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1. Introduction

  Acute promyelocytic leukemia (APL) is a form of acute 
myeloid leukemia, which harbors the translocation t (15;17) 
and results in the formation of promyelocytic leukemia-
retinoic acid receptor毩 (PML-RARA) fusion gene[1-6]. The 
aberrant PML-RARA chimeric protein encoded by the 
fusion gene disrupts the retinoic acid signaling pathway 
and arrests the blast at the promyelocytic stage[7-9]. The 
PML-RARA-bearing blasts are acutely sensitive to the 
therapeutic doses of all-trans retinoic acid (ATRA) which 
is used effectively for the treatment of t (15;17) patients[10-

14]. Evidences showed that PML-RARA protein not only 
participates in the block of granulocyte differentiation but 
also mediates the sensitivity of APL cells to ATRA[15,16]. 
  As a major PML-RARA responsive gene, transcription 

factor CEBPB plays a key role in ATRA-induced 
differentiation of APL cells[15,16]. The protein expression 
and DNA binding activity of CEBPB in APL cells increase 
markedly and quickly following ATRA treatment[15,16]. 
Moreover the forced expression of CEBPB in multipotent 
leukemia cells is enough for differentiation toward 
granulocytes and inhibition of CEBPB expression 
dramatically reduces APL cells response to ATRA[15,16]. 
Recently it has been reported that CEBPB is essential 
for granulopoiesis during emergency responses to acute 
infections[4,17]. Therefore, identifying target genes of 
CEBPB will yield a more complete understanding of this 
transcription factor regulating the differentiation of APL 
cells and emergency granulopoiesis.
  Chromatin immunoprecipitation (ChIP) is a powerful tool 
to identify target genes[18].  Several groups have used a 
combination of ChIP with subsequent cloning to identify 
the target genes of transcription factors[19-22]. But such 
ChIP cloning is difficult due to the much excess of non-
specifically precipitated DNA fragments. To enhance the 
enrichment for targets, we added an in vitro selection to 
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ligation-mediated PCR amplification of ChIP products. 
We got 106 potential CEBPB binding sequences after 
cloning and sequencing and seven of sixteen binding sites 
were confirmed in vivo and in vitro. Three CEBPB target 
genes (ORM2, ITPR2 and GALM) involved in acute phase 
response, Ca2+ signaling pathway and galactose metabolism 
respectively were induced after ATRA treatment. 
   

2. Materials and methods

2.1. Cell culture and differentiation 

  APL cell lines NB4 and HL60 were maintained in RPMI 
medium 1640 supplemented with 10% fetal calf serum 
(GIBCO) and antibiotics in a humidified atmosphere with 5% 
CO2 at 37 曟. ATRA (Sigma) was used at final concentration 
of 1 毺M. Differentiated cells were examined by morphology 
with Wright’s staining and NBT staining, and subsequently 
quantified by flow cytometry analysis. Immunofluorescence 
was used to detect the differentiation-related surface 
markers with phycoerythrin conjugated mouse anti-human 
CD11b, a surface marker of granulocytes and monocytes; and 
fluorescein isothiocyanate conjugated mouse anti-human 
CD14 (BD Bioscience), a surface marker of monocytes.
  
2.2. Expression and purification of  CEBPB

  CEBPB was expressed in Escherichia coli by the 
glutathione S-transferase fusion protein system. Since 
it is an intronless gene, CEBPB was directly amplified 
from human genomic DNA and cloned into a pGEX-4T-2 
expression vector using primers with FLAG-tag: sense, 5'-
gcGGATCCatgcaacgcctggtggcctg-3'; antisence, 5'-aaCTC
GAGctacttgtcgtcatcgtctttgtagtcgcagtggccggaggag-3'. The 
recombinant plasmid was transformed into Escherichia coli 
BL21 strain and confirmed by sequencing. The CEBPB with 
GST and FLAG tag was purified with glutathione Sepharose 
4B (Pharmacia) and confirmed by anti-CEBPB, GST and 
FLAG antibodies.

