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Abstract 

Artificial K-lines (AKL) is a structure that can be used to store different types of 
knowledge, as long as this knowledge is represented by series of events connected by 
causality. Unlike, and, perhaps, complementary to, Artificial Neural Networks (ANN), AKL 
can combine inter-domain knowledge and its knowledge base can be augmented dynamically 
without rebuilding of the entire system. In this paper we demonstrate the diversity of AKL by 
illustrating, through examples, its workings for three applications across three completely 
different areas of study.  The first example demonstrates that our structure can generate a 
solution where most other known technologies are either incapable of, or very complicated 
in doing so. The second example illustrates a novel, human-like, way of machine learning.  
The third example presents a behavior metrics based method for password authentication. 
 
 
1. Introduction and Background 

Artificial Intelligence (AI) is enjoying a renewed interest which makes its presence 
welcome in many aspects of our daily life. Even before, and certainly since the 
appearance of the phrase “AI”, the following questions are of utmost importance: How 
come people are able to learn so much? How come people are creative (i.e., able to 
perform a new task, different from two or more previously learned tasks, by being 
“inspired” by their previous experiences and knowledge)? These issues have puzzled 
philosophers and cognitive scientists for many years, and with the appearance of AI as a 
field related to those disciplines, they are among the core AI questions as well. 
Numerous attempts to provide an overall answer to these issues, failed during the past 
50 years. However, several “theories of memory” have emerged. Notable examples are 
[1], [2], [3], and [4]. None of these approaches has been fully implemented to date; 
however, there have been several reports toward this end. Examples are [5] and [6]. A 
central theme in [1], [2], and [3] is the concept of K-lines. Quoting from [1],  

When you “get an idea,” or “solve a problem” […] you create what we shall 
call a K-line. […]…When that K-line is later “activated”, it reactivates […] 
mental agencies, creating a partial mental state “resembling the original”. 

In some of our previous works (e.g. [7], [11], [12] ) we have used a form of K-lines to 
address media handling issues in affective computing systems. In this paper, inspired by 
the concept of K-lines, we introduce a structure that can possibly exhibit the caliber of 
intelligence usually attributed to Artificial Neural Networks (ANN). To the best of our 
knowledge, no such proposal exists for using K-lines in the way described here. The 
rest of the paper is organized as follows. 
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Section 2 describes the proposed structure. This is repetition of our most recent work, as 
found also in [8] and [9]. Section 3 shows through an example how reflective thinking is 
inherent to the AKL structure and provides some discussion on how AKL is related to 
artificial creativity. Section 4 illustrates through an example how AKL can be used for a new 
type of machine learning. Section 5 describes a behavior metrics based method for password 
authentication. Section 6 provides a comparison of our method with the essentials of the ANN 
structure. Section 7 is the conclusion and ideas for future research. 
 
2. Artificial K-lines 

We define a K-line to be a sequence of associated events 1e , 2e ,…, ke , such that ie  and 

1ie   are connected by causality. That is, the occurrence of event 1ie   is a direct consequence 
of the occurrence of event ie .  If two K-lines contain the same event, then they are said to 
intersect at that event. When two K-lines are created, if they do not intersect, they form a 
graph like the one shown in Figure 1. If the K-lines intersect, then they form a graph like the 
one shown in Figure 2.   
 

 
 

Figure 1. Two K-lines that do not intersect. 
 

In Figure 1, the nodes (circles in the graph) of each K-line represent events. An edge such as 
(e11, e12) means that event e12 is a consequence of event e11. In figure 1, K-lines KL1 and 
KL2 do not intersect. Consequently, the graph provides two possible “ways to think”, as 
shown in parts (a) and (b) of Figure 1. 

 

 
 

Figure 2. Two intersecting K-lines. 
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In Figure 2, K-lines KL1 and KL2 intersect. Consequently, the graph provides four possible 
“ways to think”, as shown in Figures 3 (a), (b), (c), and (d). 
 
 

 
 

Figure 3. Four possible ways to think: (a), (b), (c), (d). 
 

Each way of thinking is created by starting from one of the available K-lines, and then, once 
we encounter an intersection, we follow each of the two possible paths. Note, for every 
intersection that we encounter, the number of “ways to think” is multiplied by the outdegree 
of the node that is at that intersection. Therefore, the more intersections we have, the more 
times the number of “ways to think” is multiplied. This is the crucial point in our method.  
Note, by combining 2 K-lines (KL1 and KL2) we have a system (Fig. 2) capable to “think” in 
more ways than is possible to think if the 2 K-lines are not combined (Fig. 1). By adding 
more intersecting K-lines, it is expected that the number of “ways to think” is increased much 
faster than the number of the added K-lines. Also note, some of the possible formed “ways to 
think” are comprised by parts of existing K-lines. This is the essence of creativity, i.e., to 
generate a new idea by using parts of old ideas. The above discussion certainly does not 
constitute proof, it, nevertheless, fits the essence of how people are able to learn so much (by 
forming intersecting K-lines in their brains) and also how people are capable of creativity (by 
forming new ideas from parts of some of the formed K-lines). 
 
3. Reflective Thinking and Artificial Creativity 

In this section we first illustrate through an example (subsection 3.1) how AKL can 
facilitate reflective (or, alternative ways of) thinking – i.e., the switching from one way 
of thinking WT1 to another way of thinking WT2 in case that WT1 fails to produce any 
solution. Then, in subsection 3.2 we discuss the potential of AKL for artificial 
creativity.  

3.1.   Robot & Assembly Line Example 

We describe an example of how the proposed method can work, and illustrate its 
benefits. We create two K-lines with events based on two different scenarios that can 
occur in hypothetical, but realistic environments. Using those problems, we create K-
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lines of events and note the possible intersections of these K-lines. Then, we pose a task 
to be performed and we show that the AKL graph is capable to easily produce a 
solution to this task, whereas it is not obvious how an easy solution can be produced 
without the AKL graph. We use this example also in [8], [9]. It is presented here for 
completeness and to illustrate the diversity of use of AKL. Our setting considers two 
problems that occur, in general, in different realms.  

