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Abstract 
In Data mining and Knowledge Discovery hidden and valuable knowledge from the data 

sources is discovered. The traditional algorithms used for knowledge discovery are bottle 
necked due to wide range of data sources availability.  Class imbalance is a one of the 
problem arises due to data source which provide unequal class i.e. examples of one class in a 
training data set vastly outnumber examples of the other class(es). Researchers have 
rigorously studied several techniques to alleviate the problem of class imbalance, including 
resampling algorithms, and feature selection approaches to this problem. In this paper, we 
present a new hybrid frame work dubbed as Wrapper based Intelligent Under Sampling 
(WIUS) for learning from skewed training data. These algorithms provide a simpler and 
faster alternative by using C4.5 and wrapper as base algorithm. We conduct experiments 
using ten UCI data sets from various application domains using five algorithms for 
comparison on five evaluation metrics.  Experimental results show that our method has 
higher Area under the ROC Curve, F-measure, precision, TP rate and TN rate values than 
many existing class imbalance learning methods. 
 

Keywords: Classification, class imbalance, weighted sampling, WIUS 
 
1. Introduction 

A dataset is class imbalanced if the classification categories are not approximately equally 
represented. The level of imbalance (ratio of size of the majority class to minority class) can 
be as huge as 1:99 [1]. It is noteworthy that class imbalance is emerging as an important issue 
in designing classifiers [2, 3, 4]. Furthermore, the class with the lowest number of instances is 
usually the class of interest from the point of view of the learning task [5]. This problem is of 
great interest because it turns up in many real-world classification problems, such as remote-
sensing [6], pollution detection [7], risk management [8], fraud detection [9], and especially 
medical diagnosis [10–13]. 

There exist techniques to develop better performing classifiers with imbalanced datasets, 
which are generally called Class Imbalance Learning (CIL) methods. These methods can be 
broadly divided into two categories, namely, external methods and internal methods. External 
methods involve preprocessing of training datasets in order to make them balanced, while 
internal methods deal with modifications of the learning algorithms in order to reduce their 
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sensitiveness to class imbalance [14]. The main advantage of external methods as previously 
pointed out, is that they are independent of the underlying classifier.  

Whenever a class in a classification task is under represented (i.e., has a lower prior 
probability) compared to other classes, we consider the data as imbalanced [15], [16]. The 
main problem in imbalanced data is that the majority classes that are represented by large 
numbers of patterns rule the classifier decision boundaries at the expense of the minority 
classes that are represented by small numbers of patterns. This leads to high and low 
accuracies in classifying the majority and minority classes, respectively, which do not 
necessarily reflect the true difficulty in classifying these classes. Most common solutions to 
this problem balance the number of patterns in the minority or majority classes. The proposed 
framework which is shown in Figure 1 addresses the above said issues for class imbalance 
datasets.  

Resampling techniques can be categorized into three groups. Undersampling methods, 
which create a subset of the original data-set by eliminating instances (usually majority 
class instances); oversampling methods, which create a superset of the original data-set 
by replicating some instances or creating new instances from existing ones; and finally, 
hybrids methods that combine both sampling methods. Among these categories, there 
exist several different proposals; from this point, we only center our attention in those 
that have been used in under sampling. 

Either way, balancing the data has been found to alleviate the problem of imbalanced data 
and enhance accuracy [15-17]. Data balancing is performed by, e.g., oversampling patterns of 
minority classes either randomly or from areas close to the decision boundaries. Interestingly, 
random oversampling is found comparable to more sophisticated oversampling methods [17]. 
Alternatively, undersampling is performed on majority classes either randomly or from areas 
far away from the decision boundaries. We note that random undersampling may remove 
significant patterns and random oversampling may lead to overfitting, so random sampling 
should be performed with care. We also note that, usually, oversampling of minority classes 
is more accurate than undersampling of majority classes [17]. In this paper, we are laying 
more stress to propose an external CIL method for solving the class imbalance problem. 

This paper is organized as follows. Section II briefly reviews the Data Balancing 
problems and its measures and in Section III, we discuss the proposed method of WIUS 
(Wrapper based Intelligent Under Sampling) technique for CIL. Section IV presents the 
imbalanced datasets used to validate the proposed method, while In Section V, we 
present the experimental setting and In Section VI discuss, in detail, the classification 
results obtained by the proposed method and compare them with the results obtained by 
different existing methods and finally, in Section VII we conclude the paper. 
 
2. Literature Review  

A comprehensive review of different CIL methods can be found in [18]. The following two 
sections briefly discuss the external-imbalance and internal-imbalance learning methods. The 
external methods are independent from the learning algorithm being used, and they involve 
preprocessing of the training datasets to balance them before training the classifiers. Different 
resampling methods, such as random and focused oversampling and undersampling, fall into 
to this category. In random undersampling, the majority-class examples are removed 
randomly, until a particular class ratio is met [19]. In random oversampling, the minority-
class examples are randomly duplicated, until a particular class ratio is met [18]. Synthetic 
minority oversampling technique (SMOTE) [20] is an oversampling method, where new 
synthetic examples are generated in the neighborhood of the existing minority-class examples 
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rather than directly duplicating them. In addition, several informed sampling methods have 
been introduced in [21]. 

