
International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

27

Middleware-based Distributed Systems Software Process

1,2

Liu JingYong,
1
Zhang LiChen,

2
Zhong Yong and

3
Chen Yong

1
Faculty of Computer Guangdong University of Technology

Guangzhou, 510006, China
2
Chengdu Institute of Computer Application, Chinese Academy of Sciences

Chengdu, 610041, China
3
Faculty of Computer science and engineering, Zhongkai University of Agriculture

and Engineering Guangzhou, 510225, China
liujycust@sohu.com zhanglichen1962@163.com zhongyong@cimslabsoft.com

Abstract

Middleware facilitates the development of distributed systems by accommodating

heterogeneity, hiding distribution details and providing a set of common and domain specific

services. It plays a central and essential role for developing distributed systems. However,

middleware is considered a mean rather than core elements of development process in the

existing distributed systems software process. This paper explains the concept of middleware

by categorizes middleware and analysis the problems of current middleware architectures. It

also extracts three essential non-functional requirements of middleware and proposes a

middleware-based distributed systems software process. The proposed software process

consists in five phases: requirements analysis, design, validation, development and testing.

The characteristics of middleware are considered in the entire software process. Component-

Based Software Engineering, Separation of Concerns, Model-Driven Architecture, formal

methods and Aspect Oriented Programming are five active research areas that have been

around for several years now. In this paper, we present how these five paradigms can be put

together in the context of a new software development method and we show how they can

complement each other at different stages in the development life-cycle of middleware-

mediated applications.

Keywords: Distributed systems, Software process, Middleware, Model-Driven Architecture

1. Introduction

The complexity of distributed systems has increased, which makes a systematic approach

to the development of distributed systems very important. To manage the complexity of

distributed systems and simplify the development process, middleware is used [1]. A

middleware is software that mediates between an application program and a network. It

manages the interaction between applications across heterogeneous computing nodes. Using

middleware for distributed systems offers several advantages: it eases the distributed system

development, increases the portability of the software and improves the system maintenance

and reliability.

Research in middleware over the past decade has significantly advanced the quality and

feature-richness of general-purpose middleware, such as J2EE, .NET, and CORBA.

Middleware serves as the backbone for applications across many domains that have

significant societal impact including telecommunications, air traffic control, and industrial

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

28

automation, among many others. The economic benefits of middleware are significant with

up to 50% decrease reported in software development time and costs. Despite these benefits,

general-purpose middleware poses numerous challenges when developing real-time systems.

First, owing to the stringent demands of real-time systems on quality of service (QoS) (e.g.

real-time response in industrial automation) and/or constraints on resources (e.g. memory

footprint of embedded medical devices monitoring a patient), the feature-richness and

flexibility of general-purpose middleware becomes a source of excessive memory footprint

overhead and a lost opportunity to optimize for significant performance gains and/or energy

savings. Despite the significant advances in QoS-enabled component middleware, however,

applications in important domains (such as large-scale distributed real-time systems) that

require simultaneous support for multiple QoS properties are still not well supported.

Examples include shipboard combat control systems and supervisory control and data

acquisition systems that manage regional power grids. These types of large-scale distributed

real-time and embedded (DRE) applications are typified by the following characteristics:

stable applications and labile infrastructures. Most DRE systems have a longer life than

commercial systems. In the commercial domain, for instance, it is common to find

applications that are revised much more frequently than their infrastructure. The opposite is

true in many large-scale DRE systems, where the application software must continue to

function properly across decades of technology upgrades. As a consequence, it is important

that the DRE applications interact with the changing infrastructure through well-managed

interfaces that are semantically stable. In particular, if an application runs successfully on one

implementation of an interface, it should behave equivalently on another version or

implementation of the same interface. End-to-end timeliness and dependability requirements

DRE applications have stringent timeliness (i.e., end-to-end predictable time guarantees) and

dependability requirements. For example, the timeliness in DRE systems is often expressed as

an upper bound in response to external events, as opposed to enterprise systems where it is

expressed as events-per-unit time. DRE applications generally express the dependability

requirements as a probabilistic assurance that the requirements will be met, as opposed to

enterprise systems, which express it as availability of a service. Heterogeneity large-scale

DRE applications often run on a wide variety of computing platforms that are interconnected

by different types of networking technologies with varying performance properties. The

efficiency and predictability of execution of the different infrastructure components on which

DRE applications operate varies based on the type of computing platform and interconnection

technology.

Second, general-purpose middleware lack out of the box support for modular extensibility

of both domain specific and domain-independent features within the middleware without

unduly expending extensive manual efforts at retrofitting these capabilities. For example,

real-time systems in two different domains as in industrial automation and automotive may

require different forms of domain-specific fault tolerance and failover support. Operating

conditions for large-scale DRE systems can change dynamically, resulting in the need for

appropriate adaptation and resource management strategies for continued successful system

operation. In civilian contexts, for instance, power outages underscore the need to detect

failures in a timely manner and adapt in real-time to maintain mission-critical power grid

operations. In military contexts, likewise, a mission mode change or loss of functionality due

to an attack in combat operations requires adaptation and resource reallocation to continue

with mission-critical capabilities. Arguably, it is not feasible for general-purpose middleware

developers to have accounted for these domain-specific requirements ahead-of time in their

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

29

design. Doing so would in fact contradict the design goals of middleware, which aim to make

them broadly applicable to a wide range of domains, i.e., general purpose.

Building distributed enterprise applications that require the interoperation of multiple

components that may be distributed, independently operated, and heterogeneous with respect

to language, data model, environment, architecture, and protocols, is a non-trivial task. A

middleware is required in order to integrate these diverse software components and to allow

them to interoperate effectively. In order to ease the job of software developers and to guide

them through the development life-cycle of such enterprise, middleware-mediated systems,

new software development method and process need to be proposed. Component-Based

Software Engineering (CBSE), Separation of Concerns, Model-Driven Architecture (MDA),

formal methods and Aspect Oriented Programming (AOP) are five active research areas that

have been around for several years now. In this paper, we present how these five paradigms

can be put together in the context of a new software development method and we show how

they can complement each other at different stages in the development life-cycle of

middleware-mediated applications.

The role of middleware has become more and more important in the distributed systems

development process. Properties and functionalities of middleware should be exploited since

the early stages of the software process. This drives towards the need of defining a distributed

systems software development process based on middleware where both functional and non-

functional characteristics of the middleware are taken into account during all phases of the

software process.

The rest of this paper is organized as follows. Section 2 is the review of existing works on

developing approaches of distributed systems. Section 3 presents detailed discussion about

the categories of middleware and the problems of middleware architecture. Section 4 analyzes

non-functional requirements of middleware and describes a new middleware based distributed

systems software process. In section 5, we present how these five paradigms can be put

together in the context of a new software development method and we show how they can

complement each other at different stages in the development life-cycle of middleware-

mediated applications. A case study is presented in section 6. Finally, section 7 concludes the

paper.