The first problem is a robot movement problem. This problem is described in [5] and 
it is used here to apply our method for its solution. (We believe that the approach 
presented here is significantly simpler than the one used in [5]). The second problem is 
a situation that can occur as part of the operation of a typical assembly line.  Figure 4(a) 
illustrates the situation for the first problem and Figure 4(b) illustrates the situation for 
the second problem. In Figure 4(a), the robot is needed to move the box, from room A 
to room B, passing it through the opening that connects the two rooms. In Figure 4(b), a 
box is on a moving belt. As part of the assembly line process, the first worker unfolds 
the box and the second worker flattens the box further and places it on the moving belt 
again. Then, the moving belt carries the box through an opening and the flattened box 
reappears at the other side of the opening. After that, further processing of the box may 
occur, but this is not relevant to our example.  

 

 
 

Figure 4.a. (a) Robot has to move box from area A to area B through 
opening. (b) Assembly line for processing boxes. 

 
A K-line of events that captures a possible process of the robot moving the box 

through the opening is shown in Figure 5. And a possible K-line of events that captures 
the process of the assembly line is shown in Figure 6.  
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Figure 4.b Assembly line for processing boxes. 
 

 
K-line KL1 

Event in Node Node ID 
(robot) Move toward box 11 
(Robot) pick up box 12 
Move box toward opening 13 
Move box through opening  14 
Box passed through opening 15 
Box appears at other side of  
opening 

16 

 
Figure 5. Robot K-line. 

 
K-line KL2 

Event in Node Node 
ID 

Box placed on moving belt 21 
(Worker) pick up box  22 
(worker) unfold box 23 
Box passed through opening 24 
Box appears at other side of opening 25 

Figure 6. Assembly line K-line. 

Note, in Figures 5 and 6, some nodes are essentially the same, as shown in Table 1. 
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Table 1. Node equivalences between 2 K-lines. 

Node of KL1 Node of KL2 

12 22 
15 24 
16 25 

 
Each row of Table 1 shows two nodes, one from K-line KL1 and one from K-line KL2. 

Each row of Table 1 contains nodes that are the same, or essentially equivalent, according to 
the K-lines of Figures 5 and 6. Based on this observation, the two separate K-lines are said to 
intersect, and they can be merged into a graph, as shown in Figure 7.  
 

 
 

Figure 7. Intersecting K-lines. 
 
    Note, in Figure 7, the edge connecting nodes 15 and 16 belongs to both K-lines. We argue 
that the knowledge conveyed by Figure 7 is superior to the knowledge conveyed individually 
by Figures 5 and 6. Next, we explain why this is the case.  

Consider the following problem: In a situation like the one described in Figure 5, we 
would like the robot to move the box from room A to room B. Also, we assume that the 
box is too big to fit through the opening that connects the two rooms, but the robot 
doesn’t know this! (The same problem with the same assumption is considered in [5], 
where a method based on reflective planning is developed to solve it). If we use the 
individual K-lines of Figure 5 or Figure 6 (i.e., without those K-lines being merged), 
then there are two possible solutions, S1 and S2: (S1) start from K-line KL1 and 
produce the sequence 11-12-13-14-15-16; (S2) start from K-line KL2 and produce the 
sequence 21-22-23-24-25. Note, S1 will fail at step 14 since the box does not fit 
through the opening between rooms A and B; and S2 is not applicable, since the 
starting point, 21, is outside the domain of the robot problem! Therefore, the system of 
two separate K-lines KL1 and KL2 is incapable of solving this problem.  

However, if we consider the same K-lines but with the K-lines being merged, (as 
shown in Figure 7), then we can generate 4 (instead of 2) possible solutions: (G1) start 
from K-line KL1 and produce the sequence 11-12-13-14-15-16; (G2) start from K-line 
KL1 and produce the sequence 11-12-23-15-16; (G3) start from K-line KL2 and 
produce the sequence 21-12-23-15-16; (G4) start from K-line KL2 and produce the 
sequence 21-12-13-14-15-16. Note, solutions G1 and G3 are the same as S1 and S2, 
respectively, and therefore either fail or are not applicable. Solution G4 is also not 
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applicable, since it starts from K-line KL2. However, solution G2 is applicable (since it 
starts from K-line KL1) and it will also succeed! Note, G2 is also the result of 
combining 2 K-lines, KL1 and KL2 and G2 is not available as an option if the two K-
lines are not merged.  

3.2   Artificial K-lines and Artificial Creativity 

Creative thinking is one of the holy grails of Artificial Intelligence. Needless to say, we all 
are in awe of human beings that are deemed as being highly creative or able to make 
discoveries or inventions. Yet, no-one yet has been able to provide a scientific explanation of 
the mechanisms of creativity. For many, creativity is a gift whose explanation and mechanics 
are beyond human understanding. During the past 100 years, some of the greatest creative 
minds have written about their own understanding of creative thinking (e.g., [30], [31]), while 
others (such as the eminent psychologist Mihaly Csikszentmihalyi in [32]) have tried to 
identify what are the visible characteristics of the most creative people of our time.  

An interesting possible application of AKL is the area of artificial creativity. Note, an 
inherent characteristic of AKL is to combine parts of K-lines and form new K-lines 
comprised of those parts. We argue that this is the essence of creativity, that is, the ability to 
form new “ideas” by using existing knowledge, or by combining (parts of) old ideas. In the 
context of the AKL, the newly formed K-lines represent the new ideas, whereas the existing 
knowledge is the sequence of segments of the existing K-lines that are used to form the new 
K-lines. In this sense, the AKL might be a suitable candidate structure for artificial creativity. 

