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1. Introduction

  Streptozotocin (STZ) is known for its selective cytotoxicity 
on pancreatic islet 毬-cells and has been broadly used 
to induce diabetes mellitus in experimental rat models[1]. 
Its diabetogenic action of STZ has been explained to 
cause the alkylation of DNA, production of nitric oxide 
and free radicals which leads to decreased insulin 
biosynthesis[2]. The failure of insulin action or insulin 
production resulting in hyperglycaemia leads to a number 
of diabetic complications[3,4]. Diabetes does not only 
lead to hyperglycaemia but also causes hyperlipidaemia, 
hyperinsulinemia, hypertension, and atherosclerosis[2]. 

Oxidative stress can occur as a result of excess ROS 
production to the available antioxidant buffering capacity[5].  
Elevated levels of glucose can induce oxidative stress 
through various mechanisms which include glycation, PKC 
activation and sorbitol pathway[6]. An increase in oxidative 
glucose metabolism leads to increased mitochondrial 
generation of the superoxide anion which is converted to 
hydroxyl radicals and hydrogen peroxide[7,8]. Increased 
production of reactive oxygen species such as superoxide 
anion and hydrogen peroxide has been linked with cellular 
injury due to an increase in lipid peroxidation, DNA damage 
and protein modification or altered gene expression[9]. 
Oxidative stress acts on signal transduction and affect 
gene expression through NF-毷B, thereby reducing the 
expression of antioxidant enzymes[6]. An increase in lipid 
peroxidation and the reduction in antioxidant enzyme 
activity have been linked with progression of albuminuria 
in diabetes[10]. The reduction of oxidative stress in diabetic 
rats may, in itself, offset hyperglycaemia[11].
  Red palm oil is obtained from the fleshy orange-

Objective: To investigate the role of red palm oil (RPO), rooibos tea extract (RTE) and their 
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RPO + RTE enhanced liver GPx. A significant (P<0.05) increase in the plasma TBARS in the 
diabetic control group was observed when compared with the normal control group. Treatment of 
diabetic rats with RTE and RPO + RTE reduced plasma TBARS to a level not significantly different 
at P<0.05 from the normal control group.  Conclusions: The results revealed the anti-oxidative 
potentials of red palm oil, rooibos and their combination in diabetic conditions and hence, they 
could be useful in the management of diabetes and its complications. 
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red mesocarp of the fruit of a tropical plant known as 
oil palm (Elaeis guineensis)[12]. It is reported to contain 
antioxidants vitamins such as vitamin A (carotenes) 
and vitamin E (tocopherols and tocotrienols)[13,14] and 
has been reported to prevent oxidative stress in both 
in vitro and in vivo systems[15,16]. Red palm oil contains 
unsaturated and saturated fatty acids in the ratio that is 
close to one[13,14]. On the other hand, rooibos (Aspalathus 
linearis) is a rich source of polyphenols that is used in 
making a mild-tasting tea containing no caffeine and 
low in tannins compared to green or black teas[17]. It 
contains different bioactive phenolic compounds which 
include dihydrochalcones, flavonols, flavanones, flavones, 
and flavanols[18]. Polyphenols are broadly distributed 
throughout the plant kingdom and represent an abundant 
antioxidant component of the human diet[17]. Antioxidants 
are substances that can directly or indirectly offer protection 
against adverse effects of xenobiotics, drugs, carcinogens, 
and toxic radical reactions[19,20]. Various antioxidants either 
scavenge superoxide and free radicals and/or stimulate 
the detoxification mechanisms within cells, resulting in 
the prevention of many pathophysiological processes[20]. 
The antioxidant activities of vitamins, phenolic compounds 
and foods containing them have been shown in different in 
vivo systems[21-25]. Epidemiological evidence suggests that 
antioxidant properties of phenolic compounds may have 
health benefits[23]. Total antioxidant capacity has been used 
for the assessment of antioxidant status which would provide 
useful information for health care[26]. Prevention of oxidative 
damage is important for health care because oxidative stress 
is involved in various diseases[26,27]. The purpose of this 
study was to investigate the potential modulatory effects of 
red palm oil (RPO) and rooibos tea extract (RTE) as well as 
their combined effects on the antioxidant status in STZ-
induced diabetic male Wistar rats.