2. Related work

Distributed systems development involves many intricate technical details that developers

must attend to in order to build robust and efficient applications. To simplify the development

process, various technologies have been used to develop distributed systems. Schmidt et al. in

[2,3] described how Model-Driven Development (MDD) techniques and tools can be used to

specify, analyze, optimize, synthesize, validate, and deploy standards-compliant component

middleware platforms that can be customized for the needs of next-generation DRE systems.

Results show that coherent integration of MDD tools and component middleware can provide

a productive software process for developing DRE systems by modularizing and composing

variability concerns and significant challenges remain that must be overcome to apply these

technologies to a broader range of DRE systems.

Swapna S. G. et al. in [4] presented project seeks to develop a performance analysis

methodology for design-time performance analysis for distributed software systems

implemented using middleware patterns and their compositions. The methodology is

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

30

illustrated on a producer/consumer system implemented using the active object pattern in

middleware. And, broader impacts of the methodology for middleware specialization are also

described.

Milan J. et al. in [5] deal with middleware services required for the efficient deployment

and operation of distributed smart cameras. They focus on services for autonomous and

dynamic reconfiguration and develop the services for dynamic reconfiguration using policies.

Policies help to specify rules for the reconfiguration process. By evaluation the policy the

new task-level configuration of the network is computed. The reconfiguration is implemented

using mobile agents in order to achieve a flexible and scalable middleware service.

Amogh K. et al. in [6] described GTQMAP (Graph Transformation for QoS MAPping)

model driven engineering tool chain that combines domain specific modeling, to simplify

specifying the QoS requirements of DRE systems intuitively, and model transformations, to

automate the mapping of domain-specific QoS requirements to middleware-specific QoS

configuration options. The automation capabilities of GT-QMAP in the context of three DRE

system case studies are evaluated.

3. Middleware

3.1. Categories of middleware

Middleware can be classified into four different categories according to the communication

models that are adopted into middleware [7]. They are procedural middleware, message-

oriented middleware, transactional middleware, and object middleware.

Procedural middleware supports remote procedure calls (RPC) and communications can be

made by using primitives similar to local procedure calls. For example, a server exports

several procedures for communication and a client invokes these procedures. Then,

procedural middleware marshals an RPC into several messages and vice versa. Procedural

middleware does not support scalability, reliability and synchronous invocations very well.

However, since its programming interface is easy to understand, it is available on most

operating systems.

Message-oriented middleware (MOM) supports the communication between distributed

system components by facilitating message exchange. Components can communicate with

each other by publishing and subscribing to data using the global data space. Communications

are done asynchronously. Message-oriented middleware is particularly well suited for

implementing distributed event notification and publish/subscribe-based architectures.

However, it only supports at-least once reliability. Thus the same message could be delivered

more than once.

Transactional middleware uses the two-phase commit protocol to support distributed

transactions. It simplifies the construction of a transactional distributed system. However, it

produces an undesired overhead if there is no need to use transactions.

Object middleware is an evolution from procedural middleware. It uses the concept of

object-oriented programming to design and implement middleware. This type of middleware

enables independent development and distribution of each component since each interaction

of components is defined by interfaces. Object middleware integrate most of the capabilities

of transactional, message-oriented or procedural middleware. However, the scalability of

object middleware is still rather limited [8].

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

31

3.2. Problems of current middleware design

Today’s distributed computing environment requires a higher degree of modularity for

middleware architectures. That high level of modularity is very hard to obtain via traditional

architectural methodologies [9]. There are four problems with current middleware

architectures.

Lack of capability to match a particular specification with user specific deployment

settings easily: there has been a proliferation of middleware specifications to accommodate

different requirements that come from many application domains. Vendors must architect the

system differently to comply with particular specifications while maintaining platform

compatibility and functional consistency. It is very difficult to vendors.

Lack of capability to simultaneously satisfy multiple design requirements: Current

middleware architectures lack of methods to address common distribution concerns and

particular domain requirements without incurring great architectural complexity and

performance penalty.

Lack of adaptability and configurability: in traditional middleware architectures, many

systematic properties are not implemented in modules. At the same time, not all of these

systematic properties need to participate in middleware operations for every application

domain, deployment instance, or runtime condition. Losing of modularity greatly hinders the

adaptability and the configurability of middleware platforms.

Lack of performance and memory optimizations: traditional middleware often incur

significant throughput and latency overhead. This overhead stems from excessive data

copying, internal message buffering strategies that produce non-uniform behavior for

different message sizes, and lack of integration with underlying operating system and network

QoS mechanisms.

4. Middleware-based distributed systems software process

4.1. Non-functional requirements of middleware

Non-functional requirements address important issues of quality and restrictions for

software systems, although some of their particular characteristics make their specification

and analysis difficult:

(1)Non-functional requirements can be subjective, since they can be interpreted and

evaluated differently by different people;

(2)Non-functional requirements can be relative, since their importance and description may

vary depending on the particular domain being considered;

(3)Non-functional requirements can be interacting, since the satisfaction of a particular

non-functional requirement can hurt or help the achievement of other non-functional

requirement.

A set of ISO/IEC standards are related to software quality, being standards number 9126

[10], 14598-1 and 14598-4 the more relevant ones [11]. The main idea behind these standards

is the definition of a quality model and its use as a framework for software evaluation. A

quality model is defined by means of general characteristics of software, which are further

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

32

defined into sub-characteristics in a multilevel hierarchy; at the bottom of the hierarchy

appear measurable software attributes. Quality requirements may be defined as restrictions

over the quality model. The ISO/IEC 9126 standard fixes 6 top level characteristics:

functionality, reliability, usability, efficiency, maintainability and portability. Furthermore, an

informative annex of this standard provides an illustrative quality model that refines the

characteristics as shown in Fig 1.

Figure 1. ISO 9126 standard

In order to evaluate these attributes, a metric must be selected and rating levels have to be

defined dividing the scale of measurement into ranges corresponding to degrees of

satisfaction with respect to the attribute. The rating levels must be defined for each specific

evaluation depending on the quality requirements. Finally, a set of assessment criteria

combining the measures of attributes are necessary to obtain the rating of the intermediate and

top characteristics and, finally, the quality of the product.

According to their relationships with the primary functionality of middleware, Non-

functional requirements of middleware can be classified as follows (see Fig. 2). Application

aspect, maintenance and composition aspect is based mainly on the study present in [12].

Application aspect can change the internal behavior of middleware. They are additional

operational design requirements which a middleware should be configured to support specific

target platforms. Examples of such non-functional requirements are memory optimization,

error handling, fault tolerance, real-time property, and real-time policy. Since optimizing

memory usage is one of the key issues in real-time middleware and it crosscuts the structure

of middleware, Memory optimization is viewed as an application aspect of the middleware.

