
International Journal of Advanced Science and Technology

Volume 7, June, 2009

21

High-Speed Parallel Architecture of the Whirlpool Hash Function

Deen Kotturi1 and Seong-Moo Yoo2

1Cadence Design Systems, 6400 Int’l Pkwy Suite 1500, Plano, Texas 75093 USA
2ECE Dept, The Univ. of Alabama in Huntsville, Huntsville, Alabama 35899 USA

yoos@eng.uah.edu

Abstract

Whirlpool hash function should be capable of processing the input data streams at
high speeds. We propose a fully synchronous parallel pipelined architecture with ten
stages of pipelining between rounds, and internal pipelining within each round stage.
The proposed architecture can tremendously improve the performance of Whirlpool hash
function. Our final implementation can encrypt continuous bit streams seamlessly,
achieving a throughput of 56.89 G bps, which is considerably high compared to existing
implementations in literature.

Keywords: pipelining, throughput, Whirlpool hash function.

1. Introduction

Data security is an ever changing, rapidly developing field where new security
architectures are developed to overcome security attacks on the existing encryption
methodologies. Various hash algorithms were developed to serve the purpose of
enhancing data security [1]. Among them, Whirlpool [2] is a relatively new hash
function that is now a member of the New European Schemes for Signatures
Integrity, and Encryption (NESSIE) [3]. The International Organization for
Standardization has adopted Whirlpool in ISO specification [4].

There are several reports on Whirlpool hardware architectures [5, 6, 7, 8]. Kitsos
and Koufopavlou [5] presented area-efficient architectures as well as high-speed
designs, the fastest of which runs at 4.48 Gbps. McLoone et al. [6] presented a full
look-up table based design and reported a high throughput of 4.9 Gbps.

In this paper, we propose a fully synchronous parallel pipelined architecture with
ten stages of pipelining between rounds and internal pipelining within each round
stage. Our final implementation can encrypt continuous bit streams seamlessly
achieving a throughput of 56.89 Gbps in CMOS 130nm technology based Xilinx
Virtex-II Pro FPGA. Our throughput is very high compared to those of earlier reports.

2. Proposed high-speed hardware architecture

Fig. 1 shows ten identical blocks with pipelining between each block. These

blocks are instantiations of the round block that produces the intermediate cipher
state for each of the rounds. The output of WHPL_RND10 is passed to GSO
(Generate Stream Out) block that creates the output of Whirlpool hash function. At
the top-level, therefore, the Whirlpool hash function can be simply implemented
with:
(a) ten instantiations of round block that process the intermediate cipher state,

International Journal of Advanced Science and Technology

Volume 7, June, 2009

22

(b) key schedule block that creates all the ten round keys, and
(c) an additional block to perform XOR operations on the output of ten-round
transformation on intermediate cipher state with the input state to produce the
Whirlpool hash output.

Figure 1. Top level Whirlpool representation. All primary and intermediate

signals are synchronous. (PR: pipeline register)

Fig. 2 shows our implementation of the round function in WHPL_RND block

which contains the following operations.
(a) Perform non-linear substitution on 512-bit state and divide the 512-bit data into
eight 64-bit blocks.
(b) Perform shift column operation on the result of (a).
(c) Perform circulant transformation on the result of (b).
(d) Add round key to result of circulant transformation from (c).

These operations are implemented within each of the WHPL_RND1 to
WHPL_RND10 instances of the round function block with internal pipelining
between Steps (a), (b), (c) and (d). Each instance WHPL_RND, of the round function
block implements the round function ρ(k) [2]. Functions σ(k), θ, π and γ [2] are
implemented as key_add_Row, circulant, shiftCols and makeRows_alr blocks,
respectively.

Fig. 3 shows the pseudo code representing our Verilog based netlist used to
implement makeRows_alr block. The outputs of the makeRows_alr block are eight
64-bit wide rows. To output each of the 64-bit rows, the makeRows_alr uses 4
DPRAMs configured as 4 ROMs readily available in the Xilinx Virtex-II pro
platform. Therefore, to output the result after a single round transformation, our
implementation requires 32 DPRAMs.