2. Materials and methods

2.1. Animals

  Male Wistar rats (176-255 g) were bred and used at the 
Medical Research Council, Primate Unit, Tygerberg, South 
Africa. The study was conducted after obtaining Ethical 
Committee Clearance from Cape Peninsula University of 
Technology (CPUT/HAS-REC 2010/A002). The rats were 
maintained in a temperature controlled room of 22-25 曟,
humidity of 45%-55%, 15-20 air changes per hour and 
on a 12 hour light/dark cycle and rats have free access to 
standard rat chow. The rats were treated by supplementing 
their diets with 2 mL red palm oil per day[16] and/ or rooibos 
tea extract (2 g/100 mL) as the only source of drinking[28] for 
7 weeks. The fermented rooibos tea was supplied by Rooibos 
Ltd (Clanwilliam, South Africa) and the red palm oil used 

was Carotino palm fruit oil from Malaysia.

2.2. Preparation of extract from rooibos

  Aqueous extracts of fermented rooibos was prepared by the 
addition of freshly boiled tap water to the leaves and stems 
(2 g/100 mL).  The mixture was allowed to stand for 30 min at 
room temperature, cooled, filtered and dispensed into clean 
small bottles. 

2.3. Induction of diabetes mellitus

  Diabetes was induced by a single intramuscular injection 
of STZ (Sigma-Aldrich, South Africa) at the dose of 50 mg/kg
of body weight into overnight fasted rats. Streptozotocin 
was dissolved in 0.1 M citrate buffer (pH 4.5). Diabetes was 
confirmed 72 hours after STZ injection by determining the 
blood glucose levels using an Accu chek glucometer. Only 
diabetic rats with blood glucose levels above 14 mmol/L 
were used for the experiment.

2.4. Study design

  The rats were divided into five groups consisting of seven 
rats for the normal control group and eight rats each for the 
diabetic groups. 
  Group 1 (Normal control): Rats received a single 
intramuscular injection of citrate buffer and given tap water 
orally for 7 weeks. 
  Group 2 (Diabetic control): Diabetes was induced by a 
single intramuscular injection of STZ at a dose of 50 mg/kg 
body weight and given tap water for 7 weeks.
  Group 3: Diabetes was induced by a single intramuscular 
injection of STZ at a dose of 50 mg/kg body weight and 
treated with RPO (2 mL/day) for 7 weeks.
  Group 4: Diabetes was induced by a single intramuscular 
injection of STZ at a dose of 50 mg/kg body weight and fed 
with RTE (2 g/100 mL) for 7 weeks.
  Group 5: Diabetes was induced by a single intramuscular 
injection of STZ at a dose of 50 mg/kg body weight and fed 
with both RPO (2 mL/day) and RTE (2 g/100 mL) for 7 weeks.
  At the end of experimental period, all the rats were fasted 
overnight and sacrificed. Blood was collected from the dorsal 
aorta by using a 10 mL syringe and transferred into EDTA 
tubes for plasma collection. The serum and plasma were 
separated after centrifugation at 3 000 rpm for 15 min and 
then transferred into properly labelled vials. Liver tissues 
were excised, rinsed in saline solution, blotted on filter 
paper and weighed. All the samples collected were stored at 
-80 曟 until analysis was performed. The percentage weight 
of the liver was calculated with the formula below:

Absolute weight of organ

Final body weight of
伊100The percentage weight of organ =
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2.5. High performance liquid chromatography (HPLC) 
analysis of aqueous rooibos tea extract

  The flavonoids in the rooibos tea extract were separated 
using HPLC (Agilent Technologies, USA) technique according 
to the method of Bramati et al[29]. The mobile phase was 
made up of water (A) containing 300 毺L/L trifluoroacetic 
acid and methanol (B) containing 300 毺L/L trifluoroacetic 
acid. The gradient elution started at 95% (A) changing to 75% 
(A) after 5 min and to 20% (A) after 25 min and back to 95% 
(A) after 28 min. The flow rate, the injection volume and the 
column temperature were set at 0.8 mL/min, 20 毺L and 23 曟
respectively. The wavelengths were set between 210 nm 
and 400 nm and peaks were identify based on the retention 
time of the standards and confirmed by comparison of the 
wavelength scan spectra. 