Recently, a measure for creativity, the Creativity Quotient, CQ, has been proposed in [33]. 
In the context of CQ, the degree of creative thinking depends on how many different ideas 
(ideation) one can generate as well as on the degree of originality and the number of different 
uses (or, categories) of each idea (fluency). The former (ideation) is one of the oldest 
measurements of creativity, as given in [34]. The latter (fluency) is a fairly newer 
measurement (e.g. [36], [37]) whose purpose is to weigh ideas in terms of their diversity. 
Specifically, the greater the number of categories that an idea belongs to, the more heavily 
that idea contributes to the Creativity Quotient. In [33], the CQ is defined as  

 2
1

log 1
N

j
j

CQ n


                            (1) 

where N is the number of categories, and jn  is the number of ideas in each category.  

Based on the above definition, we can easily see that an AKL such as the one described in 
this section can achieve a very high CQ. This is because due to the K-line intersections in an 
AKL, jn  (the number of ideas) attains very high values. Note, in any AKL, jn  is roughly  

1

M

j i i
i

n O  


 
  

 
  

where  i  is the in-degree of the i-th K-node in the AKL, i  is the out-degree of the i-th K-
node in the AKL, and M  is the number of K-line intersection in the AKL. Of course, in order 
to express the definite CQ of an AKL based on expression (1), we need to know N, the 
number of categories for each idea. Unfortunately, we do not know, for the time being, how 
to express N. However, this in general has been acknowledged as a difficult problem and as 
one whose answer is highly subjective. Quoting from [35] (pg. 64),  
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“…it is somewhat difficult to define categories in any truly objective, or unique way.” 

We hope that future research will provide some insights toward this direction. 
 
4.   Artificial K-lines and Machine Learning 

 AKL can be useful in machine learning scenarios. We illustrate our case for a simple 
board game – Tic-Tac-To. The method can be applied to any strategy game, such as 
chess, go, etc. We use this example also in [9]. It is presented here for completeness 
and to illustrate the diversity of use of AKL.  

The game of Tic-Tac-To (TTT) is played by 2 players, PX and PO, using a 3x3 
board, as shown in Figure 8.  

 

 
 

Figure 8. Typical board for Tic-Tac-To game. 
 
Players PX and PO make alternating moves during which each player marks the board 
with a ‘X’ or an ‘O’. Player PX uses always a ‘X”, while player PO uses always an ‘O’. 
If any of the two players manages to mark the board with three ‘X’ or three ‘O’ to form 
a straight line (horizontal, or vertical, or diagonal), then that player wins. If the board 
has been completely marked and none of the two players achieves a 3-same-symbol 
straight line, then the game is a tie, i.e., none of the two players wins. Figure 9 shows 
two winning and one tie board configurations.  
 

 
 

Figure 9. Two winning and one tie Tic-Tac-To board configurations. 
 
    Next we describe how the AKL can be utilized to facilitate computer learning for the 
game of Tic-Tac-To, when one of the players is a computer, C, and the other player is a 
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human, H. In our setting, C marks the board with the symbol ‘C’ and H marks the board 
with the symbol ‘H’. If either C or H manage to achieve a straight line of 3-same 
symbols, (C, C, C or H, H, H) then the corresponding player wins; if the board has been 
completely marked and none of the two players achieved a straight line with its 
symbols, the game is a tie and a new game may begin. In our setting, we form a K-line 
for each game. The assumption is that many games are played, i.e., many K-lines are 
formed. At the beginning, before any game is played, we assume that the computer 
knows what are the rules of the game (i.e., it knows that a legal move is to mark any 
one empty slot of the board with its symbol ‘C’) but it does not possess any strategic 
knowledge regarding what constitutes a good move. On the other hand, it is assumed 
that H is an expert in this game. Note, for the simple game of Tic-Tac-To, any adult 
human of average intelligence can be considered an expert. The idea is that as each 
player (either C, or H) makes a move a K-node is formed. The K-nodes that are formed 
by successive moves are connected to form a K-line. The K-line ends with the win of 
one of the players, or when a tie occurs. Then a new game begins and a new K-line is 
formed, and so on. Prior to the first move of the very first game, the computer has no 
intelligence. Therefore, when it is its turn to move, it just makes a random (but legal) 
move. But as the game progresses, and especially as more and more games are played, 
the computer becomes capable of making more intelligent moves by drawing on the 
knowledge that it has been stored in the AKL that has been formed up to that point. The 
details of the K-node formation and the AKL formation are described next.  
 
Event Structure. As mentioned earlier, each K-line consists of K-nodes and each K-
node contains an event. The events of two consecutive K-nodes are related by causality, 
i.e., the event of the successor K-node is an immediate consequence of the event of the 
immediate predecessor K-node. In our setting, we define the event to be a move. Figure 

10 shows two consecutive K-nodes K1 and K2 with their events 1Ke  and 2Ke .  
 
In Figure 10, each K-node K (K = K1 or K2), contains 2 Tic-Tac-To board 

configurations, K
BF  and K

AF . K
BF  denotes the Tic-Tac-To board configuration 

before the move during the formation of K-node K and K
AF  denotes the Tic-Tac-To 

board configuration after the move during the formation of K-node K. Note, for two K-
nodes K1 and K2 to be connected such that K1 is the predecessor of K2, it must be that 

1 2K K
A BF F . That is, the resulting TTT board in the predecessor K-node K1 must be 

the starting board configuration in the successor K-node K2. This is the criterion that 

qualifies events 1Ke  and 2Ke  to be associated by causality. Based on the above 
discussion, we now describe a methodology according to which an AKL is formed and 
the computer learns, in the context of the game of Tic-Tac-To.  
 
Methodology. Without loss of generality, we assume that the computer makes the first 
move upon starting the game. At this point, without having any strategic knowledge, the 
computer places a ‘C’ mark on the TTT board and the 1st K-node K11 of the 1st K-line 
L1, is formed. 
    The event of K11 is  

11 11 11:K K K
B Ae F F  
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where 11K
BF  , the empty TTT board, and 11K

AF  is the TTT board containing the 
‘C’ mark placed by the computer-player. 
 