Error handling, entangled in the entire middleware, is encapsulated and represented by an

error handling aspect. Fault tolerance is another application aspect that influences behavior

and structure of a middleware. Additionally, real-time properties and policies are viewed as

Dynamic NFR

Comprehensible information(Clarity)

Cost

Safety

Quality

Operational restriction

Physical constraints

Performance

Real-time

Time restrictions

Others

Maintainability

Easy to find errors

Easy to modify

Easy to change

Easy to test

Portabitity

Adaptability

Easy to install

In different platformst

Usability Easy to learn

Easy to use

Reliability

Equipment/Information

available at the right time

Integrity

Maturity

Others

Static NFR

Accuracy

Numerical

Right information available

at the right time

Others

Traceability
The path something took

what is the state of something

Confidentiality
Identity check

Private data not exposed

Quality

Security

Permission to Consult/

update information

Data confidentiality

Others

Reliability

The type of printer to be used

Specific order to printing data

Validation

Authorization

Delivery

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

33

application aspects as they influence the overall structural behavior of the middleware.

Depending on the requirements of a middleware, real-time properties and policies could be

further refined. The common characteristic of those aspects is that they extend the primary

functionality of middleware.

Maintenance aspect is characteristics that relate to the maintainability of middleware.

Examples of such non-functional requirements are logging, tracing and coding rule

enforcements aspect. Those non-functional requirements do not carry any operational

purposes and they could consume considerable computing resources and major development

efforts. The common characteristic of those non-functional requirements is that they are

related to the human factors in software engineering.

Composition aspects refer to non-functional requirements that need to be considered when

integrating components into middleware. Examples of such non-functional requirements are

resource demand, temporal constraints, portability, and flexibility. Each component should

have declared resource demands and information of its temporal behavior in its resource

demand and temporal constraints respectively. Additionally, the information, such as real-

time operating system supported, and other hardware related information, is contained in the

portability. Possibilities of extending the component are contained in the flexibility.

Figure 2. Non-functional requirements classification for middleware

Even if the middleware technologies help in separating business and non-functional

requirements, designers and developers face at least two difficulties [13]. Firstly, a

middleware consists of a broker plus middleware services such as naming, trading,

persistency, transactions, security. The programming of these services is imperative through

the concept of API (i.e., offered interfaces). Thus, the code using these services is interleaved

with the business code. Secondly, designers and developers often cannot afford the mastering

and even, the study of the internals of these services when they want to combine them.

Therefore, the objective of the reuse as black boxes of middleware services by third parties is

not attained by middleware technologies. With software component frameworks, the non-

functional code is automatically generated or generic, and not interleaved with the business

code. We claim that the container is the right place for non-functional services’ providers to

put the code using their services. The second idea developed is that during design, the

container is also the right place for modeling the combination of non-functional services.

Non-functional

requirements

Application

 aspect

Maintenance

aspect

composition

aspect

Memory optimization

Error handling

 fault tolerance

Real-time property

real-time policy

Logging

Tracing

Coding rule enforcements

Resource demand

temporal constraints

portability

flexibility

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

34

One of the primary goals of the container is the transparency of the non-functional

requirements to the software component. The non-functional requirements must be provided

to a software component without any modification of its core logic if possible. Nevertheless,

applications must sometimes be aware of the non-functional services they use. At the

architectural level, the container helps the designer in the separation of the business and

technical parts with the concept of view. During execution, the container is responsible for

managing and combining accesses to external non-functional services. The container realizes

the combination of non-functional services, except the brokering service which is often

provided by the middleware. Connectors realize also non-functional requirements, but mainly

the ones concerning the interactions between software components -- e.g., the brokering

service. Containers may also be responsible for the portability onto different middleware

technologies. The container provider prepares artifacts to simplify the modeling of the usage

and the adaptation to the non-functional services. The first task is to combine the non-

functional services using patterns he/she identified during his/her expertise. The new artifacts

are UML architectural models of the container and a UML framework for using the non-

functional services in UML models. The UML framework can be a profile for using the non-

functional services; it uses UML extension mechanisms such as stereotypes, tagged values,

and constraints. The second task is to help the application developer in transparently

integrating the non-functional requirements to implementation components. This can be done

with code and configuration descriptors generators that automatically construct stubs,

skeletons, XML descriptors files. If the application is developed with object-oriented

languages, the code generators make the most of object mechanisms such as inheritance,

delegation, and meta-object protocol.

Figure 3 shows the UML extensions for non-functional requirements (NFR)

modeling. The NFR Modeling package (stereotyped as profile) defines how the

elements of the domain model extend meta-classes of the UML meta-model. A UML

framework can provide a profile to architects and designers for modeling non-

functional dependencies. One or more non-functional requirements can be attached to

the operations (i.e., pre-/post-conditions) and other constraints in OCL, the attributes,

and other model elements of a software component [14, 15]. Non-functional

requirements can also be attached to the links between the software components in

order to configure the middleware for instance. The main UML extension mechanisms

are constraints, tagged values, and stereotypes. These extensions are used for

documentation purposes and for directing code and configuration descriptors generation.

Attaching constraints and tagged values is the simplest way to add non-functional

requirements to a model element. A constraint consists in specifying more semantics as

an expression in a designated constraint language. Constraints are gaining more and

more importance in UML. A tagged value consists of a name and its associated value.

By definition, constraints and tagged values are simple and very extensive-since there

are very few limitations on their usage. The resulting contract between the service and

the software component can be too fine-grained and spread over multiple model

elements. Therefore, they may be complex to use for configuring non-functional

services.

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

35

Figure 3. UML profile diagram for NFRs modeling

4.2. The distributed systems software process

The distributed systems software development process based on middleware is divided in

five phases. Fig. 4 depicts the whole software development process.

Figure 4. Distributed systems software process based on middleware.

The first phase is a profound analysis of the requirements. This phase is dedicated to

identifying functional requirements and non-functional requirements of the distributed system

and middleware. To elicit functional requirements, use case diagrams and templates are used.

To elicit non-functional requirements, check-lists, lexicons, and conflict resolution rules are

used [16]. Based on the results coming from the requirements phase, a middleware platform

that properly addresses the application domain concerns is selected.

