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DERIVED EQUATIONS FOR DAMAGE ACCUMULATION IN 

GEARED WHEELS BASED ON MODIFIED LAWS OF CRACK 

PROPAGATION 
 

Summary. Versatile hypotheses of fatigue damage accumulation are utilized in 

order to determine the fatigue life of particular mechanical elements. Such an 

approach to an analysis of fatigue processes is recognized as being 

phenomenological. In the present paper, modifications to the Paris and Foreman 

laws of fracture mechanics have been proposed. The goal of these modifications 

is an explicit formulation of crack propagation velocity as a function of crack 

length. Additionally, the process of crack growth was simulated according to the 

Palmgren-Miner and Pugno-Ciavarella-Cornetti-Carpinteri fatigue hypotheses. 

The results of simulation were verified based upon test stand experiments. 

Keywords: fatigue life, fatigue damage propagation, test stand investigations, 
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1. INTRODUCTION 

 

The main factor that has an essential influence on direction and propagation of fatigue 

damage is the structure of material. The process of forming spots of damage initiation can be 

observed in the following areas: 

 slip bands 

 grains borders 

 intrusions near a surface (very rare) 

 

Other factors have an essential influence, such as heat-chemical and mechanical treatment 

of the surface, work/operation environment and variable character of a loading.  

Depending on the structure of the material, the causes in which cracks occur can be divided 

into the following groups and types:  

 Point type (Fig. 1) – four types of defects can be distinguished: 1) voids (empty 

volumes, Schottky defect); 2) between-node atom; 3) odd atom (between nodes); 

4) extraneous atom in a network node. 
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Fig. 1. Crystal defects – point type 

 

 Dislocation type (Fig. 2) – edge-type (in a crystal, occurs on the edge of an additional 

surface); screw-type (defect crystal structure caused by the displacement of a part of 

the crystal around an axis, known as a curvature of screw dislocation). 

 

Dislocation line

Dislocation line

 
 

Fig. 2. Linear defects (dislocations) [1] 
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Cracks along the grains borders most frequently occur in cases of excessive strain 

amplitudes, as well as in cases of high temperature. Sometimes, even a relatively low force 

can cause inter-particle bindings to be easily disjointed. The weak bindings result in the 

molecular crystals being subjected to displacements. Exemplary propagations taking place on 

the grain borders are presented in Fig. 3. 

 

 

Fig. 3. Loss of material cohesion: a) transcrystalline (crack permeating the grains); b) 

intercrystalline (cracks spreading along the grain borders) [1] 

 

Slip bands (Fig. 4) can be observed within the range of the limited fatigue life. They cause, 

for instance, plastic deformations in the material and, in turn, stress concentrations.  

 

slip band

slip line

 
 

Fig. 4. Band and line of a slip 

 

Usually, this is the cause of rising damages (Fig. 5) [10]. Slip bands observed in 

a transversal cross-section create characteristic steps called just steps or slides [4]. 

The damage-type slip bands are different in comparison to the bands resulting from static 

loadings, mainly due to their local nature and size. The special types of slip bands are 

extrusions of metal flakes known as extrusions, as well as indentations and pits known as 

intrusions. 
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Fig. 5. Schematic view of originating slip lines and bands [10] 

 

Local plastic deformations caused by such slip bands represent the potential places of 

occurrence of fatigue damages, which can be observed as having a particular form or 

geometrical shape in many cases (Fig. 6) [11]. 

 

Stage I fatigue crack

Stage II fatigue crack

extrusion
intrusion

 
 

Fig. 6. Exemplary damage process – presented for a thin plate  

subjected to a cyclic loading [11] 

 

In the above figure, there are two areas (shown schematically). Stage I is where initiation 

and propagation of a crack occur. It is recognized as the start zone of the propagation of so- 

called short cracks. This process in which crevices arise can have three phases: 
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microcrystalline, strengthening and nucleation of micro-cracks. It is closely connected with 

plastic deformation and static loading. Therefore, crack propagation occurs within the plane 

on which stretching loadings act. 