 
 

Figure 10. Two consecutive K-nodes and their events. 
 
 
Then, the human player plays and the system forms a new K-node, K12. The event of 
K12 is 

12 12 12:K K K
B Ae F F  

where 12 11K K
B AF F  and 12K

AF  is the TTT board configuration resulting from the 
move of the human player. For the remaining of the 1st K-line, the game continues in 
this fashion (i.e., the computer makes a legal move without any kind of strategic 
knowledge, and the human responds with another move) until one of the two players 
wins (most likely, the human in this case) or the game comes to a tie. At this point, we 
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record also the number of moves for this game. Then, the 2nd game begins and a new K-
line, L2, starts forming. Again, the computer plays first and the 1st K-node K21 is 
formed, with event  

21 21:K K
Ae F . 

Next, the human moves and K-node K22 is formed, with event  
22 22 22:K K K

B Ae F F . 

Recall, 21 22K K
A BF F . Next, it is the computer’s turn to move. Note, since there is 

now previous knowledge available (from K-line L1), the computer investigates if that 
knowledge can be utilized to help it in making its next move. In doing so the computer 

looks if there is already a K-node K, such 22K K
B BF F  and such that the K-line L 

containing that K-node K leads to (i) a win for the computer, or (in the absence of a 
computer-winning K-line) (ii) to a tie, or (in the absence of  (i) and (ii)) (iii) L is the 
longest K-line that leads to a human-win. In other words, the computer player tries to 
minimize its chances for defeat, and in doing so it looks for a move that – from past 
experience, lead to either a computer win, or (if that is not available) to a tie, or (if that 
is also not available) to a move that will postpone the defeat of the computer player the 
longest. Assume XK  is the K-node that is selected for the computer player to move, 
based on the above conditions/criteria. Then, the computer player moves by making the 
move dictated by the found K-node XK . Note, at this point an intersection is formed  in 
the AKL. Namely, the current K-line L2 intersects with the K-line containing the found 
K-node XK . The game resumes, with the human player making the next move. After 
that, the computer player moves and its move is, again, based on the criteria described 
above – i.e., by finding (if available) a K-node that leads to an educated guess of 
postponing its defeat for the longest. The process continues, as described above, and 
new K-nodes are formed, as applicable, K-line intersections are also formed (as 
described above), and the AKL is taking shape, for as long as it is desired.  
 
Testing. In testing our system, we judge the computer’s learning progress by 
monitoring the amount of effort that is progressively required by the human to win. As 
the AKL becomes denser, it is expected that the computer player will choose K-nodes 
that belong to winning K-lines and, as a result, the moves that correspond to those K-
nodes will make it harder for the human player to win. Of course, for the simple game 
of Tic-Tac-To, the human can always win, or, in the worst case, force a tie. However, 
for a more complicated game such as chess (or go), it is not at all clear that the human 
can keep winning after several games have been played. We expect that with enough 
training of an AKL, the computer can become a better expert in any of these complex 
games. We intent to test our method and report our findings, in a sequel paper.  
 
Why is this way of machine learning interesting. Our proposed machine learning 
method (via the formation and utilization of an AKL) is novel and interesting because it 
does not require that any knowledge is available up front. The AKL can be formed 
progressively, as more games are played (i.e., more knowledge and experience is 
acquired), and there is also no limit of how much knowledge can be accumulated. As 
more knowledge and experience is acquired and captured into the AKL, the computer 
learner’s performance is expected to improve. This, we argue, resembles the way that 
actual human beings learn. That is, as more experiences are acquired with the passage 
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of time, humans, in general, perform better. Another interesting point in the nature of 
the learning facilitated by the AKL is that the quality of learning is proportional to the 
quality of the “teacher”. It is expected that an AKL whose K-node are formed by 
moves that are made by a not-so-intelligent (or, not-so-careful) human being, will be 
inferior to an AKL whose K-nodes are formed by moves that are made by a highly 
intelligent (or, skillful, or very careful) human being. As such, a machine that bases its 
moves on an inferior AKL is expected to underperform a machine that bases it moves 
on the superior AKL. Note, this analogy also resembles the real-life scenario in which, 
in general (all other things being equal), students of better teachers tent to become more 
skillful (i.e., learn more) than students of not-so-good teachers.   
 

5.   Artificial K-lines and User Authentication 

AKL can be useful in pattern recognition situations. We illustrate this here for a simple 
scenario of identity detection/verification. All previous works that we are aware of for this 
problem employ neural network (NN) technology (a discussion of such works is found 
toward the end of this subsection). Here, we describe an authentication mechanism without 
using NN.  

In our case, the setting is that a user attempts to gain access to a computer system (the 
system could be a computer account, or a bank account accessed through a bank’s online 
service, or any system that requires the user to input an access code, such as a password). 
Approaches that address this problem today are basically by typing the required password by 
using a conventional keypad (most commonly used practice), or by identity verification via 
biometrics (most commonly used biometric today is the fingerprint – see for example [25], 
[26], [27]. For our example, we assume that the input is provided by the user via a keypad, 
and the user needs to type his password in order to gain access to the system. Upon typing, 
the system compares the typed characters against its password database, and if a 100% match 
occurs then the system grants access to the user. The problem with the above (typical) method 
of password/identity verification is that the password is vulnerable in at least two ways. First, 
there is the obvious scenario of password theft. Second, and probably more likely nowadays, 
is the continuous threat from attacking software (and computer hackers) that attempt to gain 
access to the user’s account by trial and error (by trying 1000’s of potential password strings 
per minute, in hope of trying a string that matches the actual password). The above are some 
of the main reasons for the popularity gains of biometrics oriented alternatives for password 
identification. Here we describe how AKL can be utilized to handle password/identity 
verification. In what follows, we provide a basic description of the proposed method. Similar 
to the biometrics oriented idea of uniquely matching a person with his computer account, we 
agree that characteristics which are unique to each person should be used to verify the 
authenticity of the user. For example, in the biometrics oriented approach, the fingerprint of a 
person is used as such a unique characteristic. Out approach is what we could call behavior-
metrics oriented (as opposed to biometrics oriented). That is, we use behavioral 
characteristics (as opposed to biological characteristics) for authentication. Similar to our 
discussion in the Tic-Tac-To example of subsection 3.2, we now describe the event structure 
and the proposed methodology for the authentication problem in this subsection.  

