
International Journal of Artificial Intelligence and Applications for Smart Devices 

Vol. 1, No. 1 (2013), pp. 15-24 

http://dx.doi.org/10.14257/ijaiasd.2013.1.1.02 

 

 

ISSN: 2288-6710 IJAIASD 

Copyright ⓒ 2013 SERSC 

BH-centroids: A New Efficient Clustering Algorithm  
 

 

Belal K. Elfarra
1
, Tayseer J. El Khateeb

2
 and Wesam M. Ashour

3
 

1
Dept. of Information Systems, Islamic University of Gaza, Palestine 

2
Dept. of Computer Center department, Islamic University of Gaza, Palestine 

3
Dept. of Computer Engineering, Islamic University of Gaza 

1
fbelal@iugaza.edu.ps 

Abstract 

The k-means algorithm is one of most widely used method for discovering clusters in data; 

however one of the main disadvantages to k-means is the fact that you must specify the number 

of clusters as an input to the algorithm. In this paper we present an improved algorithm for 

discovering clusters in data by first determining the number of clusters k, allocate the initial 

centroids, and then clustering data points by assign each data point to one centroid. We use the 

idea of Gravity, by assuming each data point in the cluster has a gravity that attract the other 

closest points, this leads each point to move toward the nearest higher gravity toward the 

nearest higher gravity point to have at the end one point for each cluster, which represent the 

centroid of that cluster. The measure of gravity of point (X) determined by its weight, which 

represent the number of points that use point X as the nearest point. Our algorithm employ a 

distance metric based (e.g., Euclidean) similarity measure in order to determine the nearest or 

the similar point for each point. We conduct an experimental study with real- world as well as 

synthetic data sets to demonstrate the effectiveness of our techniques. 

 

Keywords: Data clustering; G-means; PG-means; K-means algorithm; BH-centroids; Data 

mining 

 

1. Introduction  

Clustering is a data mining (machine learning) technique used to place data elements into 

related groups. These groups can be of any shape and size that capture the most natural form of 

associated data. Several algorithms to classify data objects have been developed such as k-

means clustering and expectation maximization (EM) clustering, in this paper we focus on the 

k-means algorithm as it is one of the most used iterative partitioned clustering algorithms and 

because it may also be used to initialize more expensive clustering algorithms (e.g., the EM 

algorithm). However, k-means algorithm has two problem that it requires the user to specify the 

number of clusters (called k), and it suffers from initial starting conditions effects. It is not 

always clear what is the best value for k, and sometimes it will be difficult to choose k 

especially when the data have high dimension. 

It is good to employ prior knowledge when choosing k, but sometimes prior knowledge may 

not exist this can make clustering less useful for exploratory data analysis in some case. In this 

paper we present a simple algorithm called BH-centroids (BH stands for black holes which has 

largest gravity) that discovers an appropriate k and provide initial centroids. 

We describe examples and present experimental results that show that the new algorithm is 

successful. The rest of this paper is organized as follows. Section 2 briefly reviews the related 
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work Section 3 describes the proposed algorithm in detail. Section 4 performs extensive 

experiments on the artificial and real dataset. Finally, conclusion and future work are presented 

in Section 5. 

 

2. Related Work 

Clustering algorithms can be classified into hierarchical and partitioning clustering 

algorithms [1]. Hierarchical algorithms decompose a database D of n objects into several levels 

of nested partitioning (clustering), represented by a dendogram, i.e. a tree that iteratively splits 

D into smaller subsets until each subset consists of only one object. In such a hierarchy, each 

node of the tree represents a cluster of D. Partitioning algorithms construct a flat (single level) 

partition of a database D of n objects into a set of k clusters such that the objects in a cluster are 

more similar to each other than to objects in different clusters. The Single-Link method is a 

commonly used hierarchical clustering method [2]. Starting with the clustering obtained by 

placing every object in a unique cluster, in every step the two closest clusters in the current 

clustering are merged until all points are in one cluster. Other algorithms which in principle 

produce the same hierarchical structure have also been suggested. Another approach to 

hierarchical clustering is based on the clustering properties of spatial index structures. The 

