control
group. Segments were separately added in anti-GLAST (1:500,
Beijing Bioss company) and GLT-1 (1:400, CST company), and
incubated at 4 �C overnight; then, shaking and rinsed three
times, every 5 min. Added second antibody (1:200, Beijing
ZSGB-Biotechnology Co., Ltd.), incubated at 37 �C for 30 min,
and washed three times with 1 X PBS. Added SABC and
incubated at 37 �C for 20 min. Then, DAB stained after washing
Figure 1. Rabbit spinal pia mater morphological result. HE staining (×400).
with PBS. Dehydrated by 70%, 90%, 100% alcohol, Xylene Ⅰ,Ⅱ,
Ⅲ transparent medium, mounted with neutral gum, and dried.
Positive cell with brown granules were microscopically
observed, and each section was randomly observed by a five
high power field film. Image-Pro plus 6.0 software was used to
analyze the integrated optical density (IOD) value of the positive
expression; wherein, the higher the IOD value, the stronger the
protein expression.

2.6. Immunofluorescence staining and analysis of
astrocytes and microglial cells

After sections were stained with blocking serum, different
primary and secondary antibodies were added: astrocytes were
stained with GFAP antibody (1:100, Sigma Company) and
microglial cells were stained with OX-42 antibody (1:100, AbD
Serotec company). At the same time, sections were separately
stained with GLAST (1:100, CST company) and GLT-1 (1:100,
CST company) antibodies to detect GLAST and GLT-1 ex-
pressions in the two cells. Fluorescence microscopy film
(Olympus, Japan) was used to take a photograph and Image-pro
plus 6.0 software were used to analyze the double stained pos-
itive area of the region and double positive area (DPA), with its
average value as the measurement value.

2.7. Statistical analysis

Data were measured using SPSS 13.0 software and were
represented as mean ± standard deviation, groups were
compared using t test, and P < 0.05 was considered as signifi-
cant difference.

3. Results

3.1. Observation of rabbit spinal pia mater morphology

Spinal cord sections in the experimental and control groups
were detected by HE staining, and the morphology of the spinal
pia mater was observed, as shown in Figure 1. Compared with
the control group, the spinal pia mater in the experimental group
had some stratificationand slight edema.

3.2. Influence of spinal nerve block anesthesia in GLAST
and GLT-1 expressions in spinal cord neurons

In the normal control group, immunohistochemical assay
revealed that GLAST and GLT-1 were mainly expressed in the



Table 1

Immunohistochemistry results of GLAST and GLT-1 in spinal cord

neurons of rabbits (IOD,×104, mean ± sd).

Group No. of cases GLAST GLT-1

Experimental group
(anesthesia)

10 8.27 ± 1.4a 9.66 ± 1.6a

Control group 10 2.25 ± 0.8 1.78 ± 0.5

a Compared with control group, P < 0.05.
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gray matter in the transverse section of the spinal cord. Brown
particle density was evenly distributed, deeply stained, and the
nucleolus was concentrated dark brown yellow. In the experi-
mental group, GLAST and GLT-1 expressions significantly
increased (P < 0.05), as shown in Table 1 and Figure 2.

3.3. Comparison of GLAST and GLT-1 expressions in
astrocytes and microglial cells

GLAST and GLT-1 expressions in astrocytes and microglial
cells were detected using immunofluorescence double staining
method, as shown in Figure 3. Results revealed that the GLAST
and GFAP double labeled positive area in the transverse section in
the spinal cord between the experimental group and control group
had no significant changes. However, GLT-1 and GFAP double
positive areas significantly increased (P < 0.05); namely, GLT-1
protein expression was upregulated and GLAST expression
remained unchanged in astrocytes in the anesthesia group. In
microglial cells, GLAST and OX-42 double positive area expres-
sions was up-regulated in the experimental group, compared with
Figure 3. GLAST and GLT-1 expressions in astrocytes (A) and microglial ce

Figure 2. GLAST and GLT-1 expressions in rabbit spinal cord neurons (×400
the control group; and there was a statistical difference (P < 0.05).
Further, the double positive area ofGLT-1 andOX-42 significantly
increased. Results revealed that GLAST and GLT-1 protein ex-
pressions in microglial cells increased in the anesthesia group.