The shiftCols block takes the output from the makeRows_alr block through an
internal pipeline register and shifts each column cyclically. This block is
implemented using 512 slices flip-flops by rearranging the 512-bit state to perform
the π function. The circulant block implements the linear diffusion layer described as

 Bit stream

PIV_Block WHPL_RND1

IV

Key_
Schedule

WHPL_RND2

PR

PR

PR

WHPL_RND10

GSO

PR

Whirlpool Hash Output

 …

 …

International Journal of Advanced Science and Technology

Volume 7, June, 2009

23

the θ function. This is a pure combinational block performing linear diffusion on the
8 × 8 state matrix using the circulant matrix. Multiplication of the 8 × 8 state matrix
elements with circulant matrix elements 01, 02, 04, 05, 08 and 09 are implemented
as functions that represent multiplications in GF (28) using the primitive polynomial
x8 + x4 + x3 + x2 + 1. Fig. 4 shows Verilog based pseudo-code for multiplication of
state byte with the primitive polynomial.

Figure 2. Internal block level architecture of the round function

gfs_08

 dataIn

 clkMaster

 round
 _key

 row0

Make_Ro
ws_
alr

Key_
add_
Row

dataOut

Shift_Cols

P
R

gfs_04 gfs_01

gfs_02 gfs_05 gfs_09

circulant

PR

PR

 row7

stateIn[511:0] ← get 512-bit round function input
 from input register
for each j ← 0 to 7

i = (7 – j) * 64;
sRowj[63:0] ← stateIn[(i + 63):i];

for each j ← 0 to 7
do rowj[63:0] ← SBOXLUT (srowj[63:0])
for each k ← 0 to 7
outputresultk[63:0] ← rowj[63:0]
 // outputresultk is a registered output

end

Figure 3. Pseudo-code for makeRows_alr implementation

International Journal of Advanced Science and Technology

Volume 7, June, 2009

24

Using the repetitive operations in Fig. 4, multiplication of the 8 × 8 state with
circulant can be implemented using 1408 XOR gates for each round. The resultant 8
× 8 matrix after circulant operation is divided into eight internally pipelined 64-bit
rows using eight 64-bit registers.

► function mult is

 return γ ← (state[07:00] << 1) ^
 (8'b00011101 & {8{state[07]}});

►function mult_02 is return mult_02 ← γ(stateByte);
►function mult_04 is
 return mult_04 ← γ (mult_02);
►function mult_05 is
 return mult_05 ← γ (mult_04) ^ (stateByte);
►function mult_08 is return mult_08 ← γ (mult_08);
►function mult_09 is
 return mult_09 ← γ (mult_08) ^ (statebyte);

Figure 4. Pseudo-code for implementing θ function.

The Key_add_Row block takes as input the output of circulant step plus the 512-

bit round key generated by the key schedule hardware block. The round key is
divided into eight 64-bit blocks. The Key_add_Row adds the roundkey to the 8 × 8
matrix output from the circulant step passed as input to key_add_Row.

Fig. 5 shows the internally pipelined round key block that is instantiated ten times
to create all ten round keys. This is an implementation with two pipeline registers,
one between the makeRows_alr block and the shiftRows block, and the other
between the shiftRows block and the circulant block. The key schedule block uses
ten instances of the round key block.

Figure 5. Pipelined round key block.

3. Performance comparison

In our implementation, XST (Xilinx Synthesis Tool) reported the post synthesis
FF-to-FF worst path delay to be from RND3_shift_Col7_30 (FF) to
RND3_circ_Col7_10 (FF) with a path delay of 0.912 ns. Xilinx ISE6.1 was used for
synthesis, placement, routing and for producing a post layout database. The post
layout database is simulated with a comprehensive vector driven simulation in
Cadence’s NC-Verilog/NC-Sim environment. The results of our simulation are
verified against a Perl based software simulation.

 round key

 kiv

 round constant

γ function π function

Θ function

PR

PR

International Journal of Advanced Science and Technology

Volume 7, June, 2009

25

Table 1 shows the results of our implementation compared against [5] and [6]. It is
clear that out implementation produces a high throughput compared to the existing
implementations.