Requirements

 M
id

d
lew

a
re

 P
la

tfo
r
m

 Design

Development

Distributed system

Validation

Testing

<<metaclass>>

UML::Classes::Kernel::

EnumerationLiteral

<<metaclass>>

UML::Classes::Kernel::

Property

<<metaclass>>

UML::Classes::Kernel::

Constraint

<<stereotype>>

Unit

convFactor:Real[0..1]

convOffset:Real[0..1]

baseUnit:Unit[0..1]

<<stereotype>>

Nfr

<<stereotype>>

NfrConstraint

Kind:constraintKind[0..1]

<<metaclass>>

UML::Classes::Kernel::

Enumeration

<<stereotype>>

Dimension

Symbol:String[0..1]

baseDimension:Dimension[*]{ordered}

baseExponent:Integer[*]{ordered}

<<stereotype>>

VSL::DataTypes::TupleType

<<stereotype>>

NfrType

ValueAttrib:Property[0..1]{Subsets tupleAttrib}

UnitAttrib:Property[0..1]{Subsets tupleAttrib}

exprAttrib:Property[0..1]{Subsets tupleAttrib}

<<stereotype>>

MARTE::CoreElements::Mode

<<enumeration>>

ConstraintKind

Required

Offered

Contract

<<Profile>>

NFRs

tupleAttrib:property[*]

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

36

Middleware specifications are not trivial to be understood, as the middleware itself is

usually very complex [17]. Firstly, middleware systems have to hide the complexity of

underlying network mechanisms from the application. Secondly, the number of services

provided by the middleware is increasing, e.g., the CORBA specification contains fourteen

services. Finally, in addition to hide communication mechanisms, the middleware also have

to hide fails, mobility, changes in the network traffic conditions and so on. On the point of

view of application developers, they very often do not know how the middleware really

works. On the point of view of middleware developers, the complexity places many

challenges that include how to integrate services in a single product or how to satisfy new

requirements of emerging applications [18]. Formal description techniques have been used

together middleware in the Reference Model - Open Distributed Processing [19], in which the

trader service is formally specified in LOTOS. The Z notation and high level Petri nets also

have been adopted for specifying CORBA services, the naming service, the event service and

the security service [20]. All those works, however, do not adopt software architecture

principles for structuring the service descriptions. In terms of software architecture, a few

Architecture Description Languages include the possibility of describing behavior. However,

there are not tools that enable us to check behavior properties. Medvidovic [21] has observed

the convergence of middleware and software architecture principles. However, he does adopt

a formal approach. Finally, it is possible to note that the software architecture principles are

widely adopted to build distributed applications, but its benefits are rarely applied to

middleware that connect them. For example, the use of LOTOS allows the checking of

particular behavioral properties of middleware systems, e.g., deadlock, execution sequences.

Additionally, the language allows automatically generating test and checks the behavioral

equivalence (e.g., strong equivalence, branching equivalence, weak equivalence) between

different middleware models and different middleware service compositions. For example, if

one desires to replace a message oriented middleware by a procedural middleware, it is

possible to check if their behaviors are equivalent. Finally, a formal specification eliminates

ambiguities in the middleware specification and provides a better understanding of what is

actually described [22].

In the design phase, the distributed system will be designed considering both the

requirements and the constraints posed by the system and middleware. Formal methods and

UML models can be used in this phase [23].

The validation phase is in charge of validating the application design against both

functional and non-functional requirements. Also in this phase, the middleware characteristics

have to be considered since they can affect the application validation. In the development

phase, all kinds of programming techniques can be used. The source code of classes and

aspect is generated. And the final software system is built on top of the middleware platform.

Finally, in the testing phase, the distributed system and middleware platform is tested. In

this phase, Object-oriented testing approaches can be used.

5. Applying AOP and MDA to middleware-based distributed systems
software process

5.1. Aspect-oriented programming

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

37

Object-Oriented Programming (OOP) has been the dominant programming methodology

that is being used in all kinds of software development today. The main focus of OOP is to

find a modular solution for a problem by breaking down the system into a collection of

classes that encapsulates state and behavior. However, In Object-Oriented Programming,

crosscutting concerns are elements of software that can not be cleanly captured in a method or

class. Accordingly, crosscutting concerns has to be scattered across many classes and

methods. OOP fails to provide a robust and extensible solution to handle these crosscutting

concerns. AOP [24] is a new modularity technique that aims to cleanly separate the

implementation of crosscutting concerns. It builds on Object-Orientation, and addresses some

of the points that are not addressed by OO. AOP provides mechanisms for decomposing a

problem into functional components and aspectual components called aspects. An aspect is a

modular unit of crosscutting the functional components, which is designed to encapsulate

state and behavior that affect multiple classes into reusable modules. Distribution, logging,

fault tolerance, real-time and synchronization are examples of aspects. The AOP approach

proposes a solution to the crosscutting concerns problem by encapsulating these into an

aspect, and uses the weaving mechanism to combine them with the main components of the

software system and produces the final system. We think that the phenomenon of handling

multiple orthogonal design requirements is in the category of crosscutting concerns, which

are well addressed by aspect oriented techniques. Hence, we believe that middleware

architecture is one of the ideal places where we can apply aspect oriented programming (AOP)

methods to obtain a modularity level that is unattainable via traditional programming

techniques. To follow that theoretical conjecture, it is necessary to identify and to analyze

these crosscutting phenomena in existing middleware implementations. Furthermore, by

using aspect oriented languages, we should be able to resolve the concern crosscutting and to

yield a middleware architecture that is more logically coherent. It is then possible to quantify

and to closely approximate the benefit of applying AOP to the middleware architecture.

5.2. Model-driven architecture

MDA [25] is a framework proposed by OMG for the software development, driven by

models at different abstraction levels. MDA relies on the separation of the business logic of a

system from its implementation. To achieve this, MDA defines two types of models: the

Platform-Independent Model (PIM) and the Platform-Specific Model (PSM). PIM captures

system behavior and functionality, while PSM captures information about details of system

implementation. The MDA development process primarily involves three steps. First the PIM

is developed. The objective is to capture the high level functional requirements of the

application. In the second step, transformation rules are used to transform the PIM into one or

more Platform-Specific Models. A PSM is customized to describe the system in terms of the

particular implementation platform. The third step involves the conversion of the PSM into

application code. Typically, steps two and three are automated by the use of automated tools.

It is the first step in the process that involves creativity and manual work. In general, MDA is

a useful approach towards reasoning about the impact of middleware on the behavior of

software systems.

MDD attempts to raise the level of abstraction by which software and systems engineers

carry out their tasks. This is done by emphasis the use of models (i.e., abstractions) of the

artifacts that are developed during the engineering process. Models are representations of

phenomena of interest, and in general are usually easier to modify, update, and manipulate

than the artifact or artifacts that are being represented. Models are expressed using a suitable

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

38

modeling language; UML is a widely used standard in MDD. MDD is not a development

method or process; it can be implemented in a number of ways, e.g., via Extreme

Programming, the Rational Unified Process, the B-Method, or a refinement calculus. The key

element in MDD is the construction and transformation of models that are fit for the purposes

of the development project. The languages and processes used in construction and

transformation will vary from project to project.

The MDA guide is vague in its definition of MDA and the notion of refinement. The guide

defines MDA in terms of PIM, PSM, and additional models such as domain models.

Refinement is defined informally as a process of transforming MDA models (e.g., PIM to

PSM, PSM to code, PIM to PIM). The MDA guide distinguishes PIM and PSM as models at

different levels of abstraction, e.g., a PIM is at a higher level of abstraction than a PSM.