Event structure: As usual, the problem is formulated with K-lines, each K-line consists of K-
nodes, and each K-node contains an event. The events of two consecutive K-nodes are related 
by causality i.e., the event of every K-node K is an immediate consequence of the event of the 
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K-node which is the immediate predecessor of K. In our setting, we define the event to be the 
input of a character, as part of the character string that comprises the user’s password. Figure 
11 shows two consecutive K-nodes K1 and K2 with their events 1Ke  and 

2Ke .  

 

 
 

Figure 11. Two consecutive K-nodes for the password authentication 
problem. 

 

In Figure 11, each K-node K (K = K1 or K2) contains two characters named K
BC  and 

K
AC  such that character K

BC  is input by the user just before character K
AC , during the 

process of the user inputting his/her password. As we observe, character 1K
BC  is repeated 

several times in K-node K1, and character 2K
BC  is repeated several times in K-node K2. The 

 

1Ke  
1K

AC  

2Ke

2Ke  2K
AC  

K-node K1 

K-node K2 

1 1 1...K K K
B B BC C C

2 2 2...K K K
B B BC C C  
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reason for this and the number of times that the characters are repeated are explained and 
discussed next, in the “Methodology” sub-subsection. Note, for the two K-nodes K1 and K2 

to be connected so that K1 is the predecessor of K2, it must be that 1 2K K
A BC C . That is, 

the input of character 2K
AC  must immediately follow the input of character 2K

BC . This is 

the criterion that qualifies events 1Ke  and 2Ke  to be associated by causality. We now 
describe a methodology according to which an AKL is formed so that it captures the 
behavioral pattern of the user during password input.  
 

Methodology: We assume that a user attempts to gain access to his computer account by 
typing in his password. The system captures the typing behavior of the user as he types his 
password. It is assumed that this phase will be repeated for several times so that the system is 
trained (in the next sub-subsection we describe how a trained system can be used to 
authenticate a user). We base our method on the assumption that when two people type the 
same word (or phrase), the way that they type that same word differs between the two people. 
The same claim is made in [10]: “…the impostor … doesn’t type your password the same way 
you do”. This difference, we argue, is more profound in cases that the word which is typed is 
very familiar to one person (which is the case for the legitimate owner of a password) and not 
so familiar to the other person. For example, the author of this paper can type his last name 
fairly quickly and (usually!) without making any mistakes. However, we argue, if another 
person types the author’s last name, then there will be a noticeable (at least by the system) 
difference in the speed that the characters of the name are typed, and probably in getting the 
spelling correct, at least during the first attempt. Based on the above discussion, we use the 
amount of time that it elapses between inputting consecutive characters during the input of the 
required password. Algorithm A, below, outlines the interaction between user and system 
during the input of a user’s password.  

Algorithm A 

Loop  
 Step A0: Consider  BC , the most recently entered character.   
 Step A1 [System]: StartClock() and record time point, t1. 
 Step A2 [User]: input character AC .  
 Step A3 [System]: StopClock() and record time point, t2.  
 Step A4 [System]: W = t2 – t1;  
 Step A5 [System]: FormKnode( BC , AC , W ); 

End loop. 
 
The main product of Algorithm A is the creation of a K-node, during step A5. Once formed, 
the newly created K-node is appended to the existing K-line. Figure 12 shows a K-node that 
is created as a result of the call FormKnode( BC , AC , W ).   

 
     The main ingredients of the K-node shown in Figure 12 are two characters, K

BC , 
and K

AC , and an event Ke  that connects those two characters. Character K
BC  is the 

“before” character, i.e. the character that has been most recently typed by the user, prior to the 
typing of character K

AC , the “after” character. Event Ke  is the act of typing character 
K

AC  right after typing character K
BC .   
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Figure 12. K-node created by Step A5 of Algorithm A. 
 

    According to the way that we structure our K-node, character K
BC   appears multiple times 

(W times) in the K-node of Figure 12. This is due to step A4 of Algorithm A, which captures 
the delay of the user in typing character K

AC  after having typed character K
BC . This delay 

is captured by steps A1 and A3 of Algorithm A. Step A1 is essentially the beginning of 
Algorithm A and the system is waiting for the user to type a character. At that time, the 
system starts a clock (call to method StartClock, in step A1) and keeps track of the time 
elapsed until the user eventually types something (in step A2). As soon as the user types a 
new character, K

AC , the system stops the clock (call to method StopClock, in step A3) and 
calculates the elapsed time (step A4). Then, the amount of elapsed time serves as a 
measurement of how many times character K

BC  will be repeated in the K-node that is about 
to be formed (in step A5). To convert the amount of elapsed time W into number of times that 
character K

BC  is repeated, we divide W by a number k such that k W  (and preferably  
k W )  and k is a predetermined system constant and it is the same for all K-nodes and it 
represents an amount of time much smaller than any amount of time W that is being observed 
throughout the formation of all K-nodes. The configuration of the K-node as shown in Figure 
12 is used to verify/authenticate a user, as follows.  