GRID [3] and the BANG clustering [4] apply the same basic algorithm to the data pages of 

different spatial index structures. A clustering is generated by a clever arrangement of the data 

pages with respect to their point density. This approach, however, is not well suited for high-

dimensional data sets because it is based on the affectivity of these structures as spatial access 

methods. It is well-known that the performance i.e. the clustering properties of spatial index 

structures degenerate with increasing dimensionality of the data space. Recently, the 

hierarchical algorithm CURE has been proposed in [18]. This algorithm stops the creation of a 

cluster hierarchy if a level consists of k clusters where k is one of several input parameters. It 

utilizes multiple representative points to evaluate the distance between clusters, thereby 

adjusting well to arbitrary shaped clusters and avoiding the single-link effect. This results in a 

very good clustering quality. To improve the scalability, random sampling and partitioning 

(pre-clustering) are used. Optimization based partitioning algorithms typically represent 

clusters by a prototype. Objects are assigned to the cluster represented by the most similar (i.e., 

closest) prototype. An iterative control strategy is used to optimize the whole clustering such 

that, e.g., the average or squared distances of objects to its prototypes are minimized. 

Consequently, these clustering algorithms are effective in determining a good clustering if the 

clusters are of convex shape, similar size and density, and if their number k can be reasonably 

estimated. Depending on the kind of prototypes, one can distinguish k-means, k-modes and k-

medoid algorithms. For k-means algorithms, the prototype is the mean value of all objects 

belonging to a cluster. The k-modes [19] algorithm extends the k-means paradigm to 

categorical domains. For k-medoid algorithms, the prototype, called the medoid, is one of the 

objects located near the “center” of a cluster. The algorithm CLARANS introduced by [20] is 

an improved k-medoid type algorithm restricting the huge search space by using two additional 

user-supplied parameters. It is significantly more efficient than the well-known k-medoid 

algorithms PAM and CLARA presented in [21], nonetheless producing a result of nearly the 

same quality. 

Determining k automatically has been extensively studied for many years. There is several 

algorithms have been proposed for this goal. Most of these algorithms wrap use splitting or 

merging rules to increase or decrease k until a proper value is reached. Pelleg and Moore [5] 

created X-means, an algorithm which determines the best k (out of a range of Ks) number of 

clusters for a dataset. This algorithm tries many values of k and uses Bayesian Information 

Criterion (BIC) to score each resulting model [11, 12]. The k that produces the highest BIC 
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score is chosen. Besides BIC, other scoring systems, such as Akaike Information Criterion [6] 

and Minimum Description Length [14] can be applied. X-means is a straightforward extension 

of regular k-means. The difficulty it faces is: how many k values should be chosen and 

compared? When the data set is large and data distribution is non-trivial, the range of possible 

number of clusters can be large. G-means algorithm [15] is proposed to grow k from a small 

number. A statistical normality test is applied to each cluster to see whether it has high 

confidence of Gaussian distribution or not. If not, split the current cluster into two clusters and 

continue with the statistical test for the rest of the clusters. Like X-means, this algorithm is also 

a wrapper around k-means. It will generate a hierarchical tree of clusters. While the approach is 

intuitively meaningful, applying normality tests can become difficult when the set of data is 

extremely large (e.g. on the order of tens of thousands).  