2.3. Electrophoretic mobility shift assay 

  Nuclear extracts were prepared from 48-hour ATRA-
induced NB4  ce l l s .  Synthe t ic  double-s t randed 
oligonucleotide 5'-TGCAGATTGCGCAATCTGCA (C/EBPcon) 
including a C/EBP binding site was labeled with biotin. 
The sequences of unlabeled oligonucleotides used as 
competitive probes were listed in Figure 1A. Electrophoretic 
mobility shift assays was carried out using the LightShiftt 
Chemiluminescent EMSA Kit (Pierce) as previously 
described. For each gel shift reaction (10 毺L), a total of 20 
fmol biotin-labeled probe was combined with 6 毺g nuclear 
extract or 0.1 毺g purified GST-CEBPB, 1 毺g poly(dI-
dC) in binding buffer (10 mM HEPES pH 7.9, 50 mM KCl, 

2.5 mM MgCl2, 1 mM DTT, 10% glycerol, and 1 毺g bovine 
serum albumin). For competition analysis, a 100-fold molar 
excess of unlabeled oligo-nucleotides was pre-incubated 
for 10 min at room temperature with nuclear extracts before 
the addition of the labeled probe. The reaction mixture was 
resolved on a non-denaturing 5% acrylamide gel in 0.5暳
TBE buffer and the electrophoresised binding reactions 
were then transferred to nylon membrane and cross-link 
was performed for 10 min with a hand-held UV lamp. The 
biotin-labeled DNA in membrane was detected by using the 
stabilized Streptavidin-horseradish peroxidase conjugate.
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Figure 1. CEBP binding sites in the targets were confirmed by EMSA. 
( A )  The  sequences  o f  p robes  f o r  E M S A;  ( B )  E M S A was 
carried out using biotin-labeled CEBP consensus probe (5’-
TGCAGATTGCGCAATCTGCA) and nuclear extract from 48-hour 
ATRA-induced NB4 cells. 100-fold molar excess unlabeled probes 
were added as the competitive inhibitors. The unlabeled CEBP 
consensus probe and mutant probe (TGCAGAGACTAGTCTCTGCA) were 
used as positive and negative control. Typical results for experiments 
were performed in duplicate.

2.4. Chromatin immunoprecipitation 

  NB4 cells untreated and ATRA-treated were cross-linked 
with 1% formaldehyde for 15 min in room temperature. 
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After washing with ice-cold phosphate-buffered saline, 
cells were lysed in 200 毺L of a solution containing 1% 
SDS, 10 mM EDTA, 50 mM Tris-HCl (pH 8.1) and protease 
inhibitor cocktail (Roche). Chromatin samples were 
sonicated to 200-1 000 bp fragments and were diluted to 
2 mL with 0.01% SDS, 1.1% Triton 暳-100, 1.2 mM EDTA, 
167 mM NaCl, and 16.7 mM Tris-HCl (pH 8.1). And 20 毺L
of this solution was removed for later PCR analysis (input). 
After preclearing with salmon sperm DNA/ protein A 
agarose for 1 h at 4 曟, antibody (C/EBPb, sc-150, Santa 
Cruz Biotechnology, CA, USA) were added and the sonicated 
lysates were incubated overnight at 4 曟 in a rocking 
platform. Then 60 毺L Protein A/G agarose was added and 
incubated 2 h. After washing agarose with low salt wash 
buffer one time, high salt wash buffer one time, LiCl wash 
buffer one time, TE buffer two times, the complexes were 
eluted from beads two times using 100 毺L fresh elution 
buffer (0.1 M NaHCO3, 1%SDS). The eluates were combined 
and add 8 毺L 5 M NaCl to reverse corsslinks of protein/
DNA complex at 65 曟 for 4-5 h. Samples were then treated 
with Proteinase K and the DNA was collected by using the 
Qiagen QIAquick PCR purification Kits according to the 
manufacturer’s instruction. Five percent of purified DNA 
was analysed by PCR with the primers. 