As the user continues typing characters, the system continues forming K-nodes, by 
invoking Algorithm A for each typed character. Each K-node that is being formed is 
appended to the current K-line. At the end of the formation of the current K-line, the K-line 
consists of N K-nodes where N is the number of characters that the user typed during his 
current attempt to gain access to the system. One K-line, L1, is formed as soon as the user 
finishes typing her password. K-line L1 consists of N K-nodes and each K-node has the 
structure and configuration shown in Figure 11 (and Figure 12). At this point, we can 
consider, in principle, the AKL to have been formed and be ready for usage. However, to 
increase its sensitivity and accuracy, we can consider forming new K-lines, as follows. The 

 

Ke
K

AC  

K-node K 

...K K K
B B BC C C  

W times 
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system prompts for the user’s password again, and starts forming a new K-line (it is 
understood that the same user – the rightful owner of the account, is used for the formation of 
this K-line as well). Similar to the process of the formation of K-line L1, the user enters her 
password again, and the system records the characters that are typed, as well as the delays 
between consecutive keystrokes, and forms K-nodes by invoking Algorithm A – the same 
way as done during the formation of K-line L1. However, in addition to this, the system also 
checks how the time delays between typing consecutive characters during the formation of 
the current K-line, L2 compare with the time delays recorded during the formation of the 
previous K-line, L1. This is done as follows:  as the user enters her password (for second 
time, for the formation of K-line L2), and K-nodes are formed as in the case of L1, it is 
assumed that the typed characters are the same for all corresponding K-nodes (i.e., all K-
nodes Kj1, Kj2), where Kj1 is the j-th K-node of K-line L1 and Kj2 is the j-th K-node of K-
line L2. However, the time delays Dj1 and Dj2 (i.e., the number of occurrences of character 

BC  of K-node Kj1 and the number of occurrences of character BC  of K-node Kj2) may vary 
slightly! This is expected due to human nature. That is, we do expect that the same user 
exhibits similar typing behavior in typing her password during different times, but we do not 
require that she exhibits identical behavior. As such, we maintain a Delay Tolerance Table 
(DTT) for each time delay that corresponds to every pair of consecutively typed characters. 
Figure 13 shows such a tolerance table.  
 

K-node BC  Delay Tolerance AC  

K1 1K
BC  1KDTL  

1K
AC  

K2 2 1K K
B AC C  2KDTL  

2K
AC  

K3 3 2K K
B AC C  3KDTL  

3K
AC  

… … … … 

Kj 1Kj Kj
B AC C   KjDTL  

Kj
AC  

… … … … 

Kn 1Kn Kn
B AC C   KnDTL  

Kn
AC  

 
Figure 13. Sample Delay Tolerance Table. 

 

In Figure 13, it is assumed that each K-line has n K-nodes. The values 1KDTL , 2KDTL , …, 
KjDTL , …, KnDTL  represent intervals   

 

min ,maxKj Kj KjI D D     

where min KjD  is the minimum observed delay time for K-node Kj among all the user’s 

corresponding inputs for the same K-node so far, and max KjD  is the maximum observed 
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delay time for K-node Kj among all the user’s inputs for K-node Kj, so far. The characteristic 
of every DTL-value in the Tolerance Table is that for every  

min ,maxKj Kj KjDTL D D    , 

we require that  

min maxKj KjD D    

for a small value  , determined by the system. The idea is that if the user’s typing pattern 
exhibits varying degrees of delay for the same 2-character sequence, then we require that 
those differences in delays are within an acceptable restricted threshold. When a new K-line 

YL  is formed and one of its K-nodes YjK  has a delay time YjK
D  which is close enough to a 

delay time XjK
D  of the same-rank K-node XjK of another K-line XL , then we consider K-

lines  XL  and YL  to intersect. In such a case, K-nodes XjK  and YjK  are combined to form a 

new K-node  XY jK  and this new K-node is considered to be at the intersection of the two K-

lines XL  and YL . The delay time  XY jK
D  of the new K-node is set to  

 

2

Xj Yj

XY j

K K
K D D

D


  

i.e, the average of the delay times of the two amalgamated K-nodes XjK  and YjK ; and the 

delay tolerance DTL of the new K-node is set to  

  min min max max
,

2 2

Xj Yj Xj Yj

XY j

K K K K
K D D D D

DTL
  
 
  

, 

i.e., we set the delay tolerance interval of the new K-node to an interval whose boundaries are 
the averages of the boundaries of the delay tolerance intervals of the two combined K-nodes 

XjK  and YjK . Also, the number  XY jK
W  of repetitions for the “before” character of the new 

K-node  XY jK  is set to  

 

2

X Y
XY j

K K
K W W

W


  

where XKW  and YKW  are the number of repetitions of the two “before” characters of the 
two combined K-nodes XjK  and YjK , respectively.  Note, the above process of the formation 

of the AKL may result into an AKL that consists of multiple K-lines. It is expected that those 
K-lines intersect at many of their K-nodes and, in fact, many of them intersect at all of their 
K-nodes. This is normal because, after all, a user is expected to have a pretty stable typing 
behavior when typing her password at different times. However, there may be also some K-
lines for which some of their K-nodes have not been found to be close enough (per the 
criterion of the delay tolerance table, as described above). Those K-nodes are not at the 
intersection of any K-lines. Such cases arise for any two two K-nodes XjK  and YjK  of the 

same rank j and belonging to two different K-lines XL  and YL  , and for which it has been 
found that  
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Xj YjK K
W W   .  

In effect, this means that the AKL contains two K-lines each of which represents a different 
typing pattern of the same user, while that user enters the same password at different times! 
At first, this may seem somewhat peculiar. We argue that this is possible and in fact it is 
probably a desirable feature of the AKL.  In other words, we welcome the case that the same 
user can exhibit different typing patterns when typing her password during different times. 
The reason for that is that the same user may be at different states of mind during different 
times. For example, when the user is tired, she may exhibit different typing behavior from 
when she is well-rested. Or, when the user is under pressure of time (e.g., a deadline) she 
tends to exhibit yet a different typing behavior; and so on. We are not aware of any research 
of how the state of mind of a person may affect his/her typing behavior and it our intention to 
investigate this issue and report our findings in a sequel paper. In some of our previous works 
(e.g., [7], [11], [12]) we found evidence that the affective state of a person influences his/her 
performance in the area of media handling. It will not be surprising if the same is true for the 
case of identity authentication.   
 