The one dimensional projection of the data will be very high in dimension and tend to look 

Gaussian according to the Central Limit Theorem and hence the need of splitting a cluster 

could not be detected even when it is not Gaussian. Powerful normality test like the Shapiro 

Wilk test [7] can handle a sample size of at most 5000. Also, the assumption of having 

Gaussian distribution in clusters is too strong in many real data, such as in Astronomy time 

series. It has been extensively tested within the LIGO community and it is known that LIGO 

data is not necessarily Gaussian in nature [8]. Sand and Moore [16] proposed an approach 

based on repairing faults in a Gaussian mixture model. Their approach modifies the learned 

model at the regions where the residual is large between the model’s predicted density and the 

empirical density. Each modification adds or removes a cluster center. They use a hill-climbing 

algorithm to seek a model which maximizes a model fitness scoring function. However, 

calculating the empirical density and comparing it to the model density is difficult, especially in 

high dimension. Yu Feng Greg Hamerly [13] proposed PG-means which projects both the data 

set and learned clusters to one dimension and then applies the Kolmogorov-Smirnov test (KS) 

to check the goodness of fit of the data to distribution implied by the clusters where model 

parameters are learned by Expectation Maximization (EM). Tibshirani et al., [4] proposed the 

Gap statistic, which compares the likelihood of a learned model with the distribution of the 

likelihood of models trained on data drawn from a null distribution. Our experience has shown 

that this method works well for finding a small number of clusters, but has difficulty as the true 

k increases. The primary contribution of this paper is a novel method of determining if a whole 

mixture model fits its data well, based on projections perform well in all situations; they tend to 

over fit, under fit, or are too computationally costly. These issues form the motivation for our 

new approach.  
 

3. Methodology 

Our algorithm is called BH-centroids, where BH stands for black holes. If we assume each 

data point creates gravity that stabilizes the relations between data points in the cluster, and by 

assuming the centroids as the black holes which have the largest gravity, then it will attract all 

nearest data point, and, as expected, each attracted point will pull its nearest data points to the 

centroid, at the end we have one data point which is the black hole. This point represents the 

centroid of the cluster. This idea can be implemented by determining the closest points X for 

each data point Y, and then compute the weights of these two data points W(X) and W(Y) by 

counting how many points use X as the closest data point, and so for Y. This weight is used to 

compute the data point gravity that the gravity increased as the weight of data point increased. 

After determining the weights of the two closest points, we let X to moves towards the nearest 

data point Y if, and only if, the following two conditions are satisfied: 1- the distance between 
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X and Y less than the threshold ԑ, 2- weight of X, W(X), is larger than W(Y). The threshold ԑ is 

the max distance between closest data points and used to prevent merging data points of 

different classes. By applying these steps we will have a good result, especially if the cluster 

has small width and height. But if the cluster shape has large width or height then it may have 

two BH centroids of distance greater than ԑ, for this, the algorithm will divide the cluster into 

two clusters. We can solve this problem by using vibration method to accumulate data points 

and to remove or minimize the effects of outliers. The vibration method is as follow: When X 

moves toward Y we apply equation (1) to all points of the dataset. We need to use vibration just 

with the first 2-3 iterations. 

 

                              (   )   ( )  (      ( ))            (    )                                                          ( ) 
 

Here we use η as a function of the distance between Xj and X(t), the value of η decreased -

until it reach zero- as distance increased. 

 

3.1. Clustering algorithm 

BH-centroids algorithm is presented in Figure 1. It accepts as input the dataset Z, the 

algorithm begins by computing the k distance between all data points. And for each point x we 

define the closest point y, such that the distance between x and y not exceed the value  . Then 

we move points to have same value by using the function 'Mov' described in figure 2. The 

function 'Mov' return the matrix with updated values. At the end of iterations we will have a 

matrix of points with values equal to one of expected centroids, at this point we can determine 

the number of clusters by counting the points of unique values, and we can determine the value 

of centroids by obtaining the unique values of points. For clustering, we use two methods: 1- 

By obtaining the number of clusters k and the value of centroids –as mention before- and then 

we use these values with the original dataset as input parameters to k-means algorithm for 

clustering data. 2- The other method is by comparing the result matrix x with the original 

dataset, that the result matrix x is already assign each point to the value of the centroid of the 

point's clusters. Table 2 shows the comparison between these two methods in clustering data.  