Currently, the research in class imbalance learning mainly focuses on the integration of 
imbalance class learning with other AI techniques. How to integrate the class imbalance 
learning with other new techniques is one of the hottest topics in class imbalance learning 
research. There are some of the recent research directions for class imbalance learning as 
follows: 

T. Jo et al. [22] have proposed a clustering-based sampling method for handling class 
imbalance problem, while S. Zou et al. [23] have proposed a genetic algorithm based 
sampling method. Jinguha Wang et al. [24] have suggested a method for extracting minimum 
positive and maximum negative features (in terms of absolute value) for imbalanced binary 
classification is proposed. They have developed two models to yield the feature extractors. 
Model 1 first generates a set of candidate extractors that can minimize the positive features to 
be zero, and then chooses the ones among these candidates that can maximize the negative 
features. Model 2 first generates a set of candidate extractors that can maximize the negative 
features, and then chooses the ones that can minimize the positive features. Compared with 
the traditional feature extraction methods and classifiers, the proposed models are less likely 
affected by the imbalance of the dataset. Iain Brown et al. [25] have explored the suitability 
of gradient boosting, least square support vector machines and random forests for imbalanced 
credit scoring data sets such as loan default reduction. They progressively increase class 
imbalance in each of these data sets by randomly undersampling the minority class of 
defaulters, so as to identify to what extent the predictive power of the respective techniques is 
adversely affected. They have given the suggestion for applying the random forest and 
gradient boosting classifiers for better performance.  Salvador Garcı´a et al. [26] have used 
evolutionary technique to solve the class imbalance problem. They proposed a method 
belonging to the family of the nested generalized exemplar that accomplishes learning by 
storing objects in Euclidean n-space. Classification of new data is performed by computing 
their distance to the nearest generalized exemplar. The method is optimized by the selection 
of the most suitable generalized exemplars based on evolutionary algorithms.  

Jin Xiao et al. [27] have proposed a dynamic classifier ensemble method for imbalanced 
data (DCEID) by combining ensemble learning with cost-sensitive learning. In this for each 
test instance, it can adaptively select out the more appropriate one from the two kinds of 
dynamic ensemble approach: dynamic classifier selection (DCS) and dynamic ensemble 
selection (DES). Meanwhile, new cost-sensitive selection criteria for DCS and DES are 
constructed respectively to improve the classification ability for imbalanced data. Victoria 
López et al. [28] have analyzed the performance of data level proposals against algorithm 
level proposals focusing in cost-sensitive models and versus a hybrid procedure that combines 
those two approaches. They also lead to a point of discussion about the data intrinsic 
characteristics of the imbalanced classification problem which will help to follow new paths 
that can lead to the improvement of current models mainly focusing on class overlap and 
dataset shift in imbalanced classification. Yang Yong [29] has proposed one kind minority 
kind of sample sampling method based on the K-means cluster and the genetic algorithm. 
They used K-means algorithm to cluster and group the minority kind of sample, and in each 
cluster they use the genetic algorithm to gain the new sample and to carry on the valid 
confirmation. Chris Seiffert et al. [30] have examined a new hybrid sampling/boosting 
algorithm, called RUSBoost from its individual component AdaBoost and SMOTEBoost, 
which is another algorithm that combines boosting and data sampling for learning from 
skewed training data. V. Garcia et al. [31] have investigated the influence of both the 
imbalance ratio and the classifier on the performance of several resampling strategies to deal 
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with imbalanced data sets. The study focuses on evaluating how learning is affected when 
different resampling algorithms transform the originally imbalanced data into artificially 
balanced class distributions.  

Table 1 presents recent algorithmic advances in class imbalance learning available in the 
literature. Obviously, there are many other algorithms which are not included in this table. A 
profound comparison of the above algorithms and many others can be gathered from the 
references list. 

Table 1. Recent advances in Class Imbalance Learning 
___________________________________________________________________________ 

ALGORITHM  DESCRIPTION                      REFERENECE 
___________________________________________________________________________ 

DCEID         Combining ensemble learning                   [37] 
with cost-sensitive learning. 

----------------------------------------------------------------------------------------------------------------- 
RUSBoost     A new hybrid sampling/boosting                [40] 

Algorithm. 
----------------------------------------------------------------------------------------------------------------- 

CO2RBFN    A evolutionary cooperative–competitive 
model for the design of radial-basis 
function networks which uses both             [42] 
radial-basis function and the 
evolutionary cooperative-competitive 
technique. 

----------------------------------------------------------------------------------------------------------------- 
Improved     Adapt the 2-tuples based genetic tuning 
FRBCSs       approach to classification problems             [45] 

showing the good synergy between 
this method and some FRBCSs. 

----------------------------------------------------------------------------------------------------------------- 
BSVMs      A model assessment of the interplay 

between various classification                       [49] 
decisions using probability, corresponding 
decision costs, and quadratic program 
of optimal margin classifier. 