User Authentication. Once the AKL has been formed – as described above, it can be used to 
authenticate a user, as follows. A user arrives and types her password. As soon as the user 
types the first character, the closest K-line is selected from the AKL. Assuming that the first 
typed character is the same as the first character of all K-nodes of all K-lines, the closest K-
line is a K-line L such that the first K-node of L has a W-value that is within the acceptable 
tolerance threshold  from the W-value of the K-node that would have been formed out of 
the user’s first typed character. Note, if there is no matching K-line (either because the typed 
character does not match the character of any first K-node of any of the K-lines, or because 
the created W-value does not match any of the W-values of the first K-node of any of the K-
lines) then the user’s attempt is rejected and the user is not granted access to the system. 
Provided that the matching succeeds, assume that the K-line against which the password is 

matched consists of n K-nodes, K1, K2, …, Kn. Denote by 1 2, ,...,K K Kn
A A AC C C  the “after” 

characters of those K-nodes, and by 1 2, ,...,K K KnDTL DTL DTL  the corresponding delay 
tolerances of the Tolerance Table of that K-line. Assume that the password input by the user 
is the string 1 2, ,..., nC C C  with corresponding delays 1 2, ,..., nD D D , should K-nodes were to be 

formed out of that password. From the recorded delays 1 2, ,..., nD D D  calculate the W-values 
the same way that they would have been calculated if K-nodes were to be formed from the 
supplied input password. Let 1 2, ,..., nW W W  are the calculated W-values. Then, the system 
grants access to the user (i.e., the system considers the supplied password to be valid), if and 
only if 

Kj
ACj C , for all j=1, …, N  and KjDj DTL  (or, equivalently, Kj

jW W ),  

for all j = 1, …, N. 
That is, the system grants access to the user if and only if there is a complete match, 
character-by-character, in the characters of the supplied password and the one that is being 
stored in the K-line, and also, if the typing pattern of the supplied password resembles the 
typing behavioral pattern of the user as it has been recorded in the matching K-line from 
previous experiences.   
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Why is this way of authentication interesting? The proposed method for user password 
authentication has the following interesting characteristics.  

1. It provides added security which comes from string matching (the traditional password 
verification method in current systems) and from matching of behavioral 
characteristics of the user.  

2. It can be used potentially for user training. In addition to having the user training the 
system to understand the user’s typing pattern as described above (during the 
discussion of the formation of the Tolerance Table), the opposite may be possible as 
well, i.e., having the system to train a user to adopt (or, conform to) a certain behavior, 
by “insisting” that the user adopts a certain typing pattern (and rejecting typing pattern 
variations that are outside the tolerance values of the tolerance table. Note, the 
tolerance table in this case may be set from past experiences, or may be created 
artificially by the system, if the purpose is to (re-)train a user to a completely new 
typing pattern). Such a mode of operation of the system could be used stand alone to 
train a user to a completely new typing pattern, or it can be used in conjunction with 
the “normal” mode to fine-tune an existing system during the phase that the user enters 
his password and the system forms the delay tolerance table. In case that the user’s 

observed delays are too “liberal” (or, too “erratic”), i.e., Lj MjK K
D D    for two 

K-nodes of the same rank, j, at different K-lines, L and M.  
3. It is potentially more secure than biometrics oriented authentication. Note, although 

biometrics guarantee 100% uniqueness, they are still vulnerable to theft (for example, 
in the extreme scenario that a thief makes a mold of a fingerprint, then the password is 
both stolen and, moreover, there is little hope for the rightful owner to change that 
password!). However, even though that could be somewhat difficult, any user can 
change his/her typing behavior! Therefore, if someone steals your password together 
with your current typing pattern (we consider the latter to be very difficult) you can still 
protect your access privilege to the system by altering your typing behavior (and, of 
course, retraining the system to recognize the new behavior).  

4. Additional behavioral attributes can be added, besides the time delay approach that is 
outlined in this paper, as modern computer systems become more sensitive to various 
behavioral characteristics. For example, the angle that a user tends to hit a particular 
key while typing his password, or the amount of skidding that a user’s finger tends to 
make on the typing surface, could be some of those behavioral attributes. Note, certain 
input devises (e.g., the iPhone) are already sensitive to such behavioral characteristics. 
For example, the iPhone can recognize how much a user slides her finger while 
touching the screen.  

5. Simplicity. The proposed method is easy to implement and it does not require any 
additional or new hardware (such as fingerprint readers, or iris scanners), which is 
required by most/all biometrics based methods.  

 
Related work.  Typing behavior is an almost century-old issue, identified since at least as 
early as the first quarter of the previous century [13], [14], and there is a fair amount of 
research on the issue of typing behavior and of password verification based on typing 
behavior. See for example, [15], [16],  [17],  [18],  [19],  [20],  [21],  [22],  [23], and [24]. All 
previous works identify typing behavior attributes and patterns and/or devise strategies for 
user authentication. The preferred attribute typing behavior that is used is the time duration 
between keystrokes (e.g., in [15], [16], [17], [24], [18]. Without claiming that this is the only 



International Journal of Advanced Science and Technology 

Volume 5, April, 2009 

 

 

70 

typing behavior characteristic, we use the same attribute in the description of our method 
here. The preferred strategy for password authentication is by means of neural network (NN). 
Several flavors of NN are explored, such as the ADALINE Neural Element in [19], the 
Backpropagation NN in [19], [21], [18], the Kohonen NN in [19], the Counterpropagation 
NN in [21], the Fuzzy ARTMAP in [21], the Radial Basis Network in [21], the Learning 
Vector Quantization NN in [21], the Sum-Of-Product NN in [21], [18], and the Hybrid-Sum-
Of-Product NN in [21], [18]. Interestingly, the most recent password authentication work that 
we are aware of is a commercial product from a recent startup company named Delfigo [28]. 
As reported in [10], the design of this product is inspired by studies that one of the company’s 
co-founders recently completed at MIT during studies with professor M. Minsky. It has been 
also stated in [29] that the company’s identity identification algorithm employs NN 
technology. (The details of the NN mechanism are, of course, Delfigo’s intellectual property 
and secrets and, as such, are not disclosed to the general public).   
 