However, years of research on refinement calculi and programming methodology, particularly

on wide-spectrum languages, suggest that distinctions such as this are not helpful: it is more

productive to think in terms of specifications that have different properties. For example, in

predicative programming, programs are a special kind of specification. They are

implementable and immediately executable on a machine. Similarly, in refinement calculus,

specifications are a special kind of program. they are not always executable, but one can test

for feasibility, and they are written in a unified language. To formally define refinement in

MDA, there are four alternatives. One could translate the core languages used in MDA i.e.,

UML, or a subset of UML into a formal language such as Z, B, LOTOS or specification

statements. Work has been carried out on expressing such translations, but it all suffers from

limitations, e.g., incompleteness, difficulties in achieving consistency, etc. A second

alternative is to promote a formal definition of refinement e.g., weakest preconditions and

express it in MDA terms, e.g., in UML. It is debatable whether UML is well suited to

expressing formal definitions of refinement.

The specification of the Object Constraint Language (OCL) [26] is a part of the UML

specification, and it is not intended to replace existing formal languages, but to supplement

the need to describe the additional constraints about the objects that cannot be easily

represented in graphical diagrams, like the interactions between the components and the

constraints between the components’ communication [27]. In object-oriented modeling, a

graphical model, such as a class diagram, is not enough for a precise unambiguous

specification. OCL is designed to solve this problem. It facilitates the specification of model

properties in a formal yet comprehensive way. By combining the power of the straightforward,

graphical UML modeling and the textual, accurate OCL constraints, these kinds of

information can be specified in this formal way.

OCL has the characteristics of an expression language, a modeling language and a formal

language. An OCL expression is guaranteed to be without side effects since it is an expression

language, and thus cannot change anything in the model, although an OCL expression can be

used to specify the state changes of the system. OCL is not a programming language, but a

modeling language. So it is impossible to write program logic or flow-control in OCL. All

implementation issues are likewise out of the scope of OCL. OCL is also a formal language

where all constructs have a formally defined meaning; in other words, it is unambiguous.

Furthermore, OCL is strongly typed.

The main idea behind OCL is “Design By Contract” [28]. By applying this, the

responsibility of the parties is made unambiguous and can be formally described. An OCL

constraint consists of the precondition, the post-condition and the invariant. The contract is a

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

39

way of establishing who does what by stating, first, what must be true for the caller (client) to

request a service from the callee (server) (precondition), and, what must be true when the

callee finishes providing the service (post-condition). The invariant must be true when a

routine is called and when it terminates, but not necessarily when it is executing. By the

principle of “Design By Contract”, and specifying these three constraints, the services

provided by the server are exposed, but not the details of the implementation of the services.

On the other hand, the callee will know when exactly a service can be provided (available),

and the caller will know when exactly it can request the service. In case of exceptions, it is

easy to find out who caused the exception: if the precondition is false, the caller broke the

contract; if the post-condition is false, the callee broke the contract; if the invariant is false,

the callee class broke the contract.

Since OCL is a textual extension of the graphical UML modeling language, an OCL

specification is always unambiguous and precise. It also provides better documentation to the

visual models. It can be used during the modeling and specification. Since OCL is an

expression language, it can be checked without an executable system. All these features turn

out to be useful in representing QoS properties, which can be represented by the combination

of precondition, post-condition and invariant in OCL. The QoS attributes are represented by

the member variables of the class, and the QoS actions are represented by the methods. They

are checked at run time, before and after the calls so that the change of the QoS parameters of

the system is monitored in a timely basis.

The precondition has to be satisfied before the method can be called, and the post-

condition has to be satisfied at the time the method returns. It is easy to find out which step

causes exceptions if any. The methods are called in a loop-like fashion, so, whenever a

change of the QoS parameter is observed, the corresponding methods are called and the

changes are made accordingly and the necessary notification is done at the same time. The

QoS specification is integrated in the overall system design in this fashion. In this way, the

satisfaction of the QoS requirements is guaranteed and the change of the QoS properties is

under observation and control, as well.

Although QoS properties and associated metrics have been widely used in networking,

there is no standard vocabulary for discussing the QoS as it relates to the distributed

computing and component-based solutions [29], especially when the QoS properties are

applied on variant platforms and when the different aspects of the QoS interact with each

other. A standard vocabulary is the first step toward progressing Model Driven Architecture

that includes QoS parameterization and/or QoS contracts. MDA provides an open, vendor-

neutral environment for the integration of different distributed application software. MDA

aims to separate the business or application logic from the underlying platform technology. Its

standards are made up of the UML, Meta-Object Facility (MOF), XML Meta-Data

Interchange (XMI), and Common Warehouse Meta-model. Platform-independent applications

built using MDA and the associated standards can be realized on a range of platforms.

The MDA design initiative assists during the interaction between the different platforms

and different middleware. Middleware environments started out providing the interoperability

using the architectures that are standard, proprietary, or somewhere in the middle.

Progressively, more and more services and more powerful middleware have been added to the

overall architecture, thus, it is more difficult to ensure the interoperability of these

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

40

middleware. To efficiently solve this problem, MDA is designed by applying the component

and modeling technology and putting the whole picture together.

5.3. Applying AOP and MDA to the software process

The distributed systems software development process based on aspect-oriented

middleware is divided in five phases. Fig. 5 depicts the whole software development process.

The first phase is a profound analysis of the requirements. The phase includes three steps:

Step one handles the non-functional requirements and then identifies which of those are

crosscutting.

Figure 5. Distributed systems software process based on aspect-oriented middleware

Step two performs a traditional specification of functional requirements, in this case, using

an UML-like approach where the use case model is the main specification technique.

Step three starts by composing functional requirements with aspects; then it identifies and

resolves conflicts that may arise from the composition process.

The concepts of overlapping, overriding and wrapping [30] can be adopted to define the

composition part of the model. Overlapping indicates the requirements of the aspect modifies

the functional requirements they transverse. In this case, the aspect requirements may be

required before the functional ones, or they may be required after them. Overriding indicates

Requirements

A
sp

ect-O
rien

ted
 M

id
d

lew
a
re

 Design

Development

Distributed System

Functional

Models

Non-

Functional

Models

Model Driven

Architecture

Validation

Testing

Identify

NFRs

Identify

FRs

Aspect-oriented

Requirements

analysis

Identify

crosscutting

concerns Compose

concerns into

UML models

Identify and

resolve

conflicts

requirements

model

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

41

the requirements of the aspect superpose the functional requirements they transverse. In this

case, the behavior described by the aspect requirements substitutes the functional

requirements behavior. Wrapping indicates the requirements of the aspect encapsulate the

functional requirements they transverse. In this case, the behavior described by the functional

requirements is wrapped by the behavior described by the aspect requirements.

In the design phase, the distributed system will be designed considering both the

requirements and the constraints posed by the system and middleware. Using the MDA

approach to produce the platform specific models includes five steps [31] (see Fig. 6):

Step one: Create the PIM for the distributed system.

