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Abstract 

Whirlpool hash function should be capable of processing the input data streams at 
high speeds. We propose a fully synchronous parallel pipelined architecture with ten 
stages of pipelining between rounds, and internal pipelining within each round stage. 
The proposed architecture can tremendously improve the performance of Whirlpool hash 
function. Our final implementation can encrypt continuous bit streams seamlessly, 
achieving a throughput of 56.89 G bps, which is considerably high compared to existing 
implementations in literature. 
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1. Introduction 
 

Data security is an ever changing, rapidly developing field where new security 
architectures are developed to overcome security attacks on the existing encryption 
methodologies. Various hash algorithms were developed to serve the purpose of 
enhancing data security [1]. Among them, Whirlpool [2] is a relatively new hash 
function that is now a member of the New European Schemes for Signatures 
Integrity, and Encryption (NESSIE) [3]. The International Organization for 
Standardization has adopted Whirlpool in ISO specification [4].  

There are several reports on Whirlpool hardware architectures [5, 6, 7, 8]. Kitsos 
and Koufopavlou [5] presented area-efficient architectures as well as high-speed 
designs, the fastest of which runs at 4.48 Gbps. McLoone et al. [6] presented a full 
look-up table based design and reported a high throughput of 4.9 Gbps. 

In this paper, we propose a fully synchronous parallel pipelined architecture with 
ten stages of pipelining between rounds and internal pipelining within each round 
stage. Our final implementation can encrypt continuous bit streams seamlessly 
achieving a throughput of 56.89 Gbps in CMOS 130nm technology based Xilinx 
Virtex-II Pro FPGA. Our throughput is very high compared to those of earlier reports. 
 
2. Proposed high-speed hardware architecture 

 
Fig. 1 shows ten identical blocks with pipelining between each block. These 

blocks are instantiations of the round block that produces the intermediate cipher 
state for each of the rounds. The output of WHPL_RND10 is passed to GSO 
(Generate Stream Out) block that creates the output of Whirlpool hash function. At 
the top-level, therefore, the Whirlpool hash function can be simply implemented 
with: 
(a) ten instantiations of round block that process the intermediate cipher state, 
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(b) key schedule block that creates all the ten round keys, and 
(c) an additional block to perform XOR operations on the output of ten-round 
transformation on intermediate cipher state with the input state to produce the 
Whirlpool hash output. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Top level Whirlpool representation. All primary and intermediate 

signals are synchronous. (PR: pipeline register) 
 
Fig. 2 shows our implementation of the round function in WHPL_RND block 

which contains the following operations. 
(a) Perform non-linear substitution on 512-bit state and divide the 512-bit data into 
eight 64-bit blocks. 
(b) Perform shift column operation on the result of (a). 
(c) Perform circulant transformation on the result of (b). 
(d) Add round key to result of circulant transformation from (c). 

These operations are implemented within each of the WHPL_RND1 to 
WHPL_RND10 instances of the round function block with internal pipelining 
between Steps (a), (b), (c) and (d). Each instance WHPL_RND, of the round function 
block implements the round function ρ(k) [2]. Functions σ(k), θ, π and γ [2] are 
implemented as key_add_Row, circulant, shiftCols and makeRows_alr blocks, 
respectively. 

Fig. 3 shows the pseudo code representing our Verilog based netlist used to 
implement makeRows_alr block. The outputs of the makeRows_alr block are eight 
64-bit wide rows. To output each of the 64-bit rows, the makeRows_alr uses 4 
DPRAMs configured as 4 ROMs readily available in the Xilinx Virtex-II pro 
platform. Therefore, to output the result after a single round transformation, our 
implementation requires 32 DPRAMs. 