6. Comparison with Neural Networks 

We provide a general comparison between the essence of AKL and ANN. Note, this 
is meant to be only a very general, although accurate, contrast between the proposed 
structure, AKL, and the long-existing well-known structure of ANN. This comparison 
has been offered also in our most recent work in [8] and [9]. 

ANN is a structure that aids in decision making. After training, it answers, 
essentially, “yes”-“no” questions, upon presentation of input for a task. The task has to 
be within the domain that the ANN has been trained. That is, the ANN does not have 
general knowledge, neither does it have the ability for creativity and for combining 
multi-domain knowledge. In this sense, ANN is a specialist (rather than a polymath) 
that continuously hones its skill to perform a certain task, without any creative abilities. 
An ANN may increase its knowledge, but the newly acquired knowledge is strictly 
confined within the boundaries of performing better the same task that it used to 
perform before.  

AKL is a structure that accommodates learning, but no decision making. An AKL does not 
point to a single piece of knowledge; on the contrary, it spans several domains of knowledge 
and this knowledge is expanded. The expansion is done with the incorporation of new K-lines 
into the existing AKL graph, regardless of the knowledge domain from where those K-lines 
come from. By incorporating more K-lines, AKL builds on existing knowledge and expands 
its ability of many different alternative “ways to think”. As such, it facilitates creativity (i.e., 
allowing the generation of new “ways to think”), by allowing the formation of paths 
comprised from edges from different K-lines (as for example, cases (a) and (d) of Figure 4). 
The number of new “ways to think” is, in most cases, significantly greater than the number of 
the original “ways to think” that were used to form the AKL graph due to the periodic fun-
outs that we encounter at K-line intersections. In this sense, AKL is the creative polymath 
that continuously expands its knowledge and increases its chances for creative thinking. 
 
7. Conclusion 

We present AKL, a novel approach in how to use K-lines. We illustrate via three 
applications drawn from widely diverse domains, how AKL can solve some problems. 
In section 4, we illustrate how the proposed method can solve a problem that involves 
reflective thinking, that no other known method can solve as easily. In section 5, we use 
a simple board game to illustrate how AKL can be used to facilitate machine learning. 
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In section 5, we use a simple scenario of computer security to illustrate how AKL can 
be used to facilitate identity authentication. It is hoped that the proposed structure is a 
potential tool for building intelligent systems, complementary to ANN.  

Our future plans include refining the proposed method and investigating its potential 
for machine learning (such as the TTT example outlined in section 4), for user 
authentication as outlined in section 5, and for artificial creativity.  For machine 
learning, our immediate plan is to formulate a way to automate the testing of the TTT 
example described earlier. Note, testing of our methodology as described in section 4 is 
possible, but it is cumbersome since it relies on continuous human participation. Since 
it is desirable that there are a large number of moves and games played in order for the 
AKL to acquire a substantial amount of knowledge that can be used by the machine, it 
is impractical to utilize an actual human for this purpose. Therefore, the input of a 
human participant has to be automated. Fortunately, for the TTT game outlined here, 
the entire knowledge space can be generated since this particular game is fairly small. 
We are currently working on formulating the problem of how this space can be utilized 
to automate the input of a human expert. In addition to the game of Tic-Tac-To, it is 
interesting to formulate the automation of human expert input for more complex games, 
such as chess and go. For user authentication, our plan is to (a) formulate a way to 
automatically test the method described in section 5 and (b) to enhance our method with 
additional behavior based attributes, besides the successive keystroke elapsed time 
attribute. We believe that task (a) can be performed by generating the same password a 
large number of times and simulating a user’s several keystroke delay patterns which 
are then used to form an AKL. We believe that the main difficulty is in finding an 
optimal  -value for the DTL values. Needless to say, due to the nature of the problem 
(computer security is a very sensitive issue nowadays) the results will have to be near-
perfect, or else the method can be deemed as impractical or undesirable. The neural 
network based approaches to the same problem that are referenced earlier in this paper 
(section 5) report user authentication success rates of well-above 90%. Task (b) is, 
perhaps, more interesting and more useful in practice, albeit more intellectually 
challenging. A main problem in this context is how to incorporate the many behavioral 
attributes that affect the typing pattern of a user into a K-node and in particular to 
express them as events. In the method described in section 5, we have only one attribute 
– the time elapsed between two successive keystrokes, and that is mapped fairly 
naturally to an event by converting the elapsed time to a string of repeated characters. 
When, however, the number of affective behavioral attributes is greater than one, such a 
mapping is not obvious. We are in the process of developing an appropriate structure, 
similar to AKL, which can hopefully address the problem. Details of our work will be 
reported in a sequel paper. Another interesting research direction as an application of 
AKL is the area of artificial creativity. Note, an inherent characteristic of AKL is to 
combine parts of K-lines and form new K-lines comprised of those parts. We argue that 
this is the essence of creativity, that is, the ability to form new “ideas” by using existing 
knowledge, or by combining (parts of) old ideas. In the context of the AKL, the newly 
formed K-lines represent the new ideas, whereas the existing knowledge is the sequence 
of segments of the existing K-lines that are used to form the new K-lines. In this sense, 
the AKL might be a suitable candidate structure for artificial creativity. One major 
obvious issue is how to judge the suitability of the newly generated K-lines, i.e., how to 
zero-in into only the meaningful generated ideas among all generated ideas, since the 
latter can be too many and, among those, many/most of them might not make sense. 
Note, again, the same phenomenon is encountered with natural creativity. That is, for 
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every new idea that is generated by a person, there is always the issue of how sensible 
(or applicable) that idea is. We will be delighted if the AKL can shed some light to the 
artificial creativity problem, which is a many-decades old and unsolved problem in 
Artificial Intelligence.  
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