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Abstract: The aim of this note is to discuss about the behavior and the properties of some linear and 
positive operators on SLOT 
 
§ 1.  Introduction 

• Let  be a locally compact Hausdorff space and ( )VG, , a locally convex cone. 

• Let *: +→ RXψ , a weight on  and 
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• Let consider the following set: ( ) { }G  pe  simetrică  giacu  topoloraport  în    continuă  :; fGXfGXCs →=  
• Endowed with the topology of uniform convergence  determined by:  

( ) ( ) ( ) ( ) V  v,xv G,X:v  unde  ,  ,
det

∈=→∈∀+≤⇔+≤ vXxvxgxfvgf , ( )( )VGXCs ,;  becomes a locally convex cone. 
• Then, ( ) ( ) ( ) ( ){ ψ

ψ vf  a.i. compactly    ,;; ≤⊂∃∈∀∈= XYVvGXCfGXC s and }Y\X  vf0 peψ+≤ , with the topology of 
uniform convergence determined by: vgfvgf +≤⇔+≤ ψψψ , is also a locally convex cone, named Nachbin 
cone relative to the weightψ . 

• Let *GM ⊂ and ( )( )
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 ∈∈∈= X  xşi  M ,; * µµµψ GXCM sxxX , where ( ) ( ) ( )( )xffRGXCx µµµ ψ =→ x  ,;: . 

• Definition 1: If ( )GXCG ;0
ψ⊂ is a  sub coneand ψµ Xx M∈ , then:   

a) ( )GXCf ;ψ∈  is a –0G superharmonic in  ⇔xµ
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     b) ( )GXCf ;ψ∈ is a –0G subharmonic în  ⇔µx
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§2.The main results 
Definition 2:  is called Korovkin system for  iff , where  and 

, an  net,  is called the 
Korovkin cone associated to . 

• The next result gives a characterization of the Korovkin cone associated to a subspace  of ( )XCψ . 
• Proposition 3: Let ( )XCG ψ⊂ , a subspace. Then the followings are equivalent: 

1. ( )GKf I∈ ; 
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• Note 4:  

( ) ( ) ( ) ( )xGx Supffxf εε ∈⇔=⇔∗ ˆ . 
 ( ) ( ) ( ) ( )xGx Subffxf εε ∈⇔=⇔∗∗

 . 
• Definition 5: ⊂S ( )XCψ  is called Korovkin ( )XCψ  iff ( ) ( ) 


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
∈∈∀ +

ψψ
XMX

0GSupf  ,Cf , where 0G is a sub cone 

generated by S and *RM = . 
• Examples 6: 

1.  [ ]1,0=X  and  ⇒=1ψ ( )XCψ [ ]1,0C= . 
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{ }  x,x – 1, 2=S is a  Korovkin system + for [ ]1,0C , because thesub cone generated by S , 0G  contains all the 
positive constants and all functions, ( ) ( ) [ ]1,0  x,– 0

2
0 ∈= xxxf . 

       2. ⇒=∈ 1  , ψRX ( )XCψ ( )RC0= . 
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222 –2–x–x  x, xe– , e xeS  is a Korovkin system + for ( )RC0 . 

       The following results give characterizations for Korovkin systems and Korovkin system + for ( )XCψ . 
• Proposition 7: Let X , be a locally compact Hausdorff space; ψ , a weight on X  and ( )XCG ψ⊂ , a 

subspace. Then, FAE:  
1. G is a Korovkin system for ( )XCψ . 
2. a) ( ) ( ) 0xk  , ≠∈∃ Gk ; 

b) ( ) ( ) XK ⊂∀>∀   ,0ε compact, ( ) Xx∈∀ so that ( ) ( ) ( )+∈∃∈∃∉ XCuGkKx ψ  ,  , so 

that uh1  u,h0  , +≤+≤≤ εψu by ( ) ( ) ε<+′ xuK xh  ,   (where ( ) ( )xfxf
Xx
ψψψ

∈

∆
=⋅ sup:  ). 

• Proposition 8: Let ⊂S ( )XCψ . FAE: 

1. S  is a Korovkin sistem + for ( )XCψ . 
2. ( ) ( ) ∈∀∈∀ µ   X, x M ( ) ( ) ( ) ( ) ( ) [ ]0,1 Sg   ,g: ∈∃⇒∈∀≤+ λψµ xgXb so that xλεψµ = . 

3. ( ) ( ) ( ){ }ψ
ε

ε+≤∈=∈∀
>

gf ,Gg  xg  inf supxf  X, x 0
0

, ( ) ( )( )+∈∀ XψCf . 

• Note 9: 
1) If we have S  a Korovkin sistem + for ( )XCψ  and is S  contains , then it is a Korovkin system 

for ( )XCψ . 
The result form above gives us the possibility to obtain some results for ( )( )ψ

ψ VGXC ,; ’ 
 
 

• Proposition 10: 
Let ( )VG, , be a locally convex cone and G be a linear space, 0G , a sub cone of ( )GXC ;ψ , ( , locally compact 

Hausdorff space and a weight on ) and S , a Korovkin system + for ( )XCψ . 
Iff: (i)  so that  and  

 (ii) ( ) ( ) ∈∃∈∀ p  G,a ( )XCψ +so that ( ) 0Gap ∈⋅ , then, we hawe: ( ) ≡GXC ;ψ ( ) 






 ψ
XG GSup *

0
. 

• Corollary 11: If  is a compact space and ( )1;0SB =  in  and  is a Korovkin system of positive functions 
for  then  is a Korovkin system for  . 
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