___________________________________________________________________________ 
 

María Dolores Pérez-Godoy et al. [32] have proposed CO2RBFN, a evolutionary 
cooperative–competitive model for the design of radial-basis function networks which uses 
both radial-basis function and the evolutionary cooperative-competitive technique on 
imbalanced domains. CO2RBFN follows the evolutionary cooperative–competitive strategy, 
where each individual of the population represents an RBF (Gaussian function will be 
considered as RBF) and the entire population is responsible for the definite solution. This 
paradigm provides a framework where an individual of the population represents only a part 
of the solution, competing to survive (since it will be eliminated if its performance is poor) 
but at the same time cooperating in order to build the whole RBFN, which adequately 
represents the knowledge about the problem and achieves good generalization for new 
patterns. Der-Chiang Li et al. [33] have suggested a strategy which over-samples the minority 
class and under-samples the majority one to balance the datasets. For the majority class, they 
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build up the Gaussian type fuzzy membership function and a-cut to reduce the data size; for 
the minority class, they used the mega-trend diffusion membership function to generate 
virtual samples for the class. Furthermore, after balancing the data size of classes, they 
extended the data attribute dimension into a higher dimension space using classification 
related information to enhance the classification accuracy. Enhong Che et al. [34] have 
described a unique approach to improve text categorization under class imbalance by 
exploiting the semantic context in text documents. Specifically, they generate new samples of 
rare classes (categories with relatively small amount of training data) by using global 
semantic information of classes represented by probabilistic topic models. In this way, the 
numbers of samples in different categories can become more balanced and the performance of 
text categorization can be improved using this transformed data set. Indeed, this method is 
different from traditional re-sampling methods, which try to balance the number of 
documents in different classes by re-sampling the documents in rare classes. Such re-
sampling methods can cause overfitting. Another benefit of this approach is the effective 
handling of noisy samples. Since all the new samples are generated by topic models, the 
impact of noisy samples is dramatically reduced.  

Alberto Fernández et al. [35] have proposed an improved version of fuzzy rule based 
classification systems (FRBCSs) in the framework of imbalanced data-sets by means of a 
tuning step. Specifically, they adapt the 2-tuples based genetic tuning approach to 
classification problems showing the good synergy between this method and some FRBCSs. 
The proposed algorithm uses two learning methods in order to generate the RB for the 
FRBCS. The first one is the method proposed in [36], that they have named the Chi et al.’s., 
rule generation. The second approach is defined by Ishibuchi and Yamamoto in [37] and it 
consists of a Fuzzy Hybrid Genetic Based Machine Learning (FH-GBML) algorithm.J. Burez 
et al. [38] have investigated how they can better handle class imbalance in churn prediction. 
Using more appropriate evaluation metrics (AUC, lift), they investigated the increase in 
performance of sampling (both random and advanced under-sampling) and two specific 
modeling techniques (gradient boosting and weighted random forests) compared to some 
standard modeling techniques. They have advised weighted random forests, as a cost-
sensitive learner, performs significantly better compared to random forests. 

Che-Chang Hsu et al. [39] have proposed a method with a model assessment of the 
interplay between various classification decisions using probability, corresponding decision 
costs, and quadratic program of optimal margin classifier called: Bayesian Support Vector 
Machines (BSVMs) learning strategy. The purpose of their learning method is to lead an 
attractive pragmatic expansion scheme of the Bayesian approach to assess how well it is 
aligned with the class imbalance problem. In the framework, they did modify in the objects 
and conditions of primal problem to reproduce an appropriate learning rule for an observation 
sample. In [40] Alberto Fernández et al. have proposed to work with fuzzy rule based 
classification systems using a preprocessing step in order to deal with the class imbalance. 
Their aim is to analyze the behavior of fuzzy rule based classification systems in the 
framework of imbalanced data-sets by means of the application of an adaptive inference 
system with parametric conjunction operators. Jordan M. Malof et al. [41] have empirically 
investigates how class imbalance in the available set of training cases can impact the 
performance of the resulting classifier as well as properties of the selected set. In this K-
Nearest Neighbor (k-NN) classifier is used which is a well-known classifier and has been 
used in numerous case-based classification studies of imbalance datasets.  

The bottom line is that when studying problems with imbalanced data, using the 
classifiers produced by standard machine learning algorithms without adjusting the 
output threshold may well be a critical mistake. This skewness towards minority class 
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(positive) generally causes the generation of a high number of false-negative 
predictions, which lower the model’s performance on the positive class compared with 
the performance on the negative (majority) class. 
 
3. Wrapper based Intelligent Under Sampling (WIUS)  

In this section, we follow a design decomposition approach to systematically analyze the 
different imbalanced domains. We first briefly introduce the framework design for our 
proposed algorithm. 