Step two: Select the target middleware and create the generic middleware aspects.

Step three: Transform PIM to enhanced PIM using the application converter.

Step four: Transform the generic aspects to enhanced aspects using the aspect converter.

Step five: Weave the enhanced aspects into the enhanced PIM to produce the PSM.

Figure 6. Process view of the PSM generation

The validation phase is in charge of validating the application design against both

functional and non-functional models. Also in this phase, the middleware characteristics have

to be considered since they can affect the application validation. Model-based analysis

techniques can be used for validation purposes [32]. Because it provides a way for the design-

time analysis of distributed systems enabling rapid evaluation of design alternatives with

respect to given performance measures before committing to a specific platform.

In the development phase, the source code of classes and aspect is generated. And the

distributed system is built on top of the aspect-oriented middleware platform.

Since aspect may affect the behavior of one or more classes through advice and

introduction. Traditional testing techniques, such as unit testing, integration testing, are not

applicable to test aspect in the testing phase. Some aspect-oriented testing approaches [33],

such as data-flow-based unit testing, state-based testing approach, and model-based testing

approach can be used in this phase.

To address the middleware development, principled methods are needed to specify,

develop, compose, integrate, and validate the application and middleware software used by

DRE systems. These methods must enforce the physical constraints of DRE systems, as well

as satisfy the system’s stringent functional and non-functional requirements. Achieving these

goals requires a set of integrated Model Driven Middleware (MDM) tools that allow

developers to specify application and middleware requirements at higher levels of abstraction

than that provided by low-level mechanisms, such as conventional general-purpose

programming languages, operating systems, and middleware platforms. Different functional

and systemic properties of DRE systems via separate middleware and platform-independent

models are applied. Domain-specific aspect model weavers can integrate these different

Aspects Enhanced

Aspects

PSM

PIM
Enhanced

PIMConverterConverterConverterConverter AspectAspectAspectAspectWeaverWeaverWeaverWeaver

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

42

modeling aspects into composite models that can be further refined by incorporating

middleware and platform-specific properties. Different but interdependent characteristics and

requirements of DRE system behavior (such as scalability, predictability, safety, and security)

are specified via models. Model interpreters translate the information specified by models

into the input format expected by model checking and analysis tools. These tools can check

whether the requested behavior and properties are feasible given the specified application and

resource constraints. Tool-specific model analyzers can also analyze the models and predict

expected end-to-end QoS of the constrained models. Platform-specific code and metadata that

is customized for a particular QoS-enabled component middleware and DRE application

properties, such as end-to-end timing deadlines, recovery strategies to handle various run-

time failures in real-time, and authentication and authorization strategies are modeled at a

higher level of abstraction. Middleware and applications by assembling and deploying the

selected components end-to-end using the configuration metadata are synthesized by MDM

tools. In the case of legacy components that were developed without consideration of QoS,

the provisioning process may involve invasive changes to existing components to provide the

hooks that will adapt to the metadata. The changes can be implemented in a relatively

unobtrusive manner using program transformation systems.

6. Case Study: CORBA Based applications

CBSE is one of the paradigms of distributed system development that is most popular at

present. Good proof of it is the expansion that it has in platforms such as EJB, COM or

CORBA Component Model (CCM). However, the description of the dependencies of the

components and their subsequent implementation causes the appearance of crosscutting. This

situation makes difficult not only the adaptability of developed components when new

requirements appear but also their reusability in domains different from those for which they

were designed. AOP is able to contribute to CBSE providing the necessary mechanisms to

remove the dependencies from components when designing and implementing them,

eliminating so the cause of crosscutting and promoting a high degree of flexibility,

adaptability, and reusability which are essentials in Component-Based Systems (CBS). UML

is used as modeling language due to it being a standard. Dependencies among components are

identified and treated successfully to avoid the appearance of crosscutting. This also favors

the description of components fully independent of the problem domain.

For example, in case of CORBA the platform is specified by a set of interfaces and usage

patterns that constitute the CORBA Core Specification. The CORBA platform is independent

of operating systems and programming languages. The OMG Trading Object Service

specification (consisting of interface specifications in OMG Interface Definition Language

(IDL)) can be considered to be a PIM from the viewpoint of CORBA, because it is

independent of operating systems and programming languages. When the IDL to C++

Language Mapping specification is applied to the Trading Service PIM, the C++-specific

result can be considered to be a PSM for the Trading Service, where the platform is the C++

language and the C++ ORB implementation. Thus the IDL to C++ Language Mapping

specification (IDLC++) determines the mapping from the Trading Service PIM to the Trading

Service PSM.

The UML Profile for EDOC specification is another example of the application of various

aspects of MDA. The extension of UML concepts allows us to model a component, its

interfaces, events and QoS contracts in a graphical manner. Weis, T., et al. in [34]

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

43

demonstrated how UML can be extended to support contracts for non-functional aspects in

general and QoS in special. The UML drawings can help a lot to gain an overview of all

components, interfaces and their possible QoS contracts during the application design phase.

It defines a set of modeling constructs that are independent of middleware platforms such as

EJB, CCM, etc. A PIM based on the EDOC profile uses the middleware - independent

constructs defined by the profile and thus is middleware -independent. In addition, the

specification defines formal meta-models for some specific middleware platforms such as

EJB, supplementing the already existing OMG meta-model of CCM. The specification also

defines mappings from the EDOC profile to the middleware meta-models. For example, it

defines a mapping from the EDOC profile to EJB. The mapping specifications facilitate the

transformation of any EDOC-based PIM into a corresponding PSM for any of the specific

platforms for which a mapping is specified [35].

In the following specification, formal technique LOTOS is applied to define the CORBA.

In this case, the CORBA receives a request from the server and sends it to client. After being

processed, the reply is sent back to the client via the middleware. At this abstraction level, the

software architecture does not present details on how this task is actually performed. The

behavior of the connector CORBA is specified as the temporal ordering of events executed in

the CORBA interface. The CORBA interface is made up of several other interfaces such as

dynamic invocation, stub, ORB, static skeleton, dynamic skeleton and POA interfaces. The

operations defined in each of the aforementioned interfaces are passed to the middleware

through the event ”invClt ? s : Service ? op : OPER;”, where s is the name of service being

request and op the operation.

process CORBA [invClt, terClt, invSrv, terSrv] : noexit :=

invClt ? s : Service ? op : OPER;

invSrv ! s ! op;

terSrv ! s ? r : RESULT;

terClt ! s ! r;

CORBA [invClt, terClt, invSrv, terSrv]

endproc

The ORB (connector) as shown in the following:

process CORBA [invClt, terClt, invSrv, terSrv] : noexit :=

hide inv, ter in

((Naming [inv, ter] ||| Event [inv, ter] ||| Persistent [inv, ter] |||

LifeCycle [inv, ter] ||| Concurrency [inv, ter] ||| Externalization [inv, ter] |||

Relationship [inv, ter] ||| Transaction [inv, ter] ||| Query [inv, ter] |||

Licensing [inv, ter] ||| Property [inv, ter] ||| Time [inv, ter] |||

Security [inv, ter] ||| Trading [inv, ter])

||

ServiceOrdering [inv, ter])

|[inv, ter]|

ORB [inv, ter, invClt, terClt, invSrv, terSrv] (0)

where

...