 

Algorithm 1: BH-centroids (dataset Z) 

        
                                                
                   ( ) 
                                   ( )    ( )                    
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Figure 1. BH-Centroids Algorithm to determine the Number of Clusters 
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Function: Mov(a,b,x) 
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Figure 2. Move Points Algorithm 

 

Di is a subset contains all data points that use "x(i)" as the closest point. And Dj is a subset 

that contains all data points that use "x(j)" as the closest point. 
 

4. Experiments 

We perform several experiments on synthetic [10] and real-world [9] datasets to illustrate the 

utility of BH-centroids and compare it with k-means. For synthetic datasets, we experiment 

with Gaussian and non-Gaussian data. All our experiments use MATLAB version 7.6 on 

windows 7 on Intel core(TM) 2 Duo CPU T8300 2.40 GHz computer with 4 gigabytes of 

memory. The synthetic datasets used here in 2 dimensions with true ks are 4, 10, and 20 [10].  

In the following Experiments we use BH-centroids to determine k and then we do 

comparison between k-means and BH-centroids in clustering data. 

 

4.1. Synthetic Data Sets  

Figure 3 shows the result of classifying data points by using k-means on 2-d synthetic 

dataset with 4 true clusters. The result was not very bad but with BH-centroids we have more 

accurate as shown in Figure 4. 

Figure 5 shows the result of classifying data points by using k-means on 2-d synthetic 

dataset with 4 true clusters. BH-centroids correctly determines the k of clusters, however k-

means classify some points of cluster B  

 

 

Figure 3. By using k-means as Classifier on 2-d Synthetic Dataset with 4 True 
Clusters. BH-centroids correctly chooses Four Centers 
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Figure 4. By using BH-centroids (ԑ = 3) as Classifier on Dataset used in Figure 1, 
the result is more accurate 

as cluster A, in Figure 6 we have more accuracy by using BH-centroids as classifier. 

Figure 7 shows the result of classifying data points by using k-means on 2-d synthetic 

dataset with 10 true clusters. 
 

 

Figure 5. By using k-means as Classifier on 2-d Synthetic Dataset with 4 True 
Clusters, some points of Cluster B are assigned to Cluster A 

BH-centroids determines k to be 11 that one of them is a noise (see Figure 7), data classified 

by k-means and as shown the classification is not good as in Figure 8 in which data are 

classified by BH-centroids. 
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Figure 6. By using BH-centroids as Classifier on same Dataset used with Figure 3 
 

 
Figure 7. 2-d synthetic Dataset with 10 True Clusters.BH-centroids chooses 11 

Centers 
 

 

Figure 8. 2-d synthetic Dataset with 10 True Clusters. By BH-centroids Data 
Classified into 11 Clusters one of them has just Three Points 
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4.2. Real-world Data Sets 

We experimented with three real-life datasets [9] whose characteristics are illustrated in 

Table 1. 

Table 2. Real-life Datasets Characteristics 

Dataset No of Records No of Attributes 

Irise 150 4 

Wine 178 13 

lung-cancer 32 55 

 

As in synthetic datasets, we apply BH-centroid first to determine k and the value of centroids 

then we apply the two methods mention before for clustering: k-means algorithm and our 

proposed method (BH-centroid), Table 2 shows the error rate of classification; we measure the 

error rate manual by comparing the result classification with the classification given by the 

dataset. 

Table 2. The Error Rates of k-means and BH-centroids 

Dataset Determined clusters K-means BH-centroids 

Irise 3 0.0067 0.0167 

Wine 3 0.4261 0.3511 

lung-cancer 3 0.2951 0.1875 

 

5. Conclusions and Future Work 

Each cluster can be represented by one centroid at which we have the largest weight with 

respect to other points in the cluster; in BH-centroids we consider this point as Black Hole 

which has largest gravity. All data points of one cluster will be attracted by the black hole; so 

every cluster will represented by one black hole. This is the idea of new algorithm BH-

centroids for clustering data. 

BH-centroids gives far more stable estimates of the number of clusters than existing methods 

over many different types of data of different shape and size. 

However, we think this algorithm can be developed to give better result especially in 

determining the best value of the parameters η and ԑ. 
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