The working style of undersampling tries to decrease the number of weak or noise 
examples. Here, the weak instances related to the specific features are to be eliminated, which 
is identified according to a well-established wrapper and intelligent technique. The number of 
instances eliminated will belong to the ‘k’ feature selected by wrapper and intelligent 
technique. Here, the above said routine is employed, which removes examples suffering from 
feature to  class label noises at first and then removes borderline examples and examples of 
outlier category. 

Feature to Class label noises are the examples whose influence is not seen for the decision 
of the class for that particular feature. Here, they are identified by the limited range categories, 
using the above said technique.  In detail, at first some examples are deleted temporary from 
Nstrong, a new dataset created with strong instances. Then, for a class to be shrunk, all its 
examples inside of Nstrong are classified. If the classification is correct, and the accuracy is 
increased then the examples deleted temporary are regarded as being featutre class label 
noises. Borderline examples are the examples close to the boundaries between different 
classes for a specific feature. They are unreliable because even a small amount of attribute 
noise can send the example to the wrong side of the boundary. The outliers are those 
examples which are very rare in nature from the remaining set of examples. These are 
examples are of very rare use to the classification and thus to be removed for better 
performance.  
 
The presented under-sampling algorithm is summarized below. 
 
Algorithm 1 WIUS 
 
Input: A set of minor class examples P, a set of major class examples N,  jPj < jNj, and Fj, 
            the feature set, j > 0. 
Output: Average Measure {AUC, Precision, F-Measure, TP Rate, TN Rate } 
1: begin 
2:   k ← 0,j←1. 
3:  Apply Wrapper on subset N, 
4:  Find Fj from N, k= number of features extracted in CFS 
5:  repeat   
6:  k=k+1 
7:  Select the range for weak or noises instances of Fj. 
8:  Remove ranges of weak attributes and form a set of major class examples Nstrong   
9:   Until j = k 
10: Train and Learn A Base Classifier (C4.5) using P and Nstrong   
11: end 
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The algorithm 1: WIUS can be explained as follows, 
The inputs to the algorithm are minority class “p” and majority class “n” with the number 

of features j. The output of the algorithm will be the average measures such as AUC, 
Precision, F-measure, TP rate and TN rate produced by the WIUS method. The algorithm 
begins with initialization of k=0 and j=1, where k is the number of features extracted by 
applying correlation based feature subset filter on the dataset and j is the variable used for 
looping of k features. The ‘k’ value will change from one dataset to other, and depending 
upon the unique properties of the dataset the value of k can be equal to zero also i.e no 
attributes can be selected after applying wrapper on the dataset. In this case attributes related 
under-sampling is not done but overall under-sampling can be performed to remove noise and 
missing values instances. In any case depending on the amount of majority examples removed, 
the final "strong set" cannot be balanced i;e number of majority instances and minority 
instances in the strong set will not be equal. 

The different components of our new proposed framework are elaborated in the next 
subsections. 
 
3.1. Preparation of the Subsets 

The datasets is partitioned into majority and minority subsets. As we are concentrating on 
under sampling, we will take majority data subset for further analysis and reduction. 
 
3.2. Influential Feature Subset Selection 

Majority subset can be further analyzed to find the weak or noisy instances so that we can 
eliminate those. For finding the weak instances one of the ways is that find most influencing 
attributes or features and then remove ranges of the noisy or weak attributes relating to that 
feature. How to find the most influencing attribute is by using a wrapper [42], in this case we 
have used wrapper which uses C4.5 as the algorithm for selecting attributes.  

Wrapper technique is proposed by Ron Kohavi [42]. Wrapper is one of the simplest feature 
selectors conceptually (though not computationally) and has been found to generally out-
perform filter methods. Wrapper attribute selection uses the target learning algorithm to 
estimate the worth of the attribute subsets. Cross-validation is used to provide an estimate for 
the accuracy of a classifier on novel data when using only the attributes in a given subset. Our 
implementation uses repeated ten-fold cross validation for accuracy estimation. 
 
3.3. Choosing Feature Class Label and Noise Ranges 

How to choose the weak instances relating to that feature from the dataset set? We can find 
a range where the number of samples are less can give you a simple hint that those instances 
coming in that range or very rare or noise. We will intelligently detect and remove those 
instances which are in narrow ranges of that particular feature, borderline and noise instances. 
The number of features selected by wrapper for each dataset can be reproduced by applying 
wrapper on the specified datasets. Due to space limitation, we may not able to give all the 
attributes selected and the ranges of instances removed from the majority subset. 
 
3.4. Forming the Strong Dataset 

The minority subset and the stronger majority subset is combined to form a strong and 
balance dataset, which is used for learning of a base algorithm. In this case we have used C4.5 
as the base algorithm. 
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4. Evaluation Metrics  
To assess the classification results we count the number of true positive (TP), true negative 

(TN), false positive (FP) (actually negative, but classified as positive) and false negative (FN) 
(actually positive, but classified as negative) examples. It is now well known that error rate is 
not an appropriate evaluation criterion when there is class imbalance or unequal costs. In this 
paper, we use AUC, Precision, F-measure, TP Rate and TN Rate as performance evaluation 
measures.  
 