2.6. Conjugated diene determination

  Conjugated dienes (CDs) concentrations in the samples 
were determined as described by Recknagel & Glende[30]. 
Thawed liver and plasma samples (100 毺L) were mixed 
with 405 毺L of a chloroform/ ethanol mixture (2:1) and kept 
on ice. Solutions were vortexed (1 min) and centrifuged 
(10 000 g; 10 min; 4 曟). The bottom organic chloroform 
layers were dried under nitrogen (N2) gas for 10 min. 
To each of the dried residues, cyclohexane (1 mL) was 
added and vortexed. Thereafter, 300 毺L of the solution 
and cyclohexane as blank were transferred into 96-well 
microplates and the absorbance was determined at 234 nm
spectrophotometrically. The CD calculations were done 
according to the equation given below and expressed 
as nmol CD/L for plasma and nmol CD/g tissue for liver 
homogenates.

A 234s- A234b

ξ
伊100

     
Where A234s: absorbance of sample at 234 nm
A234b: absorbance of blank at 234 nm
ξ: coefficient of extinction= 2.95 伊 104      
Quoted ξ is based on a 1 cm cuvette; since 300 毺L in a 
microplate well has a length of 0.9 cm, appropriate factoring 
was done in the calculations.

2.7. Antioxidant enzymes assay

  The activities of antioxidant enzymes in the liver were 
determined. Liver homogenates (10% w/v) were prepared in 
a phosphate buffer, centrifuged at 10 000 g (4 曟) for 10 mins 
and supernatant kept at -80 曟 for enzyme analyses. Catalase 
(CAT) activity was determined spectrophotometrically at
240 nm by monitoring the decomposition of H2O2 and 

expressed as 毺mole H2O2/min/毺g protein according to the 
method of Aebi[31] while superoxide dismutase (SOD) activity 
was determined by the method of Crosti et al[32] modified for 
a microplate reader at 490 nm and expressed as the amount 
of protein (毺g) required to produce a 50% inhibition of auto-
oxidation of 6-hydroxydopamine. Glutathione peroxidase 
(GPx) activity was measured spectrophotometrically (340 nm) 
by the method of Ellerby and Bredesden[33] and the activity 
expressed as nmoles NADPH/min/毺g protein.

2.8. Oxygen radical absorbance capacity (ORAC) assay

  The plasma samples were deproteinised using 0.5M 
perchloric acid (PCA), centrifuged at 15 000 g for 10 min. The 
ORAC assay was conducted according to the method of Ou 
et al[34] on a 96-well microplate using a Fluorescence plate 
reader (Thermo Fisher Scientific, Waltham, Mass., USA). The 
reaction consisted of 12 毺L of diluted sample and 138 毺L 
of fluorescein (14 毺M), which was used as a target for free 
radical attack. The reaction was initiated by the addition 
of 50 毺L AAPH (768 毺M) and the fluorescence (emission
538 nm, excitation 485 nm) recorded every 1 min for 2 hours. 
Trolox was used as the standard and results expressed as
毺mol/L.

2.9. Trolox equivalence antioxidant capacity (TEAC) assay

  T ro lox  equiva lence  an t iox idant  capac i ty  was 
determined using the principle of 2, 2’-azino-bis 
(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical 
scavenging activity according to a method described by Re 
et al[35]. ABTS+ solution was prepared a day before use by 
mixing ABTS salt (8 mM) with potassium persulfate (3 mM) 
and then storing the solution in the dark until the assay 
could be performed. The ABTS+ solution was further diluted 
with distilled water. Twenty five microlitres (25 毺L) of the 
plasma samples were mixed with 300 毺L ABTS+ solution in 
a 96-well clear microplate. The plate was read after 30 min 
incubation at room temperature in a Multiskan Spektrum 
plate reader (Thermo Fisher Scientific, USA) at 734 nm. 
Trolox was used as the standard and results expressed as
毺mol TE/L.