The shiftCols block takes the output from the makeRows_alr block through an 
internal pipeline register and shifts each column cyclically. This block is 
implemented using 512 slices flip-flops by rearranging the 512-bit state to perform 
the π function. The circulant block implements the linear diffusion layer described as 
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the θ function. This is a pure combinational block performing linear diffusion on the 
8 × 8 state matrix using the circulant matrix. Multiplication of the 8 × 8 state matrix 
elements with circulant matrix elements 01, 02, 04, 05, 08 and 09 are implemented 
as functions that represent multiplications in GF (28) using the primitive polynomial 
x8 + x4 + x3 + x2 + 1. Fig. 4 shows Verilog based pseudo-code for multiplication of 
state byte with the primitive polynomial. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Internal block level architecture of the round function 

 

 

 

 

 

 

 

 

 
 

gfs_08 

            dataIn 

          clkMaster 

     round 
       _key 

    row0 
 
 
Make_Ro
ws_ 
alr 

 
Key_
add_
Row 

dataOut 

 
 
 
Shift_Cols 
 

 
 
 
P 
R 

gfs_04 gfs_01 

gfs_02 gfs_05 gfs_09 

circulant 

PR 

PR 

    row7 

stateIn[511:0] ←  get 512-bit round function input  
                          from input register 
for each j ←  0 to 7 

i = (7 – j) * 64; 
sRowj[63:0]   ←  stateIn[(i + 63):i]; 

for each j ←  0 to 7 
do rowj[63:0] ← SBOXLUT (srowj[63:0]) 
for each k ← 0 to 7 
outputresultk[63:0]  ← rowj[63:0]  
       // outputresultk is a registered output 

end  
 

Figure 3. Pseudo-code for makeRows_alr implementation 
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Using the repetitive operations in Fig. 4, multiplication of the 8 × 8 state with 
circulant can be implemented using 1408 XOR gates for each round. The resultant 8 
× 8 matrix after circulant operation is divided into eight internally pipelined 64-bit 
rows using eight 64-bit registers. 

 
► function mult is  

 return  γ ← (state[07:00] << 1) ^  
          (8'b00011101 & {8{state[07]}}); 

►function mult_02 is return mult_02 ← γ(stateByte); 
►function mult_04 is 
   return mult_04 ← γ (mult_02); 
►function mult_05 is 
   return mult_05 ← γ (mult_04) ^ (stateByte); 
►function mult_08 is return mult_08 ← γ (mult_08); 
►function mult_09 is 
  return mult_09 ← γ (mult_08) ^ (statebyte); 

 
Figure 4. Pseudo-code for implementing θ function. 

 
The Key_add_Row block takes as input the output of circulant step plus the 512-

bit round key generated by the key schedule hardware block. The round key is 
divided into eight 64-bit blocks. The Key_add_Row adds the roundkey to the 8 × 8 
matrix output from the circulant step passed as input to key_add_Row.  

Fig. 5 shows the internally pipelined round key block that is instantiated ten times 
to create all ten round keys. This is an implementation with two pipeline registers, 
one between the makeRows_alr block and the shiftRows block, and the other 
between the shiftRows block and the circulant block. The key schedule block uses 
ten instances of the round key block. 

 

 

 

 

 

 

Figure 5. Pipelined round key block. 
 
3. Performance comparison 
 

In our implementation, XST (Xilinx Synthesis Tool) reported the post synthesis 
FF-to-FF worst path delay to be from RND3_shift_Col7_30 (FF) to 
RND3_circ_Col7_10 (FF) with a path delay of 0.912 ns. Xilinx ISE6.1 was used for 
synthesis, placement, routing and for producing a post layout database. The post 
layout database is simulated with a comprehensive vector driven simulation in 
Cadence’s NC-Verilog/NC-Sim environment. The results of our simulation are 
verified against a Perl based software simulation. 
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Table 1 shows the results of our implementation compared against [5] and [6]. It is 
clear that out implementation produces a high throughput compared to the existing 
implementations. 

 

 

 

 

 

 

 
Table 1. Comparison of results from this implementation to others 

 
4. Conclusion 

 
In this paper, we proposed a high-speed parallel architecture of the Whirlpool 

hash function. Also, we showed how a fully synchronous parallel pipelined 
architecture with ten stages of pipelining between rounds and internal pipelining 
within each round stage can tremendously improve the performance of the Whirlpool 
hash function. Our throughput is considerably high compared to those of earlier 
reports.  
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Implement. Proposed [6] [5] 
Device XC2VP125-

6ff1704 
X4VLX100 XCV1000EFG 

1156-8 
Hardware 
Utilization 

IOBs     1025 
BRAMs  320 
Slices  22681 

Slices       
13210 

Slices  5585 

Throughput 56.89 Gbps 4.90 Gbps 4.48 Gbps 
Frequency 111.1 Mhz 47.8 Mhz 87.5 Mhz 
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