Let us define a few well known and widely used measures: 
 
The Area under Curve (AUC) measure is computed by equation (1), 

 
________ (1) 
The Precision measure is computed by equation (2), 

            

      ( ) ( )FPTP
TPecision
+

=Pr
             

________ (2) 

 
The F-measure Value is computed by equation (3), 
             

 _______ (3)
  

 
The True Positive Rate measure is computed by equation (4), 
 

        ( ) ( )FNTP
TPveRateTruePositi
+
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________ (4) 

 
The True Negative Rate measure is computed by equation (5), 
 

          ( ) ( )FPTN
TNveRateTrueNegati
+

=
     

________ (5) 

 
5. Experimental Framework  

In this section we first describe the collection of imbalanced data sets selected for our 
study (Section 5.1). Then, we show the algorithms selected for comparison in the 
experimental study and the corresponding parameters (Section 5.2).  
 
5.1. Evaluation on ten real-world datasets 

In this study WIUS is applied to ten binary data sets from the UCI repository [45] with 
different imbalance ratio (IR). Table 2 summarizes the data selected in this study and shows, 
for each data set, the number of examples (#Ex.), number of attributes (#Atts.), class name of 
each class (minority and majority) and IR.  

In order to estimate different measure (AUC, precision, F-measure, TP rate and TN 
rate) we use a tenfold cross validation approach, that is ten partitions for training and 
test sets, 90% for training and 10% for testing, where the ten test partitions form the 

2
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whole set. For each data set we consider the average results of the ten partitions. We 
performed the implementation using Weka on Windows XP with 2Duo CPU running on 
3.16 GHz PC with 3.25 GB RAM. 

Table 2. Summary of Benchmark Imbalanced Datasets 
___________________________________________________________________________ 

Datasets       # Ex.   # Atts.      Class (_,+)                             IR 
___________________________________________________________________________ 

Breast             268      9   (recurrence; no-recurrence)            1.90 
Breast_w       699      9   (benign; malignant)                        1.90 
Diabetes        768     8    (tested-positive; tested-negative)    1.90 
Hepatitis        155     19  (die; live)                                         1.90 
Ionosphere    351    34    (b;g)                                                 2.00 
Colic              368     22  (yes,no)                                            1.90 
Vote               435     16  (democrat ; republican )                  2.06 
Labor             56        16   (bad ; good )                                  2.06 
Sick               3772    29   (negative ; sick )                             2.06 
Sonar             208     60    (rock ; mine )                                 2.06 

___________________________________________________________________________ 
 
5.2. Algorithms for Comparison and Parameters 

To validate the proposed WIUS algorithm, we compared it with the traditional C4.5, 
CART (Classification and Regression trees), BPN (Back Propagation Neural Networks), REP 
(Reduced Error Pruning Tree) and SMOTE (Synthetic Minority Oversampling TEchnique). 
Specifically, we consider five different algorithmic approaches for comparision: 

• C4.5: we have selected the C4.5 algorithm as a well-known classifier that has been 
widely used for imbalanced data. A decision tree consists of internal nodes that 
specify tests on individual input variables or attributes that split the data into smaller 
subsets, and a series of leaf nodes assigning a class to each of the observations in the 
resulting segments. For our study, we chose the popular decision tree classifier C4.5, 
which builds decision trees using the concept of information entropy. The entropy of 
a sample S of classified observations is given. C4.5 examines the normalised 
information gain (entropy difference) that results from choosing an attribute for 
splitting the data. The attribute with the highest normalised information gain is the 
one used to make the decision. The algorithm then recurs on the smaller subsets. For 
this experimental set of C4.5 we have used all the default parameters in WEKA 
workbench.  
 

• CART: The CART methodology is technically known as binary recursive partitioning. 
The process is binary because parent nodes are always split into exactly two child 
nodes and recursive because the process can be repeated by treating each child node 
as a parent. For this experimental set of CART, we have used all the default 
parameters in WEKA workbench. The key elements of a CART analysis are a set of 
rules for: 
i. Splitting each node in a tree;                  
ii. Deciding when a tree is complete; and       
iii. Assigning each terminal node to a class outcome (or predicted value for 

regression). 
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• BPN: Neural networks (NN) are mathematical representations modeled on the 
functionality of the human brain. The added benefit of a NN is its flexibility in 
modeling virtually any non-linear association between input variables and target 
variable. Although various architectures have been proposed, our study focuses on 
probably the most widely used type of NN, i.e., the multilayer perceptron (MLP). A 
MLP is typically composed of an input layer (consisting of neurons for all input 
variables), a hidden layer (consisting of any number of hidden neurons), and an 
output layer (in our case, one neuron). Each neuron processes its inputs and transmits 
its output value to the neurons in the subsequent layer. Each such connection between 
neurons is assigned a weight during training. During model estimation, the weights of 
the network are first randomly initialized and then iteratively adjusted so as to 
minimize an objective function, e.g., the sum of squared errors (possibly 
accompanied by a regularization term to prevent over-fitting). This iterative 
procedure can be based on simple gradient descent learning or more sophisticated 
optimization methods such as Levenberg–Marquardt or Quasi-Newton. we have used 
one of the algorithm for multilayer perceptron networks design which uses the back 
propagation algorithm for learning. For this experimental set of BPN, we have used 
all the default parameters in WEKA workbench. 