In stage II, elongation of the crevices and stable crack propagation take place. Here, we 

consider initiation of macro-cracks and their propagation. Deformations and the creation of 

macro-cracks occur in the layer close to the surface, but only the surface. When the crack 

propagates, we can observe the three-axial stress state before its tip. Obviously, the initiation 

of a crack depends on the place where it occurs, as well as where it is connected to the local 

concentrations that take place due to plastic deformation on or near the surface. A similar 

model of nucleation of fatigue cracks (taking into account intrusions and extrusions) can be 

found in Wood’s monograph. 

The exemplary scenarios of crack propagation are presented in Fig. 7 [10]. Three curves of 

crack propagation have been drawn as functions in the coordinate system: in other words, 

cycles versus fatigue life until a defect/deterioration occurs. In detail, the ordinate coordinate 

axis represents the relationship Nn /  in percentage terms [%], the abscissa coordinate axis 

represents the increase of crack length and the logarithmic scale is utilized. 
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Fig. 7. Versatile scenarios of crack propagation [10] 

 

As can be observed, crack nucleation is not always followed by its propagation phase. 

Similarly, not every defect or nucleated crack can be detected by an observer utilizing 

versatile equipment and detection methods. 
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Versatile hypotheses of fatigue damage accumulations are applied in order to determine the 

fatigue life. This approach to the fatigue process is called a phenomenological approach. 

Another method consists of utilizing energetic, force or strain criterions in accordance with 

the theory of fracture mechanics. The second approach not only allows for the assessment of 

fatigue life, but also for the determination of values (level) of damaging loadings. Particular 

attention is usually given to an analysis of the kinetics of a stable crack increase. 

Velocity of fatigue crack propagation is presented using charts prepared in the co-ordinate 

system IKdNdA  lglg , where dNdA  represents the velocity of crack growth 

corresponding to a loading cycle, whereas IK  represents a range of stress intensity 

coefficient. The full range of crack growth contains an interval between the following: (a) the 

threshold coefficient of stress intensity Kth, which corresponds to the border between the 

phases of initiation and the stable crack propagation (for velocity growth equal to approx. 10-7 

mm/cycle) and (b) the critical coefficient of stress intensity KIC, which is determined via the 

crack length, when an intensive or rapid crack growth and deterioration of an element starts.  

The goal of the investigations presented in the present paper analytically determines the 

course of fatigue crack growth in the tooth root (of a geared wheel), based upon the modified 

Foreman and Paris-Erdogan formulae, as a function of crack length. We plan to perform 

experimental investigations of wheel specimens using the special test stand (of so-called 

circulating power or back-to-back rig), which aim to confirm the correctness of assumed 

modified hypotheses. 

 

 

2. MODIFIED FORM OF PARIS’ EQUATION  
 

In Fig. 8, a schematic chart of the propagation of fatigue cracks or the so-called kinetic 

fatigue chart, which is drawn in terms of the bi-logarithmic co-ordinate system  dNdalg - 

 Klg , is presented.  
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Fig. 8. Schematic chart of the propagation of fatigue cracks [6] 

 



Derived equations for damage accumulation in… 25. 

 

An experimentally obtained curve can be roughly divided into three areas of different 

crack velocities. In area I, i.e., of low crack propagation velocity (theoretically within the 

range cyclemm6100  , but in practice within the interval cyclemm611 1010   ), an 

essential meaning involves the micro-structure of dislocations, medium stresses and 

environment. Within this area, the range of the threshold coefficient of stress intensity
htK is 

determined. 

In area II, i.e., of medium crack propagation velocity (within the 

range cyclemm36 1010   ), the chart has almost a linear character, while the Paris-Erdogan 

[7] formula is utilized to describe this part of the chart:  

  n
KC

Nd

ad
  (1) 

where C  and n  are constant depending on the material properties and loading conditions. 

They should be determined based on experiments (Fig. 8) or chosen based upon relevant 

references. 