2.5. In vitro selection

  The chromatin samples were prepared as above. ChIP 
DNA fragments were digested with 5 U of MboI (NEB) 
for 4 h at 37 曟. After purified the DNA fragments were 
ligated with linkers (5’-GCACTAGTGGCCTATGCGGCC
ATGGTACCTTCGTTGCCG-3’ and 5’-GATCCGGCAACG
AAGGTACCATGGCCGCATAGGCCACTAGTGC-3’) using 
8U T4 ligase (NEB). Following overnight incubation at 
16 曟 the DNA was purified using Qiaquick columns 
(Qiagen). Ten microliters of the ligation product was 
used as template in a 100-毺L PCR reaction with  0.1 M 
of primer (5’-GCACTAGTGGCCTATGCGG-3’), 0.2 mM 
dNTP, 1.5 mM MgCl2, 2 units of HotStar Taq in 1暳buffer 
(Qiagen, Chatsworth, CA). PCR program used the following 
parameters: 94 曟, 1 min; 60 曟, 1 min; 72 曟, 2 min; 30 
cycles. The purified PCR product was incubated with            
5 毺g recombinant CEBPB protein, 1 毺g anti-Flag antibody,
0.5 毺gpoly-dIdC in 20 毺L binding buffer (20 mM Tris pH 
7.6, 50 mM NaCl, 1 mM MgCl2, 0.2 mM EDTA, 5% glycerol, 
0.5 mM DTT, 1暳protease inhibitor cocktail) on ice for 20 
min. Then 120 毺L of protein A/G plus agarose was added 
and incubated for an additional 20 min. The agarose beads 
were washed once in TN buffer (10 mM Tris-HCL pH 7.5, 150 
mM NaCl). The DNA was recovered in 120 毺L dissociation 
buffer (500 mM Tris-HCl pH 9.0, 20 mM EDTA, 10 mM NaCl, 
0.2% SDS). The 10% recovered DNA was used as templates for 
amplification. The selections were repeated four rounds and 
the forth-round PCR product was sub-cloned into T vector 
for sequencing. The sequencing was performed at Chinese 

National Human Genome Center at Beijing.

2.6. Quantitative real-time PCR

  NB4 cells and HL60 cells were treated with 1 毺M ATRA 
and harvested at 0, 4, 24, 48 and 72 h. The total RNA 
was prepared by using TRIzol (invitrogen) and reverse-
transcribed into cDNA primed with oligo (dT). PCR reactions 
were performed by using Platinum襆 SYBR Green qPCR 
SuperMix (Invitrogen) with ABI7500 Real-Time PCR System 
according to manufacturer’s instruction. All reactions 
were performed with three biological replicates and three 
technical replicates with reference dye normalization. 
Results are given as fold induction of the target genes/
GAPDH ratio compared with the value of NB4 and HL60 cells 
before treatment (0 h). mRNA of bone marrow samples were 
available from pretreatment and ATRA-induced complete 
remission of a patient with APL from Rui Jin Hospital, China. 
Informed consent was obtained from the patient according to 
procedures approved by the respective institutional review 
boards. 

2.7. Transient transfection and luciferase assay

  Suspension cell line 2暳105 NB4 cells were transiently 
transfected with 1毺g reporter plasmid 20 ng pRL-CMV 
vector using Effectene襆 transfection reagent (Qiagen). Twenty 
four hours after transfection cells were treated with 1 毺M
ATRA for thirty hours and lysed for luciferase assay. 
HEK293T cells were seeded in 24-well plate and transfected 
after 16 h using lipofectine 2000 (Invitrogen) with 0.6 毺g 
reporter plasmid, 0.2 毺g expression vector, and 2 ng pRL-
CMV vector. Dual luciferase assays were carried out 24 h 
after transfection according to the manufacturer’s protocol. 
Promoter activity was calculated for each of the constructs 
as a ratio of luciferase activity to pGL3 basic vector. 