• REP: One of the simplest forms of pruning is reduced error pruning. Starting at the 
leaves, each node is replaced with its most popular class. If the prediction accuracy is 
not affected then the change is kept. While somewhat naive, reduced error pruning 
has the advantage of simplicity and speed. For this experimental set of REP, we have 
used all the default parameters in WEKA workbench. 

• SMOTE: Regarding the use of the SMOTE pre-processing method [20], we consider 
only the 1-nearest neighbor (using the euclidean distance) to generate the synthetic 
samples, and we balance both classes to the 50% distribution. For this experimental 
set of SMOTE, we have used all the default parameters in WEKA workbench. 

 
6. Results 

We evaluated the performance of the proposed WIUS approaches on a number of real-
world classification problems. The goal is to examine whether the new proposed learning 
framework achieve better AUC and other evaluation metrics than a number of existing 
learning algorithms.  

We compared proposed method WIUS with the C4.5, CART, BPN, REP and SMOTE 
state-of -the-art learning algorithms. In all the experiments we estimate AUC, Precision, F-
measure, TP rate and TN rate using 10-fold cross-validation. We experimented with 10 
standard datasets for UCI repository; these datasets are standard benchmarks used in the 
context of high-dimensional imbalance learning. Experiments on these datasets have 2 goals. 
First, we study the class imbalance properties of the datasets using proposed WIUS learning 
algorithms. Second, we compare the classification performance of our proposed WIUS 
algorithm with the traditional and class imbalance learning methods based on all datasets. 

Following, we analyze the performance of the method considering the entire original 
algorithms, without pre-processing, data sets for C4.5, CART, BPN and REP. we also 
analyze a pre-processing method SMOTE for performance evaluation of WIUS. The 
complete table of results for all the algorithms used in this study is shown in Table 3 
to7, where the reader can observe the full test results, of performance of each approach 
with their associated standard deviation. We must emphasize the good results achieved 
by WIUS, as it obtains the highest value among all algorithms 
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Table 3. Summary of Tenfold Cross Validation Performance for AUC on all the 
Datasets 

____________________________________________________________________________________________ 
Datasets              C4.5           CART       BPN                   REP              SMOTE            WIUS        
____________________________________________________________________________________________ 
Breast_w      0.957±0.034●   0.950±0.031● 0.991 ±0.018○   0.964±0.038●   0.972±0.027●  0.977±0.021          
 
Diabetes       0.751±0.070●  0.742±0.078●  0.801 ±0.058○  0.751±0.068●   0.792±0.046○ 0.759±0.069    
 
Hepatitis       0.668±0.184●  0.561±0.130 ●  0.812 ±0.157○ 0.624±0.158●   0.806±0.112○ 0.718±0.145                 
 
Sonar            0.753±0.113●   0.721±0.106●  0.887 ±0.072○  0.746±0.106●  0.814±0.090○  0.772±0.110                     
 
Ionosphere   0.891±0.060●    0.896±0.059●  0.919 ±0.062○  0.902±0.054●  0.904±0.053●  0.914±0.057     
 
Vote              0.979±0.025○   0.973±0.027●  0.985 ±0.013○  0.957±0.023●  0.984±0.017○   0.977±0.030     
 
Colic             0.843±0.070●   0.847±0.070●  0.845 ±0.060●  0.844±0.067●  0.908±0.040○   0.849±0.061     
 
Labor            0.726±0.224●   0.750±0.248●  0.950 ±0.133○  0.767±0.232●  0.833±0.127○   0.804±0.200     
 
Breast           0.606±0.087●    0.587±0.110●  0.645 ±0.109○  0.578±0.116●  0.717±0.084○   0.612±0.109     
 
Sick              0.952±0.040●   0.954±0.043●  0.951 ±0.033●  0.967±0.030○  0.962±0.025●   0.966±0.034                
____________________________________________________________________________________________ 

Table 4. Summary of Tenfold Cross Validation Performance for Precision on all 
the Datasets 

____________________________________________________________________________________________ 
Datasets               C4.5       CART    BPN                REP          SMOTE                WIUS        
____________________________________________________________________________________________ 
Breast_w     0.965±0.026●  0.971±0.033●   0.976±0.032●    0.962±0.034●  0.976±0.034●  0.979±0.024           
 
Diabetes       0.797±0.045○  0.784±0.041●   0.791±0.053●   0.793±0.044●   0.781±0.062●  0.794±0.053      
 
Hepatitis       0.510±0.371●  0.233±0.337●   0.561±0.308●   0.292±0.391●   0.712±0.175●  0.750±0.393                   
 
Sonar           0.728±0.121●  0.709±0.118●   0.822±0.113○   0.733±0.134●   0.863±0.068○   0.804±0.110       
 