2.10. Total glutathione, total protein, albumin and globulin 
analysis

  The levels of total glutathione (GSHt) in the samples 
were determined according to the method of Asensi 
et al[36]. The liver samples were homogenized (1:10) in 
15% (w/v) trichloroacetic acid (TCA) containing 1 mM 
ethylenediaminetetraacetic acid (EDTA). The homogenates 
were centrifuged at 15 000 g for 10 min and the supernatant 
collected. Total glutathione in the liver homogenates was 
performed by placing 50 毺L of the samples into plate wells 
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and 50 毺L of 5, 5’-dithiobis-2-nitrobenzoic acid (DTNB) 
was added, followed by 50 毺L of glutathione reductase.  
The reaction was initiated by the addition of 50 毺L of 
nicotinamide adenine dinucleotide phosphate (NADPH) to 
a final volume of 200 毺L. The change in absorbance was 
monitored at 412 nm for 5 min and levels of GSHt calculated 
using pure glutathione (GSH) as a standard and expressed 
as 毺mole/g tissue for liver samples. Total protein and 
albumin levels in the serum were measured with kits using 
an automated chemistry analyzer (Easy RA Medical, USA) 
according to manufacturer`s instructions. Globulin level was 
determined by using the formula (Globulin = Total protein - 
Albumin).

2.11. Estimation of thiobarbituric acid reacting substances 
(TBARS)

  Malondialdehyde (MDA) which is a part of TBARS is 
commonly used as an indicator of lipid peroxidation[37]. 
T h i o b a r b i t u r i c  a c i d  r e a c t i n g  s u b s t a n c e s  w a s 
performed according to a method of Khoschsorur et 
al[38] and modified using a micro plate reader. Fifty 
microlitres (50 毺L) of plasma or liver homogenates 
was mixed with 375 毺L of 0.44 M H3PO4 and 125 毺L
of 42 mM aqueous 2-Thiobarbituric acid and 225 毺L
of distilled water were added. The mixture was heated in 
boiling-water in a water bath for 60 mins. After cooling on 
ice, alkaline methanol (5 mL + 45 mL 1M NaOH) was added 
to the reaction mixture in ratio (1:1). The samples were 
centrifuged for 3 mins and absorbance read at 535 nm using 
a micro plate reader. Malondialdehyde was used as the 
standard and results expressed as nmol MDA/L for plasma 
and nmol MDA/g tissue for liver homogenates.

2.12. Statistical analysis

  Data were expressed as the means依standard deviations. 
Significant differences between mean values of different 
groups were determined by one-way analysis of variance 
(ANOVA) with MedCalc software. Data not normally 
distributed was log transformed and analyzed using the 
Kruskal-Wallis one-way ANOVA on ranks hypotheses. 
Differences were considered significant at P<0.05.

3. Results

3.1. Polyphenolic composition of the rooibos tea extract

  The flavonoids present in the rooibos tea extract are shown 
in Figures 1 and 2. The results showed the presence of 
flavonoids which include aspalathin, isovitexin, isoorientin, 
hyperoside/ rutin, luteolin and vitexin. 
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Figure 1. HPLC chromatogram of flavonoid (Aspalathin) in rooibos 
tea extract used in the study at 287 nm. 
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Figure 2. HPLC chromatogram of other flavonoids in rooibos tea 
extract used in the study at 360 nm. 

3.2. Body and liver weight

  Effects of RPO and/or RTE treatments on the percentage 
weight of the liver and body weight gain in diabetic treated 
rats is shown in Table 1. A significant (P<0.05) increase in 
the liver weights of all the diabetic groups was noted when 
compared with the normal control group. The results showed 
a decrease in body weight gain in all the diabetic groups 
when compared with the normal control group. 