3. Results

  NB4 cells were harvested at 0, 4, 24, 48 and 72 hours after 
1µM ATRA treatment and the differentiation was assessed 
by visualizing morphological changes with Wright’s staining 
(data not shown).  The expression of CD11b and CD14, two 
markers of myelomonocytic differentiation. CD11b is a 
surface marker of granulocytes and monocytes, while CD14 
expresses on monocytes. The expression levels of CD11b on 
NB4 cells increased markedly after ATRA treatment whereas 
those of CD14 remained at measurable levels (Figure 2A). We 
also detected the protein expression of CEBPA and CEBPB 
in NB4 cells after ATRA treatment (Figure 2B). The CEBPB 
expression in NB4 cells also increased quickly after ATRA 
treatment, which is similar to the results reported[16]. Then 
we monitored CEBPB binding to the promoter of transcription 
factor PU.1, a known target of CEBPB in APL cells after 
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ATRA treatment. We amplified PU.1 promoter in CEBPA and 
CEBPB ChIP products using quantitative real-time PCR. The 
binding activity of CEBPB to PU.1 promoter was induced to 
5-fold after ATRA treatment while that of CEBPA did not 
change significantly (Figure 2C). These results indicated that 
DNA specifically bound by CEBPB in APL cells after ATRA 
treatment can be successfully immunoprecipitated. 
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Figure 2. All-trans retinoic acid induced differentiation of NB4 cells. 
(A) NB4 cells were treated with 1毺M ATRA 0, 4, 24, 48, 72 h and 
CD11b+ or CD14+ cells were analyzed by FACS; Error bars represent 
standard deviation and indicate the average values of three culture 
replicates. (B) CEBPA and CEBPB expression in NB4 cells treated with 
ATRA were detected by western blotting with anti-CEBPA and anti-
CEBPB antibody, GAPDH was shown as loading control. (C) Chromatin 
immunoprecipitation was performed in untreated or ATRA-treated 48 
hours NB4 cells with anti-CEBPA, anti-CEBPB, or nonimmune IgG as 
indicated and quantitative realtime PCR analysis of ChIP was used to 
amplify PU.1 promoter. 

  Then ChIP and subsequent in vitro selection was exploited 
to clone novel CEBPB target sites in ATRA-induced APL 
cells. We performed ChIP to get the DNA fragments bound 
by CEBPB in NB4 cells after 48-hour ATRA treatment and 
the recovered DNA was amplified by ligation-mediated 
PCR. Then the purified PCR products were used for in vitro 
selection with the CEBPB protein expressed in Escherichia 
coli. After four rounds of selection and amplification, the 
DNA fragments were cloned into vector for sequencing. We 

got 106 unique targets in human genome after mapping the 
location of the sequences using the UCSC Human BLAT. 
The fragments which were located in human genome were 
analyzed for the presences of C/EBP consensus binding sites 
using AliBaba2.1, a program for predicting transcription 
factor binding sites. Of the fragments located in human 
genome, 98% contained putative C/EBP binding sites. Among 
these 82 were mapped in 30-kb distance of annotated genes 
in human genome (Table 1). Moreover, twenty one fragments 
(20%) were located less than 5-kb distance of transcription 
start site, suggesting that they are associated with gene 
promoter. Two target sequences (located near the genes 
EIF4G1 and SAMD8) were cloned twice, which indicates that 
they may be the CEBPB specific binding targets. We noticed 
a target sequence is located in 5’ upstream of CLEC4E (also 
named Mincle) gene encoding a C-type lectin protein which 
is one of CEBPB target genes in macrophages[23]. 

Table 1  
Distribution of CEBPB binding sites relative to genes.
Genomic location Number of ChIP fragments
Intronic 41 (7  TISa< 5 kb)

<30 kb upstream 31 (13 TISa< 5 kb)

<30 kb downstream 10 (1  TISa< 5 kb)  
>30 kb from gene 24a

Total 106

  aTIS, transcription initiation start.