4. Discussion

Glutamate is one of the most important neurotransmitters in
the nervous system, and glutamate concentration in the synaptic
cleft is precisely regulated mainly by the glutamate transporter.
Under normal physiological conditions, glutamate is mainly
distributed in the presynaptic vesicle area; and when the pre-
synaptic membrane is released into the synaptic cleft excited due
to depolarization, it plays a role by acting on postsynaptic
membrane receptors. When glutamate is released into the syn-
aptic cleft, it is necessary to be promptly removed to ensure the
normal conduction of excitement [6,7]. Glutamate uptake mainly
rely on it location in neurons, and high affinity glial cell
membranes and force glutamate transporters. Glutamate
transporters are mainly divided into five subtypes: excitatory
amino acid transporter-1 (EAAT-1) (GLAST), EAAT2, E
AAT3, E AAT4 and EAAT5 [8,9]. Among them, GLAST and
GLT-l are mainly expressed in astrocytes and microglia; and
approximately 80%–90% of the total amount of their glutamate
transporter are transported [10,11]. GLAST, also known as
EAAT-1, is mainly expressed in the mammalian brains and
spinal cord astrocytes and microglial cells. Some studies on
surface excitatory amino acids, particularly glutamate, plays a
key role in the central sensitization process, particularly in pain
[12,13]; and its mechanism in the synaptic cleft of the spinal cord
is to regulate the large number of glutamate accumulation. When
lls (B) by immunofluorescence assay.
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normal rats were intrathecally injected with glutamate
transporter antagonists, rats screamed, trembled, showed
behavioral disorders, as well as other pain responses in a dose-
dependent manner [14]. Overall, glutamate transporters, with
respect to excitatory amino acid circulation, are particularly
important for terminating excitatory signals and protecting
nerve cells.

Currently, the effect and mechanism of nerve blocks pro-
duced by anesthetics in nerve cells remains unclear; and there
are some studies on the surface of local anesthetics for blocking
nerve conduction through sodium channel inactivation. All five
kinds of glutamate transporters are Na+ dependent. However,
specifically, after intrathecal nerve block anesthesia, whether it
can affect nerve cellular functions and glial transporter expres-
sions remains unclear. After intrathecal nerve block anesthesia,
by immunohistochemistry and immunofluorescence, we found
that GLAST and GLT-1 expressions in microglial cells signifi-
cantly increased; and in astrocytes, GLAST expressions did not
have any significant change, while GLT-1 expressions were
upregulated. These results suggest that intrathecal nerve block
anesthesia could regulate glutamate transporter GLAST and
GLT-1 expressions, upregulating these expressions and pro-
moting synaptic cleft glutamate uptake, while promptly reducing
glutamate acting on glutamate receptors; thereby, inhibiting the
activation of nerve conduction and pain pathways. Anesthesia
should be a safe and reversible process. In experiments, we
found that after spinal anesthesia, there was a slight stratification
in rabbit spinal cord meninges and phenomenon of edema. This
prompted for strict control of anesthetic quality and concentra-
tion in clinical applications to avoid soft meninges caused by
vasodilation and edema after anesthetics act on the spinal pia
mater.

Results of this present study revealed that intrathecal nerve
block anesthesia could promote the upregulation of transporter
GLAST and GLT-1 expressions, and may contribute a role of
avoiding excessive glutamate uptake in glutamate receptors;
thereby, inhibiting nerve conduction. In this process, whether
there is a corresponding cytokine or other regulatory molecules
remains unclear. Studies have revealed that some pathological
processes of the ERK1/2 signaling pathway after spinal cord
injury could affect the expression of glutamate transporters [15].
Further research is needed to determine how GLAST and GLT-1
transporters are regulated.
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