Table 1
Effect of RPO, RTE and RPO + RTE treatments on the liver weight 
and body weight gain.
Treatment groups Liver weight  (%) Body weight gain(%)
Normal control 3.10依0.53 74.00依11.19
STZ control 4.32依0.41a   1.64依12.48 a

STZ + RPO 4.59依0.62b 17.37依15.66 b

STZ + RTE 4.77依0.41bc   5.79依19.45 b

STZ + RPO + RTE 4.00依0.72b 27.44依13.51 bc

All significant differences are at P<0.05.  a represents significant 
difference between STZ control group and normal control group.
b represents significant difference between RPO or/and RTE treated 
groups and normal control group. c represents significant difference 
between RPO or/and RTE treated groups and STZ control group.

3.3. Plasma antioxidant capacity

  The effect of RPO and/or RTE treatments on the antioxidant 
capacity in the plasma of the diabetic rats is shown in Table 
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2. The plasma TEAC status did not show any difference in 
all the groups in comparison to the normal and STZ control 
groups. There was a significant (P<0.05) decrease in the 
plasma ORAC status of the STZ control group when compared 
with the normal control group while it significantly (P<0.05) 
increased in the diabetic rats treated with RPO, RTE and 
RPO + RTE. 

Table 2
Effect of RPO, RTE and RPO + RTE treatments on the plasma 
antioxidant capacity. 
Treatment groups TEAC(毺mol/L)                    ORAC (毺mol/L)               
Normal control 6858.83依100.48 613.91依39.58
STZ control 6846.17依293.21 567.83依55.60a

STZ + RPO 6799.22依483.27 668.48依50.78c

STZ + RTE 7306.43依515.61 664.48依60.74c

STZ + RPO + RTE 7081.01依339.59 641.57依88.69c

All significant differences are at P<0.05.  a represents significant 
difference between STZ control group and normal control group.
b represents significant difference between RPO or/and RTE treated 
groups and normal control group. c represents significant difference 
between RPO or/and RTE treated groups and STZ control group.

3.4. Liver antioxidant enzymes and total glutathione

  The effect of RPO and/or RTE treatments on the antioxidant 
enzymes and total glutathione in the liver of rats is shown in 
Table 3. Diabetic rats fed with RTE and combined treatment 
(RPO + RTE) did not indicate any significant effects on liver 
CAT activity in comparison to the normal control and STZ 
control groups. Liver GPX activity significantly (P<0.05) 
increased in RPO, RTE and RPO + RTE treated diabetic 
rats in comparison to the normal control group. There 

was a significant (P<0.05) increase in liver GPX activity in 
the diabetic rats treated with RTE and RPO + RTE when 
compared with the STZ control group. The activity of liver 
SOD reduced significantly in the STZ control group when 
compared with the normal control group. A significant 
(P<0.05) increase in the activity of liver SOD was observed in 
the diabetic rats treated with RPO, RTE and RPO + RTE. No 
significant (P>0.05) decrease in the liver GSHt level in all the 
diabetic groups in comparison to the normal control group 
was shown.

3.5. Oxidative stress biomarkers

  The effect of RPO and/or RTE treatments on the oxidative 
stress biomarkers in the diabetic rats is shown in Table 4. 
There were no significant (P>0.05) differences in the plasma 
conjugated dienes in all the groups. Diabetic rats treated 
with RTE showed a significant (P<0.05) reduction in liver 
CDs in comparison to the normal and STZ control groups. 
Plasma TBARS significantly (P<0.05) increased in the STZ 
control group and RPO treated diabetic rats while RTE and 
RPO + RTE did not significantly reduce (P>0.05) the level of 
plasma TBARS when compared with the STZ control group. 
The level of liver TBARS was not significantly (P>0.05) 
different in all treated diabetic rats when compared with 
both normal and STZ control groups.