  We used conventional ChIP-PCR to confirm the in vivo 
specificity of CEBPB binding to the sixteen targets cloned 
from ATRA-induced APL cells which selected according the 
binding sites location in the genes and the function of the 
candidate genes. The target sequences were amplified from 
the DNA samples immunoprecipitated with anti-CEBPB, 
anti-RNApolII and pre-immune serum in ATRA-treated 
or untreated NB4 cells. We amplified the GAPDH promoter 
as a negative control, which was enriched in ChIP products 
of anti RNApolII but not in anti-CEBPB and pre-immune 
serum (Figure 3A). Seven of sixteen potential targets (43%) 
were specifically enriched in the CEBPB ChIP of ATRA-
treated NB4 cells (Figure 3A and Table 2). We noticed that 
EIF4G1 which was cloned twice is in the list of ChIP-PCR 
confirmed target genes. The most of targets weren’t enriched 
in untreated NB4 cells in which the CEBPB expression 
and DNA binding activity is very low (Figure 3A). Then we 
quantified the amount of PCR product amplified from ChIP 
products in ATRA treated or not NB4 cells and in another 
APL cell line HL60 cells with using quantitative real-
time PCR with SYBR green I dye (Figure 3B). The binding 
activities of CEBPB to the target sequences after ATRA 
treatment were induced from 3-fold to 8-fold respectively 
(Figure 3B). These data showed that the binding of CEBPB 
to targets increased after ATRA treatment, indicating that 
the expression of these genes may be regulated by CEBPB 
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in ATRA induced differentiation of acute promyelocytic 
leukemia.
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Figure 3. Confirmation of CEBPB targets by using ChIP-PCR. 
(A) Chromatin was prepared from NB4 cells untreated or ATRA treated 
48 h and immunoprecipitated with anti-Pol栻, anti-CEBPB and 
nonimmnue IgG. The input and ChIP products were subjected to PCR 
by using the specific primers for the identified targets and GAPDH as 
negative control. (B) Quantitative PCR was performed in ChIP products 
with anti-CEBPB antibody and non immune serum from NB4 or 
HL60 cells which were untreated (ATRA0) or treated with ATRA 48 h 
(ATRA48). The samples were normalized by input.

Table 2
Candidate target genes and the location of CEBPB binding sites.
Gene
symbol

GenBank
accession no.

Description Location Distance
from TISa (kb)

GALM NM_138801 galactose mutarotase Intron 1 <1
MAGEF1  NM_022149 melanoma antigen 

family F, 1
5' 4.7

ORM2 NM_000608 orosomucoid 2 5' <1
EIF4G1 NM_198244 e u k a r y o t i c 

translation initiation 
factor 4    

5' 2.4

KLHDC4 NM_017566 K e l c h  d o m a i n 
containing4

5' 10

CLEC4E NM_014358 C - t y p e  l e c t i n , 
superfamily member 
9

5' 26

ITPR2 NM_002223 i n o s i t o l  1 , 4 , 5 -
t r i p h o s p h a t e 
receptor, type 2

5' 20

aTIS, transcription initiation start.