Endspec

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

44

Figure 7. meta-models in the QoS meta-model

Figure 8. QoSCharacteristic diagram

Figure 9. QoSValues diagram

<<metamodel>>

QosCharacteristics

<<metamodel>>

QosConstraints

<<metamodel>>

QosLevels

<<metaclass>>

QosCategory
-isInvariant : Boolean

<<metaclass>>QosCharacteristics

-Value

<<metaclass>>

QosParameter

-GroupedIn0..1 -Groups *
-StatisticalQuanlifer

-direction

-unit : String

<<metaclass>>QosDimension

-Type1 -Parameter *
-Template 1-Derivation*-Owner 0..1 -Ownes*

-DimensionOf1
-Quanlifier1..* -Type 0..1-Typed *

::STP Qos profile view point::General Resource Qos

profile::CoreResourceModel:: QosCharacteristic

::STP Qos profile view point::General Resource Qos

profile::CoreResourceModel:: QosValue<<metaclass>>QosValueQosValueQosValueQosValue <<metaclass>>QosCharacteristicQosCharacteristicQosCharacteristicQosCharacteristic
-Value<<metaclass>>QosDimensionSlotQosDimensionSlotQosDimensionSlotQosDimensionSlot-Evaluates1 -Slot* -StatisticalQuanlifer-direction-unit : String<<metaclass>>QosDimensionQosDimensionQosDimensionQosDimension-DimensionOf1 -Quanlifier1..*

-type1..* -instance*

-value* -Evaluate 1

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

45

Although the CCM is a major step forward to support the design and implementation of

component based distributed telecommunication systems, it has not sufficiently addressed the

non-functional, i.e. QoS related aspects of distributed systems. Instead of just adding a fixed

set of QoS categories to the modeling approach we decided to design a generic, flexible and

multi-category architecture. For that reason we define a meta-model that allows a generic

specification of QoS contracts, which can be negotiated between software components. We

have integrated this meta-model with the CCM meta-model and the UML meta-model. Both

meta-models are widely used to model the functional aspects of distributed systems. Due to

our meta-model approach it is possible to integrate the same QoS meta-model with different

approaches for the functional design. The extension of UML concepts allows us to model a

component, its interfaces, events and QoS contracts in a graphical manner. The UML

drawings can help a lot to gain an overview of all components, interfaces and their possible

QoS contracts during the application design phase. QoS is defined by UML as shown in

Figure 7, Figure 8, Figure 9 and Figure 10, and figure 11 shows aspect model of QoS

framework.

Figure 10. QoSConstraint diagram

7. Conclusion

Networked heterogeneous systems pose a great challenge for distributed systems.

Middleware provides a critical link between the vast resources and the application domain

that simplifies development and provides robust and reliable access to resources, helps

optimize resource utilization, and facilitates the generation of stable distributed software.

However, middleware is considered a mean rather than core elements of development process

in the existing distributed systems software process. The proposed software process consists

in five phases: requirements analysis, design, validation, development and testing. The

characteristics of middleware are considered in the entire software process. Component-

Based Software Engineering, Separation of Concerns, Model-Driven Architecture, formal

methods and Aspect Oriented Programming are five active research areas that have been

around for several years now. In this paper, we present how these five paradigms can be put

together in the context of a new software development method and we show how they can

-Qualification

<<metaclass>>

QosConstraint

<<metaclass>>::QosFramework::

QosCharacteristics::QosContext

<<metaclass>>QosCo

mpoundConstraint

<<metaclass>>

QosRequired

-Supports *
-Context 1..*

-SubConstraints

0..1
-GlobalConstraints

1..*
<<metaclass>>

QosContract

<<metaclass>>

QosOffered

-RequireAccorded * -Contract*
-Contract* -OfferAccorded*

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

46

complement each other at different stages in the development life-cycle of middleware-

mediated applications. The further work is devoted to developing tools to support the

automatic generation of model and code.

Figure 11. Aspect model of QoS framework

Acknowledgments

This work is supported by the Major Program of National Natural Science Foundation of

China under Grant No.90818008, and by the National Natural Science Foundation of China

under Grant No.60774095, and by the Natural Science Foundation of Guangdong Province of

China under Grant No.07001774.

References

[1]N. Loughran, N. Parlavantzas, and M. Pinto, “Survey of Aspect-Oriented Middleware”, AOSD-Europe Project

Deliverable, No: AOSD-Europe-ULANC-10. Editor(s): N. Loughran, M.Pinto, June, 2005.

[2]Gan Deng, Douglas C. S.,and Aniruddha Gokhale, et al., “Modularizing Variability and Scalability Concerns in
Distributed Real-time and Embedded Systems with Modeling Tools and Component Middleware”,
Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing, Gyeongju, Korea, April 24-26, 2006, pp.327-334.

[3]A. Gokhale, K. Balasubramanian, and J. Balasubramanian, et al., "Model Driven Middleware: A New Paradigm
for Deploying and Provisioning Distributed Real-time and Embedded Applications", The Journal of Science of

Classifier Generalization Feature

Element

-body : String

typeDeclaration Premeter

-isprivileged

-isSingleton

-QoSCharacteristics

-QoSConstraints

-QoSLevels

QosFrameworkAspect

-name : String

-modifier:pointcutModifier

pointcut

-body : String

pointcutexpression

-position:adviceKind

-throws:Exceptionlist

-body : String

advice

0..*

1

*

0..1

*
0..1

*

0..1

0..*1..*

0..1
1

1
1..*

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

47

Computer Programming: Special Issue on Foundations and Applications of Model Driven Architecture, Vol.
73, Issue 1, September 2008, pp.39-58.

[4]Gokhale, S.S., Vandal, P., and Gokhale, A.,et al., "Model-Driven Performance Analysis Methodology for
Distributed Software Systems", Proceedings of the Parallel and Distributed Processing Symposium, Long
Beach,CA, March 26-30,2007, IEEE Computer Society, pp.1-10.

[5]Jovanovic, M. Rinner, B., "Middleware for Dynamic Reconfiguration in Distributed Camera Systems",Fifth
Workshop on Intelligent Solutions in Embedded Systems, Leganes, Madrid,ES, June 21-22,2007, IEEE
Computer Society, pp.139-150.

[6]Amogh Kavimandan, Aniruddha Gokhale,"Automated Middleware QoS Configuration Techniques for
Distributed Real-time and Embedded Systems", IEEE Real-Time and Embedded Technology and Applications
Symposium, St. Louis, MO, United States, April 22-24,2008, IEEE Computer Society, pp.93-102.