Ionosphere   0.895±0.084●  0.868±0.096●   0.952±0.062○   0.886±0.092●   0.934±0.049●  0.947±0.065      
 
Vote             0.971±0.027●  0.971±0.028●   0.959±0.033●   0.969±0.035●  0.977±0.027○   0.972±0.034     
 
Colic            0.851±0.051○  0.853±0.053○   0.851±0.060○   0.857±0.056○  0.853±0.057○   0.844±0.062     
 
Labor           0.696±0.359●   0.715±0.355●   0.867±0.217○   0.698±0.346●  0.871±0.151○   0.782±0.279      
 
Breast           0.753±0.042○  0.728±0.038○  0.763±0.058○    0.721±0.037●  0.710±0.075●  0.723±0.056       
 
Sick              0.992±0.005○   0.992±0.005○  0.980±0.008●    0.990±0.005●  0.983±0.007●  0.991±0.005      
____________________________________________________________________________________________ 
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Table 5. Summary of Tenfold Cross Validation Performance for F-measure on 
all the Datasets 

____________________________________________________________________________________________ 
Datasets        C4.5       CART       BPN                   REP         SMOTE              WIUS        
____________________________________________________________________________________________ 
Breast_w      0.962±0.021●   0.960±0.020●   0.973±0.021●   0.963±0.027●   0.961±0.025● 0.978±0.016          
 
Diabetes       0.806±0.044○   0.818±0.045○   0.812±0.420○   0.817±0.045○   0.743±0.058● 0.805±0.041       
 
Hepatitis       0.409±0.272●   0.189±0.231●   0.512±0.257●   0.213±0.267●   0.682±0.149○  0.528±0.301                   
 
Sonar            0.716±0.105●  0.672±0.106●   0.800±0.095○    0.689±0.136●   0.861±0.061○ 0.761±0.117    
 
Ionosphere   0.850±0.066●   0.841±0.070●   0.859±0.087●    0.848±0.067●   0.905±0.048○ 0.895±0.070     
 
Vote             0.972±0.021○  0.966±0.022●   0.954±0.024●    0.961±0.025●   0.969±0.021○ 0.967±0.027       
 
Colic            0.888±0.044○   0.890±0.040○   0.849±0.051●    0.882±0.043○   0.880±0.042○ 0.879±0.041     
 
Labor           0.636±0.312●   0.660±0.316●   0.861±0.193○    0.650±0.299●   0.793±0.132○ 0.749±0.246      
 
Breast           0.838±0.040○  0.813±0.038●   0.764±0.068●    0.805±0.042●   0.730±0.076● 0.823±0.047      
 
Sick              0.993±0.003●   0.994±0.003○  0.984±0.004●    0.993±0.003●   0.987±0.004● 0.994±0.003       
____________________________________________________________________________________________ 

Table 6. Summary of Tenfold Cross Validation Performance for TP Rate on all 
the Datasets 

____________________________________________________________________________________________ 
Datasets        C4.5          CART          BPN         REP     SMOTE                  WIUS        
____________________________________________________________________________________________ 
Breast_w     0.959±0.033●   0.954±0.032●    0.972±0.035●  0.961±0.036●   0.953±0.037●  0.978±0.020          
 
Diabetes      0.821±0.073●   0.852±0.075○    0.842±0.061○   0.841±0.076○   0.712±0.089● 0.825±0.089      
 
Hepatitis      0.374±0.256●   0.172±0.246●   0.523±0.295○    0.192±0.249●   0.681±0.195○ 0.438±0.287                    
 
Sonar           0.721±0.140●   0.652±0.137●   0.792±0.128○    0.685±0.192●   0.865±0.090○ 0.741±0.156     
 
Ionosphere   0.821±0.107●   0.803±0.112●   0.793±0.122●    0.826±0.104●   0.881±0.071○ 0.854±0.098    
 
Vote             0.974±0.029○   0.961±0.037●   0.952±0.039●    0.955±0.034●   0.963±0.037● 0.964±0.046      
 
Colic            0.931±0.053○   0.932±0.050○   0.853±0.073●    0.914±0.066●   0.913±0.058● 0.922±0.057    
 
Labor           0.640±0.349●  0.665±0.359●   0.900±0.225○    0.665±0.334●   0.765±0.194● 0.780±0.296      
 
Breast          0.947±0.060●   0.926±0.081●   0.772±0.104●    0.917±0.087●   0.763±0.117● 0.956±0.049     
 
Sick             0.995±0.004●   0.996±0.003○   0.989±0.006●    0.996±0.004○   0.990±0.005● 0.996±0.004      
____________________________________________________________________________________________ 
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Table 7. Summary of Tenfold Cross Validation Performance for TN Rate on all 
the Datasets 

____________________________________________________________________________________________ 
Datasets     C4.5                    CART                     BPN                 REP          SMOTE                 WIUS        
____________________________________________________________________________________________ 
Breast_w   0.932±0.052●   0.941±0.056●  0.944±0.062●  0.931±0.068●     0.985±0.028○   0.960±0.047          
 