3.6. Total protein, albumin and globulin analysis

  The effect of RPO and/or RTE on serum total protein, 
albumin and globulin is shown in Table 5. No significant 
(P>0.05) decrease in the level of total protein was observed 

Table 3
Effect of RPO, RTE and RPO + RTE treatments on the antioxidant enzymes and total glutathione in the liver.
Treatment groups CAT (毺mol H2O2/min/毺g protein) GPx (nmol NADPH/min/毺g protein)  SOD (units/毺g protein) GSHt (毺mol/g tissue)
Normal control 0.621依0.127 0.003依0.000 0.226依0.062 3.56依0.85
STZ  control 0.670依0.073 0.003依0.000 0.160依0.028a 2.36依1.36
STZ + RPO 0.503依0.038b 0.004依0.000b 0.246依0.068c 3.39依1.53
STZ + RTE 0.655依0.079 0.004依0.001bc 0.293依0.043c 2.48依1.45
STZ + RPO + RTE 0.651依0.107 0.005依0.001bc 0.339依0.058bc 2.87依0.57
All significant differences are at P<0.05.  a represents significant difference between STZ control group and normal control group. b represents 
significant difference between RPO or/and RTE treated groups and normal control group. c represents significant difference between RPO or/and 
RTE treated groups and STZ control group.

Table 4
Effect of RPO, RTE and RPO + RTE treatments on the oxidative stress biomarkers.

Treatment groups                    CD  MDA  
Plasma (nmol/L) Liver (nmol/g) Plasma (nmol) Liver (nmol/g)

Normal control 0.12依0.01 1.21依0.02 12.44依2.51 0.25依0.24
STZ control 0.13依0.01 1.20依0.06  18.70依4.23a 0.24依0.02
STZ + RPO 0.13依0.02 1.19依0.03  17.88依3.41b 0.25依0.02
STZ + RTE 0.13依0.01   1.14依0.04bc 16.34依3.55 0.22依0.03
STZ + RPO + RTE 0.14依0.01 1.19依0.03 15.92依2.78 0.26依0.02
All significant differences are at P<0.05.  a represents significant difference between STZ control group and normal control group. b represents 
significant difference between RPO or/and RTE treated groups and normal control group. c represents significant difference between RPO or/and 
RTE treated groups and STZ control group.
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in the STZ control group when compared with the normal 
control group. There was also a significant (P<0.05) increase 
in the total protein of the diabetic rats treated with RPO 
alone when compared with the STZ control group. There was 
significant (P<0.05) reduction in the levels of albumin in the 
STZ control group and diabetic treated groups with RPO and 
RTE alone when compared with the normal control group. 
The effect of RTE on the level of albumin in STZ treated rats 
was significantly (P<0.05) lower when compared with the 
normal and STZ control groups. The results also showed a 
significant (P<0.05) increase in serum globulin in diabetic 
rats fed with RPO. However, diabetic rats fed with RTE and 
RPO + RTE did not have any significant (P>0.05) effects on 
globulin when compared with the STZ control group. 

4. Discussion

  Our results indicated a decrease in body weights of the 
diabetic rats in comparison to the normal control rats. 
The decrease in body weight is as a result of loss of tissue 
proteins and muscle mass in diabetes[39]. It is known that 
glycosuria causes a significant loss of calories for every 
gram of glucose excreted and most likely, this loss results in 
severe weight loss in spite of increased appetite, particularly 
when it is coupled with loss of muscle and adipose tissue 
due to excessive breakdown of protein[40].  From our results, 
diabetic rats fed with RPO and RTE gained more body 
weight than those of the STZ group. Streptozotocin generates 
oxygen radicals in vivo and cause oxidative damage to 
pancreas, liver, kidney, and haemopoietic systems[13,41]. The 
key organ of oxidative and detoxifying processes, as well as 
free radical reactions is the liver and thus, oxidative stress 
biomarkers are elevated in the liver at the early stages of 
many diseases[42].
  The mechanism of antioxidant defence against oxidative 
stress can be classified into: antioxidant, preventative, 
repair mechanisms and physical defences[43]. Vitamin A, 
one of the components present in red palm oil acts directly 
by an intrinsic free radical scavenging mechanism and also 
inhibits nitric oxide production through inhibition of iNOS 
gene transcription in different tissues[44]. It has also been 
documented that 毩-tocopherol, a form of vitamin E in 
red palm oil has the ability to terminate chain reactions of 
polyunsaturated fatty acid free radicals generated by lipid 
oxidation[45]. Vitamin E has also been reported to act by 
up-regulating antioxidant enzymes[44]. Similarly, rooibos 
is known to contain a profile of polyphenols (flavonoids). 
Possible mechanisms of flavonoids against oxidative stress 
is by the direct scavenging of free radicals, inhibition of 
xanthine oxidase, interfering with inducible nitric-oxide 
synthase, immobilization and firm adhesion of leukocytes to 
the endothelial wall and by interaction with various enzyme 
systems[46].
  Increased antioxidant capacity confirms the idea of 
the presence of functional recovery, at least in part, in 
the antioxidant defence systems in rats during chronic 