[7]Jiyong Park,Saehwa Kim and Wooseok Yoo, et al.,"Designing Real-Time and Fault-Tolerant Middleware for
Automotive Software", SICE-ICASE 2006 International Joint Conference, Busan, Korea, October 18-21, 2006,
IEEE Computer Society, pp.4409-4413.

[8]W. Emmerich, "Software Engineering and Middleware: A Roadmap", Proceedings of the Conference on The
Future of Software Engineering, Limerick, Ireland, 2000, ACM Press, pp.76-90.

[9]C.Zhang, H-A.Jacobsen, "Quantifying Aspects in Middleware Platforms ",Proceedings 2nd International
Conference on Aspect-Oriented Software Development, Boston, Massachusetts, March 17-21, 2000, ACM
Press, pp.130-139.

[10]International Organization for Standarization, ISO/IEC Standard 9126: Software Engineering – Product
Quality. 2004.

[11]International Organization for Standarization,ISO/IEC14598 Information Technology - Software product
evaluation. 2001.

[12]T. Aleksandra ,N. Dag ,and H. Jorgen, et al., " Aspects and Components in Real-Time System Development:
Towards Reconfigurable and Reusable Sofftware ",Journal of Embedded Computing, IOS Press, vol.1, Jan.
2005, pp.17-37.

[13]D. Conan, E. Putrycz, N. Farcet, and M. DeMiguel,"Integration of non-functional properties in
containers",Proceedings of the 6th International Workshop on Component-Oriented Programming, 2001,pp.1-
8.

[14]Liming Zhu,Gorton, I. ,"UML Profiles for Design Decisions and Non-Functional Requirements",Second
Workshop on Sharing and Reusing Architectural Knowledge - Architecture, Rationale, and Design Intent, 20-
26 May 2007 pp.8-9.

[15]Clemente, P. J., Sánchez, F., and Perez, M. A. "Modelling with UML Component-based and Aspect Oriented
Programming Systems",Seventh International Workshop on Component-Oriented Programming at European
Conference on Object Oriented Programming (ECOOP). Málaga, Spain.,2002,pp.1-7.

[16]Wehrmeister, M.A., Freitas, E.P., and Pereira, C.E., et al., "An Aspect-Oriented Approach for Dealing with
Non-Functional Requirements in a Model-Driven Development of Distributed Embedded Real-Time Systems
", 10th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing,
Santorini Island, Greece, May7-9, 2007, IEEE Computer Society, pp.428-432.

[17]Campbell, Andrew T., Coulson, Geoff and Kounavis, Michael E, “Managing Complexity: Middleware
Explained”, IT Professional, IEEE Computer Society, Vol 1(5), 1999,pp. 22-28.

[18]Venkatasubramanian, Nalini, “Safe Composability of Middleware Services”,Communications of the ACM,
Vol 45(6), June,2002,pp. 49-52.

[19]International Organization for Standarization, ISO 10476-1 “Reference Model of Open Distributed Processing
(Part I) -Overview”, July,1995.

[20]Basin, David, Rittinger, Frank and Viganò, Luca “A Formal Analysis of the CORBA Security Service”,
Lecture Notes in Computer Science, 2002, No. 2272,pp.330-349.

[21]Medvidovic, Nenad, "On the Role of Middleware in Architecture-based Software Development",14th
International Conference on Software Engineering and Knowledge Engineering 2002, pp. 299-306.

[22]Rosa, N. S.; Cunha, Paulo R F ., "Adopting LOTOS and Software Architecture Principles for Formalising
Middleware Behaviour",In: SBRC 2004, Gramado. XXII Simpósio Brasileiro de Redes de Computadores,
2004. v. 1. pp. 525-538.

[23]L. Lavazza, G. Quaroni,M. Venturelli, "Combining UML and formal notations for modeling real-time
systems", ACM SIGSOFT Software Engineering Notes, vol. 26, Sep. 2001, pp.196-206.

[24]Kiczales, G., et al., “Aspect-Oriented Programming”, Proc. of ECOOP, Lecture Notes in Computer Science
1241, Springer-Verlag, 1997, pp.220-240.

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VolVolVolVolume 13ume 13ume 13ume 13, December, 200, December, 200, December, 200, December, 2009999

48

[25]S. Mellor, K. Scott, A. Uhl, and et al., MDA Distilled, Addison-Wesley Professional, 2004.

[26] J. Warmer, A. Kleppe,"The Object Constraint Language", Addison-Wesley, 1999.

[27]Yang, Chunmin , Bryant, Barrett R. , and Burt, Carol C. , et.al ,"Formal Methods for Quality of Service
Analysis in Component-Based Distributed Computing",Journal of Integrated Design & Process Science,Vol 8 ,
Issue 2,2004,pp. 137 - 149.

[28] Frankel, D. S., "Model Driven Architecture:Applying MDA to Enterprise Computing", OMG Press.

[29] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A., and Auguston, M., “Quality of Service Issues Related to
Transforming Platform Independent Models to Platform Specific Models”. Proceedings of EDOC 2002, the
6th IEEE International Enterprise Distributed Object Computing Conference, pp. 212-223.

[30]J. Araujo, A. Moreira, I. Brito, and A. Rashid, "Aspect-Oriented Requirements with UML," in Aspect
Modeling with UML workshop at the Fifth International Conference on the Unified Modeling Language and
its Applications, 2002.

[31]D.M.Simmonds, S.Ghosh , R.B.France, “An MDA Framework for Middleware Transparent Software
Development”, Proceedings of Real-Time and Embedded Technology and Applications Symposium
Workshop on Model-Driven Embedded Systems, Washington, D.C., 2003.

[32]G. Madl, S. Abdelwahed. “Model-based Analysis of Distributed Realtime Embedded System Composition”,
Proceedings of the 5th ACM international conference on Embedded software, New Jersey, USA , 2005.

[33]R.M.Parizi, A.A.Ghani, "A Survey on Aspect-Oriented Testing Approaches", International Conference on
Computational Science and its Applications, Kuala, Lampur, August, 2007,IEEE Computer Society, pp.78-85.

[34]Weis, T., Becker, C., Geihs, K., Plouzeau, N., “A UML Meta-model for Contract Aware Components”,
Springer LNCS 2185, 2001.

[35] Ritter, T. Born, M. Unterschutz, T. Weis, T. "A QoS Metamodel and its Realization in a CORBA Component
Infrastructure",Proceedings of the 36th Annual Hawaii International Conference on System
Sciences,2003,pp.318-328.

Authors

Mr. LIU JingYong is a teacher of Faculty of computer,

Guangdong University of Technology. He has published over 10

technical papers, some of which are index by EI. His research

interests are: real-time and embedded systems, distributed systems,

software process and other related topics.