Diabetes   0.603±0.111●    0.551±0.106●  0.581±0.015●  0.572±0.103●     0.814±0.087○   0.621±0.142  
      
Hepatitis  0.900±0.097●    0.931±0.097●  0.891±0.094●  0.947±0.099●     0.848±0.112●   0.972±0.058                   
 
Sonar       0.749±0.134●    0.756±0.121●  0.836±0.122○  0.762±0.145●     0.752±0.113●   0.809±0.123     
 
Ionosphere   0.940±0.055●  0.921±0.066●  0.976±0.030○   0.933±0.063●  0.928±0.057●  0.952±0.062    
 
Vote        0.953±0.045●    0.953±0.046●   0.933±0.057●     0.949±0.059●   0.981±0.023○  0.955±0.057      
 
Colic       0.717±0.119●    0.720±0.114●   0.738±0.118●     0.731±0.121●   0.862±0.063○  0.755±0.109     
 
Labor     0.865±0.197○     0.877±0.192○   0.903±0.159○     0.843±0.214○   0.847±0.187○  0.835±0.214     
 
Breast    0.260±0.141●     0.173±0.164●   0.428±0.160○     0.151±0.164●   0.622±0.137○   0.270±0.164    
 
Sick       0.875±0.071○     0.876±0.078○   0.683±0.123○     0..846±0.080●  0.872±0.053○   0.862±0.070  
__________________________________________________________________________________ 
 

  
Figure 2(a)                                                                         Figure 2(b) 

  
Figure 2(c)                                                                         Figure 2(d) 

  
Figure 2(e)                                                                              Figure 2(f) 
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Figure 2(g)                                                                                                   Figure 2(h) 

Figure 2(a) – 2(h) Test Results on Precision between the C4.5, CART, BPN, REP, 
SMOTE and CILIUS-W for Breast_w, Diabeties, Hepatitis, Sonar, Ionosphere, 

Vote, Labor and Sick Datasets 

Figure 2 (a)-(h) shows the average precision computed for all approaches, where we can 
observe that WIUS has obtained the best precision value in the comparison and therefore it is 
clearly given the indication of its supremacy. Tables 3, 4, 5, 6 and 7 reports the results of  
AUC, Precision, F-measure, TP Rate and TN Rate respectively for datasets breast_w, diabetes, 
hepatitis, sonar, ionosphere, vote, colic, labor, breast and sick. The bold dot ‘●’ indicates a 
win of WIUS method on C4.5, CART, BPN, REP and SMOTE and a ‘○’ indicates a loss of 
WIUS method on above said algorithms. The results in the tables show that WIUS has given 
a good improvement on all the measures of class imbalance learning. This level of analysis is 
enough for overall projection of advantages and disadvantages of WIUS. A two-tailed 
corrected resampled paired t-test [46] is used in this paper to determine whether the results of 
the cross-validation show that there is a difference between the two algorithms is significant 
or not. Difference in accuracy is considered significant when the p-value is less than 0.05 
(confidence level is greater than 95%). In discussion of results, if one algorithm is stated to be 
better or worse than another then it is significantly better or worse at the 0.05 level. 

Finally, we can make a global analysis of results combining the results offered by Tables 
from 2–7 and Figure 2(a)-(h): 

• Our proposals, WIUS is the best performing one when the data sets are no 
preprocessed. It outperforms the pre-processing SMOTE methods and this hypothesis 
is confirmed by including standard deviation variations. We have considered a 
complete competitive set of methods and an improvement of results is expected in the 
benchmark algorithms i;e C4.5, CART, BPN and REP. However, they are not able to 
outperform WIUS. In this sense, the competitive edge of WIUS can be seen. 

• Considering that WIUS behaves similarly or not effective than SMOTE shows the 
unique properties of the datasets where there is scope of improvement in minority 
subset and not in majority subset. Our WIUS can only consider improvements in 
majority subset which is not effective for some unique property datasets. 
 

Finally, we can say that WIUS is one of the best alternatives to handle class imbalance 
problems effectively. This experimental study supports the conclusion that the an intelligent 
under sampling approach with wrapper can improve the CIL behavior when dealing with 
imbalanced data-sets, as it has helped the WIUS methods to be the best performing 
algorithms when compared with four classical and well-known algorithms: C4.5, CART, 
BPN, REP and a well-established  pre-processing technique SMOTE.  
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7. Conclusion 
Class imbalance problem have given a scope for a new paradigm of algorithms in 

data mining. The traditional and benchmark algorithms are worthwhile for discovering 
hidden knowledge from the data sources, meanwhile Class imbalance Learning methods 
can improve the results which are very much critical in real world applications. In this 
paper we present the class imbalance problem paradigm, which exploits the weighted 
human learning strategy in the supervised learning research area, and implement it with 
C4.5 and wrapper as its base learners. Experimental results show that WIUS has 
performed well in the case of multi class imbalance datasets. Furthermore, WIUS is 
much less volatile than C4.5. In our future work, we will apply WIUS to more learning 
tasks, especially high dimensional feature learning tasks. 
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