diabetes[47]. The trolox equivalent antioxidant capacity 
(TEAC) assay or 2, 2-azinobis (3-ethylbenzthiazoline-6-
sulfonic acid) (ABTS) assay is based on scavenging of the 
ABTS+ radical cation by the antioxidants present in test 
sample[48]. It evaluates the relative ability of antioxidant 
to scavenge the ABTS+ generated in aqueous and organic 
solvent systems[49]. There was no significant difference in 
plasma TEAC in treated diabetic rats. The ORAC assay is 
found to give a good index of the total antioxidant capacity 
in patients with diabetes[50]. A decrease in blood ORAC 
values are strongly linked with poor glycaemic control in 
diabetic patients[50-52]. In this study, we observed a similar 
significant decrease in plasma ORAC status in the STZ 
group. However, plasma ORAC status of the diabetic rats 
treated with RPO, RTE and combined treatment (RPO + RTE) 
was significantly increased and therefore, suggest their 
ability to boost antioxidant levels in diabetic conditions.
  CAT is regarded as a major determinant of hepatic 
antioxidant status and catalyzes the reduction of hydrogen 
peroxides and protects the tissue from highly reactive 
hydroxyl radicals[53]. In this study, no significant difference 
in the activity of liver CAT was observed in all the diabetic 
groups. SOD catalyses the dismutation of superoxide 
radicals to hydrogen peroxide and molecular oxygen[54]. 
The location of SOD in the mitochondria and its position in 
the antioxidant chain make the enzyme to be particularly 
important as a slight decrease in SOD is sufficient to provoke 
cell damage[55]. A significant decrease in the activity of liver 
SOD in the diabetic rats was observed compared with the 
normal control group in this study and this could be due to 
an excessive formation of superoxide anions in the diabetic 
rats. The decrease in liver SOD could as well as be related 
to inactivation by H2O2 or by glycation of enzymes. Kumawat 
et al[56] reported that auto-oxidation of glucose results in 
the formation of H2O2 that inactivates SOD. The results 
from this study also showed that RPO, RTE and RPO + RTE 
were able to significantly increase the activity of SOD in 
the diabetic rats. GPx helps to protect the cell from damage 
due to free radicals like hydrogen and lipid peroxides and 
its actions take place in the presence of glutathione, the 
master antioxidant. GPx metabolizes hydrogen peroxide to 
water with the usage of reduced glutathione as a hydrogen 
donor[57]. The activity of liver GPx significantly increased 
in all diabetic treated rats when compared to the normal 
control group. 
  The reaction of hydroxyl radicals and singlet oxygen with 
the methylene groups of polyunsaturated fatty acids (PUFA) 
produces conjugated dienes, lipid peroxy radicals and 
hydroperoxides[58,59]. In this study, there was no significant 
effect on conjugated dienes in the diabetic control and 
diabetic treated rats. TBARS was used as a measure of the 
estimation of MDA in this study. The cytotoxic effects of 
oxygen free radicals is exerted on membrane phospholipids 
and lead to the formation of MDA, a product of lipid 
peroxidation[60] and the levels of MDA reveal the degree of 
oxidation in the body. Lipid peroxidation could cause protein 
damage and the inactivation of membrane bound enzymes 