  The members of C/EBP family have similar DNA binding 
sequence preference and the consensus sequence is 
RTTGCGYAAY (R is A or G and Y is C or T)[24]. We analyzed 
sequences of the seven targets and got fourteen potential 
CEBPB binding elements for gel shift assay (Figure 1A). 
The probes harboring each of these fourteen elements were 
used to competitively inhibit the binding of CEBPB protein 
to biotin-labeled CEBP consensus binding probe (5’-
TGCAGATTGCGCAATCTGCA). The shift band generated by 
biotin-labeled CEBP consensus probe and ATRA-treated 
NB4 cell nuclear extracts was abolished by both unlabeled 
CEBP consensus probe and eleven probes harboring 
potential CEBPB binding elements but not by CEBP mutant 
probe and three putative elements (Figure 1B). Moreover 
each CEBPB targets at least has one CEBP binding element. 
We got the same results by using CEBPB expressed in 
Escherichia coli to substitute nuclear extracts from ATRA-
treated NB4 cells (data not shown). These data showed that 
the targets have the C/EBP binding elements which can be 
bound by CEBPB protein in vitro.
  After confirmation of targets bound by CEBPB protein in 
vivo and in vitro, we detected whether the expressions of 
these CEBPB target genes were modulated in ATRA-treated 
NB4 cells and HL60 cells. The mRNA expression levels of 
the target genes were quantified using real-time quantitative 
reverse transcription PCR. The expression of ORM2, ITPR2 
and GALM were induced in both NB4 and HL60 cells after 
ATRA treatment and CLEC4E were suppressed only in NB4 
cells. 
  We observed a steady increase of ORM2 mRNA to more 
than 10-fold after ATRA treatment, reaching a plateau in 
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both NB4 and HL60 cells 48 h after ATRA treatment. Human 
orosomucoid (ORM), also known as 毩1-acid glycoprotein 
(AGP), is a major acute phase plasma protein predominantly 
produced in liver[25]. In plasma ORM proteins are mixture of 
ORM1 and ORM2, which are encoded by two closely linked 
loci, ORM1 and ORM2[25]. ORM1 protein is also synthesized 
and stored in secondary granules during granulocytic 
differentiation and released by activated neutrophils to 
mediate immuno-modulating effects at the sites of infection 
or injury[26]. We also observed significant increase of 
ITPR2 and GALM mRNA 48 hours after ATRA treatment. 
ITPR2 encodes one of inositol 1,4,5 trisphosphate receptors 
involved in Ca2+ signaling pathway[27] and ITPR2 protein may 
mediate the phagocytic activity of neutrophils[28]. Galactose 
mutarotase encoded by GALM gene catalyzes the first step 
in normal galactose metabolism by catalyzing the conversion 
of 毬-D-galactose to 毩-D-galactose[29]. The increased 
expression of GALM reflects the increased 毩-D-galactose 
requirement of neutrophils due to a great deal glycoprotein 
synthesis. Although it was reported that CLEC4E is induced 
by CEBPB in monocytes[30], its expression decreased in 
ATRA-treated HL60 cells, suggesting the difference between 
monocytes and neutrophils. The expressions of other genes 
bound by CEBPB have no significant alteration, illustrating 
the redundancy present in regulatory networks. 
  It has been reported that three C/EBP members CEPBA, 
CEBPB and CEBPE are involved in the differentiation of 
APL cells after ATRA-treatment. Then we analyzed the 
potential of the three C/EBP members to activate the three 
ORM2 promoter constructs in adherent HEK 293T cells by 
transiently transfection. In absence of C/EBP members, the 
-1 158 bp and -203 bp ORM2 promoter constructs have 5-10 
folds activities compared with mock vector while -95 ORM2 
promoter construct only has a weak activity. 

4. Discussion

  Identifying target genes of transcription factors is important 
for constructing transcriptional networks and understanding 
cellular processes. Interfering expression of the transcription 
factor in question and analyzing of the resulting changes 
of gene expression by using microarray technology allow 
high-throughput identification of downstream genes[30-33]. 
However, it may be biased the special genomic regions if 
the detection is only dependent on microarray types. A lot 
of false positives limited its application. Several approaches 
have been developed to improve the efficiency of ChIP-
cloning, such as double ChIP, combined with differential 
display technology (ChIP display) or with one yeast-hybrid 
assay[34-36]. Here we demonstrate a new method, ChIP with 