 

Therefore, the basic equations are as follows [8]: 

a) Formula in the range of the threshold coefficient of stress intensity 
htK , as a function of 

the corresponding range of stresses, i.e., limlim FF   , and the threshold/ultimate length 

of crack 0a :  

 0lim0lim aaK FFth  
 (2) 

b) Formula in the range of the coefficient of stress intensity 0IK , as a function of 

the corresponding range of stresses, i.e., limFFF   , and the threshold/ultimate 

length of crack 0a :  

 000 aaK FFI  
 (3) 

c) Formula in the range of the coefficient of stress intensity IK , as a function of 

the corresponding range of stresses, i.e., limFFF   , and the threshold/ultimate 

length of crack a :  

 
aaK FFI  

 (4) 

d) Equation of the line (curve) of the limited fatigue live, i.e., the so-called Wöhler curve:  
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Based on equation (4), we can determine that crack length a  is equal to:  
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while its derivative is as follows:  
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which, after being inserted to the transformed Paris-Erdogan formula, gives us the following 

equation:  
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After integration of both sides of the equality:  
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where we obtain the underneath relationship, which is a formula for determining the number 

of loading cycles corresponding to the period of crack initiation (time measured by number of 

cycles):  
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Rewriting formula (10) and inserting equation (5), we obtain: 
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The equation of damage accumulation corresponding to Paris’ formula finally takes 

the following form: 
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An exemplary simulated chart of damage accumulation is presented in Fig. 9. 

The considered material of an artefact was 4,330 steel used for the production of geared 

wheels.  
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Fig. 9. Chart of fatigue damage accumulation according to the Paris equation 

 (for different exponents of n in the Paris equation) 

 

 

3. MODIFIED FORM OF FOREMAN EQUATION 

 

In the second considered case, the initial considered relationship is the Foreman equation 

[6]: 
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and, additionally, formulas (2) and (5). 

Inserting (7) into the transformed formula (13), the following form is obtained: 
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from which, after integration, we obtain the time of crack nucleation according to 

the Foreman equation: 
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As previously discussed, the equation of fatigue damage accumulation, according to 

the Foreman approach, has the following form: 

 Fk
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 (16) 

 

 

4. MODIFIED FORMS OF PARIS AND FOREMAN EQUATIONS –VERSION ii 
 

In the case of the Paris equation, when based on equation (11) and taking into account 

the following formulas: 

 0lim0lim aaK FFth    and cFcFCI aaK    (17) 

 

the transformed equation (11) takes the form: 
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In the case of the Foreman equation, the transformed equation (15) takes the form: 
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5. CONCLUSIONS 

 

Within the fatigue process of machine elements, the following main phases can be 

distinguished: nucleation and propagation of slip bands, initiation, and continuous final 

propagation of fatigue cracks until damage or deterioration occurs. Versatile damage 

accumulation hypotheses are utilized to model a fatigue phenomenon in order to determine 

fatigue life.  

In the present paper, modifications to the Paris and Foreman laws, which describe the 

fatigue damage propagation, were proposed. In order to verify the proposed model, 

the experimental stand investigations were performed. As investigated artefacts, spur 

cylindrical geared wheels – so–called wheel-specimens – were tested. The investigated 

wheels were manufactured from17HMN of steel (carburized and hardened), which is similar 
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to the 4330 alloy steel according to the AGMA standard (based upon the database of the 

NASGRO/FLAGRO company) [9]. 

The teeth of the geared wheel are mainly subjected to high-cycle fatigue. The particular 

value of fatigue strength is usually determined by the experimentally obtained fatigue chart, 

i.e., the so-called Wöhler curve. In the case of fatigue investigations regarding the teeth of 

geared wheels, the fatigue charts are prepared in relation to the so-called bi-logarithmic 

coordinate system lg  - Nlg , where  is the pulsating (from zero) bending stress near the 

tooth root and N corresponds to adequate stress, whereby the adequate fatigue life is measured 

as the number of  cycles. 

Based upon performed future experimental investigations, it would be possible to utilize 

the modified Paris equation, taking into account a damage type, when calculating the fatigue 

life of geared wheels [8]: 
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Underneath, an exemplary Wöhler curve is presented, which utilizes a bi-logarithmic 

coordinate system that is prepared for versatile values of a ratio: ‘total crack length/initial 

crack length’, i.e.: 1000;100;10;1
0


a

a
 (according to paper [8]) versus the number of 

loading cycles N. 
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Fig. 10. Wöhler curve determined by equation (20) 
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