Ademola Ayeleso et al./Asian Pacific Journal of Tropical Medicine (2014)536-544542

either through direct attack by free radicals or through 
chemical modification by its end products, malondialdehyde 
and 4-hydroxynonenal[61]. There was a significant increase 
in the plasma TBARS in STZ diabetic rats while liver. TBARS 
did not show any difference in the diabetic control group 
in comparison to the normal control group. A similar result 
of non-accumulation of TBARS in liver tissue of diabetic 
rats has been shown[62]. A possible reason for this might be 
as a result of reduction in lipid content (lipolysis) in cell 
membranes during the long-term diabetes in the rats[62,63]. 
Lapshina et al[63] further argued that TBARS accumulation, 
which shows the degree of oxidative stress and antioxidative 
defense, may be tissue-specific and also depends upon 
duration of the diabetes conditions. Administration of RTE 
and RPO + RTE to the diabetic rats reduced the plasma 
TBARS to a level that is not significantly different from the 
normal control group.  
  Indirectly, hyperglycaemia is the cause of GSH depletion 
and these results in oxidative stress[64]. A decrease in 
GSH levels could signify an increased utilization due to 
oxidative stress and elevated activity of GSH protection of 
cellular proteins against oxidation through the glutathione 
redox cycle, that could also directly detoxify reactive 
oxygen species the generated from exposure to STZ[65]. 
Several studies have reported a decrease in GSH level as an 
indicator of oxidative stress in diabetic conditions[64,66,67]. 
However, this study showed no significant reduction in the 
GSHt levels in the diabetic control and diabetic treated rats 
compared to normal control group. Singh et al[68] reported no 
significant change in GSH levels either in blood or liver of 
diabetic animals and in treated diabetic animals, GSH levels 
were marginally high in both blood as well as the liver. 
The results indicate no significant increase in the plasma 
GSH levels in diabetic treated animals. In another study, 
Sudnikovich et al[62] did not observe any appreciable change 
in GSH levels in diabetic red blood cells or liver tissue when 
compared to normal rats. 
  Diabetes mellitus is grossly reflected by intense changes in 
the protein metabolism and by a negative nitrogen balance 
and loss of nitrogen from most organs[69,70]. Reduction in 
serum albumin, alpha and beta globulin, plasma albumin/
globulin ratio and a concomitant elevation in gamma 
globulin have been shown in diabetic rats[71]. A reduction in 
protein content in the serum of diabetic patients has been 
reported and this is indicated by an increase in the lipid 
peroxidation and a decreased antioxidant defense system[72]. 
In diabetes, increased blood nitrogenous substances may 
be accounted for by the enhanced breakdown of both liver 
and plasma proteins[69]. The results indicate a significant 
decrease in the level of albumin while there was no 
significant decrease in the total protein and globulin levels 
in the diabetic control group in comparison to the normal 
control group. The decrease in the albumin level of the 
diabetic rats could be due to an increased protein glycation. 
The present study revealed that diabetic rats treated with 
RPO only improved the level of albumin in the diabetic rats. 
Similarly, RPO significantly increased the level of globulin 

in comparison to both the normal and diabetic control 
groups. Albumin could exert its antioxidant activity due to 
its capacity to bind homocysteine, a sulphur-containing 
amino acid, which results from the catabolism of methionine 
residues[73].
  In conclusion, the study confirms the involvement of 
oxidative stress in diabetes. The results confirms the ability 
of the RPO, RTE or the combined treatment (RPO + RTE) 
to up-regulate the activities of some antioxidant enzymes 
intracellular activities in diabetic conditions. It also suggests 
that these plant products could offer protective roles against 
oxidative damage. The antioxidant beneficial effects of 
red palm and rooibos could be as a result of inhibition of 
specific pathways that are activated as a consequence of 
increased oxidative stress in the progression of diabetes. 
Therefore, antioxidant therapy in diabetes may therefore 
be helpful in relieving many symptoms and complications 
observed in diabetes patients.
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