Table 1. Comparison of results from this implementation to others

4. Conclusion

In this paper, we proposed a high-speed parallel architecture of the Whirlpool

hash function. Also, we showed how a fully synchronous parallel pipelined
architecture with ten stages of pipelining between rounds and internal pipelining
within each round stage can tremendously improve the performance of the Whirlpool
hash function. Our throughput is considerably high compared to those of earlier
reports.

References

[1] Annex A: Approved Security Functions for FIPS PUB 140-2, Security Requirements for

Cryptographic Modules, National Institute of Standards and Technology,
http://csrc.nist.gov/cryptval/, April 03, 2006.

[2] P. Barreto and V. Rijmen, “The Whirlpool Hashing Function”, May 24, 2003.
[3] Portfolio of Recommended Cryptographic Primitives, NESSIE Consortium, New European

Schemes for Signatures, Integrity and Encryption, February 27, 2003.
[4] ISO/IEC 10118-3:2004, Information technology -- Security techniques -- Hash-functions -- Part 3:

Dedicated hash-functions, International Organization for Standardization.
[5] P. Kitsos and O. Koufopavlou, “Efficient architecture and hardware implementation of the

Whirlpool hash function”, IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, February
2004, pp. 208-213.

[6] M. McLoone and C. McIvor, "High-speed & Low Area Hardware Architectures of the Whirlpool
Hash Function," J. VLSI Signal Processing, vol. 47, no. 1, pp. 47-57, Apr. 2007.

[7] N. Pramstaller, C. Rechberger, and V. Rijmen. "A compact FPGA implementation of the hash
function Whirlpool," Proc. ACM/SIGDA 14th Int. Sym. Field Programmable Gate Arrays (FPGA
2006), pp. 159-166, Feb. 2006.

[8] T. Alho, P. Hämäläinen, M. Hännikäinen, and T. D. Hämäläinen, "Compact hardware design of
Whirlpool hashing core," Design, Automation and Test in Europe (DATE 07), pp.1247-1252, Apr.
2007.

Implement. Proposed [6] [5]
Device XC2VP125-

6ff1704
X4VLX100 XCV1000EFG

1156-8
Hardware
Utilization

IOBs 1025
BRAMs 320
Slices 22681

Slices
13210

Slices 5585

Throughput 56.89 Gbps 4.90 Gbps 4.48 Gbps
Frequency 111.1 Mhz 47.8 Mhz 87.5 Mhz

International Journal of Advanced Science and Technology

Volume 7, June, 2009

26

Authors

Deen Kotturi received the M.S. degree in Electrical Engineering from the University of
Alabama in Huntsville in 2004. He is working as a Lead Engineer at Cadence Design
Systems, Inc since 2001 till to date. His primary interests are on Interconnect Modeling
in Nanometer VLSI Designing, RC reduction algorithms for efficient Extraction for
Timing and Signal Integrity Analysis, Transistor/Cell level simulation based design
analysis for manufacturability and VLSI architectures for high speed digital circuits.

Seong-Moo Yoo received the M.S. and Ph.D. degree in computer science from the
University of Texas at Arlington in 1989 and 1995, respectively. Since September 2001,
he is an associate professor in Electrical and Computer Engineering Department of the
University of Alabama in Huntsville, Huntsville, Alabama, U.S.A. From September 1996
to August 2001, he was an assistant professor in Computer Science Department of
Columbus State University in Columbus, Georgia, U.S.A. Dr. Yoo is the conference
chair of ACM Southeast Conference 2004, April, 2004, Huntsville, Alabama, U.S.A. He
was the co-program chair of ISCA 16th International Conference on Parallel and
Distributed Computing Systems (PDCS-2003), August 2003, Reno, Nevada, U.S.A. Dr.
Yoo’s research interests include wireless networks, parallel computer architecture, and
computer network security. Dr. Yoo is a senior member of IEEE and a member of ACM.