in vitro selection to identify the target genes of transcription 
factors with enhancing the specificity. However, in present 
study seven of sixteen (44%) potential target fragments 
were confirmed by ChIP-PCR and this is likely to be 
underestimated because some of the negative genes may be 
bound by CEBPB at a location too far from the ChIP-PCR 
amplicon to be detected by this method.
  CEBPB is a transcription factor essential for numerous 
biological processes, including differentiation, metabolic 
homeostasis, proliferation, tumorigenesis, inflammation, and 
apoptosis[37]. To date researchers have identified more than 
one hundred genes directly regulated by CEBPB, including 
cytochrome P450 genes, coagulation factor 桒, serum amyloid 
A2, lactoferrin, G-CSF receptor, etc[38]. Friedman et al 
performed orthogonal analysis through combining expression 
profiling and ChIP-mouse promoter micro-array to identify 
the direct CEBPB target genes in mouse liver after partial 
hepatectomy[39,40]. Compared to the Friedman’s results, the 
CEBPB target genes identified in ATRA-induced APL cells 
in our experiments did not indicated the overlapped CEBPB 
targets. There are two possible explanations to this: first 
although it plays a key role both in liver regeneration and 
in APL differentiation, CEBPB regulates the different target 
genes between liver cells and ATRA-induced APL cells. 
Second it may be due to the difference of technology. There 
are three of seven confirmed target genes the expressions 
of which are significantly altered in both APL cell lines 
after ATRA treatment. The genes identified in this study 
are involved in different cellular processes, including acute 
phase response, calcium signaling pathway and metabolism. 
CEBPB plays a pivotal role in acute phase response by 
regulating expression of acute phase proteins such as serum 
amyloid A, C-reactive protein, haptoglobin, etc[38]. As 
acute phase reactants, both ORM1 and ORM2 are produced 
by hepatocytes and secreted into plasma in response to 
infection/injury. Extensive studies have showed that the 
induction of ORM1 expression is mediated by CEBPB via 
binding the acute phase response element (APRE) in its 
promoter[25-38]. Recent study showed that ORM1 is still 
synthesized in neutrophils and its expression is induced 
by CEBPE[26]. We noticed that both CEBPA and CEBPB can 
enhance the ORM2 promoter activities. The expression of 
ORM2 regulated by both CEBPA and CEBPB suggested that it 
may function in steady-state and emergency granulopoiesis. 
  ITPR2 is one of inositol 1,4,5-trisphosphate receptors 
which are located on endoplasmic reticulum and mediate 
Ca2+ mobilization from ER to the cytoplasm in response to the 
binding of second messenger, inositol 1,4,5-trisphosphate 
(IP3)[27].  ITPR2 and ITPR3 double knockout mice present 
with a lack of Ca2+ release capability from ER and thus 
are unable to induce secretion of saliva and pancreatic 
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juice[41]. ITPR2 is expressed in various tissues and cell lines 
including hematopoietic cell lineages. Several reports plus 
this study showed that ITPR2 is induced in APL cells after 
ATRA treatment[1,28]. 
  The expressions of the other genes including the CEBPB-
binding sites don’t response to the ATRA stimulation in APL 
cells. This non-functional CEBPB-binding illustrates the 
redundancy in CEBPB regulation network, which also was 
found in a study of the CEBPB target gene identification in 
liver regeneration[39]. This study has identified the CEBPB 
target genes and further research is needed to investigate 
the role that these target genes play in the ATRA-induced 
differentiation of APL cells and granulopoiesis. Knockdown 
with specific siRNA and over-expression experiments will 
be helpful. 
  In summary, we provided a new choice of combining in 
vivo chromatin immunoprecipitation with in vitro selection 
to identify the direct target genes of transcription factors. 
Using the approaches, we identified eighty-two potential 
target genes of transcription factor CEBPB in APL cells 
after ATRA treatment. Seven of sixteen were confirmed 
as CEBPB binding sites by ChIP-PCR and EMSA, and the 
expression of three genes were altered in the granulocytic 
differentiation of ATRA-treated APL cells. These results also 
helped to understand the regulatory network of CEBPB in 
granulopoiesis.  
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