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Abstract 

    In this paper we  investigates time delay and channel gain estimation for multipath fading 
Code Division Multiple Access (CDMA) signals using the second order Divided Difference 
Filter (DDF). Given the nonlinear dependency of the channel parameters on the received 
signals in multiuser/multipath scenarios, we show that the DDF achieves better performance 
than its linear counterparts. The DDF, which is a derivative-free Kalman filtering approach, 
avoids the errors associated with linearization in the conventional Extended Kalman Filter 
(EKF). The Numerical results also show that the proposed DDF is simpler to implement, and 
more resilient to near-far interference in CDMA networks.  
 
1. Introduction 

Multiuser parameter estimation has been an active area of research and has led to the 
development of a plethora of techniques over the years. Time delay estimates are used in 
numerous applications such a radiolocation, radar, sonar, seismology, geophysics, ultrasonic, 
to mention a few. In most applications, the estimated parameters are fed into subsequent 
processing blocks of communication systems to detect, identify, and locate radiating sources.  

Direct-sequence code-division multiple-access technology includes higher bandwidth 
efficiency which translates into capacity increases, speech privacy, immunity to 
multipath fading and interference, and universal frequency reuse [1, 2], over existing 
and other proposed technologies make it a popular choice. As with all cellular systems, 
CDMA suffers from multiple-access interference (MAI). In CDMA, however, the 
effects of the MAI are more considerable since the frequency band is being shared by 
all the users who are separated by the use of the distinct pseudo noise (PN) spreading 
codes. These PN codes of the different users are non-orthogonal giving rise to the 
interference, which is considered to be the main factor limiting the capacity in DS-
CDMA systems. 

Accurate channel parameter estimation for CDMA signals impaired by multipath fading 
and multiple access interference (MAI) is an active research field that continues to draw 
attention in the CDMA literature. In particular, the joint estimation of the arriving multi-path 
time delays and corresponding channel tap gains for closely-spaced (within a chip interval) 
delay profiles is quite challenging, and has led the development of several joint multiuser 
parameter estimators, e.g., [3,4]. These have been extended to the case of multipath channels 
with constant channel taps and constant or slowly varying time delays [7]. An attempt at 
extending subspace methods to tracking time delays was given in [6], On the other hand, time 
delay trackers based on the Delay Lock Loop (DLL) combined with interference cancellation 
techniques have also been developed for multi-user cases [10]. Near–far resistant time delay 
estimators are not only critical for accurate multi-user data detection, but also as a supporting 
technology for time-of-arrival based radiolocation applications in CDMA cellular networks 
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[5, 8-10]. The maximum-likelihood-based technique has been employed in [11], and [12] for 
single-user channel and/or multiuser channel estimation with training symbols or pilots.  

The Kalman filter framework based methods were considered in [13-15], where Extended 
Kalman Filter (EKF) has been applied to parameter estimations. Unscented Kalman Filters 
(UKF) and Divided Difference Filters (DDF) and their variants, also termed as derivative free 
filters, have been proposed as viable and more accurate alternatives to the Extended Kalman 
Filters (EKF) for nonlinear estimations. UKF was proposed by Julier who approached the 
problem of accurately capturing the relevant prior statistics of a random variable using the 
second order terms in the Taylor series expansion of the true quantities by choosing a set of 
weighted sigma points. Under this scheme, errors are only introduced in the higher (> 2) order 
terms [10,16,17]. 

The DDF is described as a sigma point filter (SPF) in a unified way where the filter 
linearizes the nonlinear dynamic and measurement functions by using an interpolation 
formula through systematically chosen sigma points. The linearization is based on polynomial 
approximations of the nonlinear transformations that are obtained by Stirling’s interpolation 
formula, rather than the derivative-based Taylor series approximation [18, 19]. Conceptually, 
the implementation principle resembles that of the EKF, the implementation, however, is 
significantly simpler because uses a finite number of functional evaluations instead of 
analytical derivatives. It is not necessary to formulate the Jacobian and/or Hessian matrices of 
partial derivatives of the nonlinear dynamic and measurement equations. Thus, the new 
nonlinear state filter, divided difference filter (DDF), can also replace the extended Kalman 
filter (EKF) and its higher-order estimators in practical real-time applications that require 
accurate estimation, but less computational cost. 

Many of the algorithms presented in previous work have focused on single-user and/or 
single-path propagation models. However, in practice, the arriving signal typically consists of 
several epochs from different users, and it becomes therefore necessary to consider multi-
user/multi-path channel models. In this paper, we present a joint estimation algorithm for 
channel coefficients and time delays in a multipath CDMA environment using a non-linear 
filtering approach based on the second order Divided Difference Filter (DDF) with a 
particular emphasis on closely spaced paths in a multipath fading channel.  

The rest of the article is organized as follows. In Section 2, the signal and channel models 
are presented. Section 3 provides a description of the nonlinear filtering method used for 
multiuser parameter estimation that utilizes Divided Difference Filter. Section 4 describes 
computer simulation and performance discussion followed by the conclusion. 

 

2. Divided Difference Filter 
     Consider a nonlinear function, )y = h(x  with x  and covariance xxP . If the function h  is 

analytic, then the multi-dimensional Taylor series expansion of a random variable x  about 
the mean x  is given by the following [6, 7] 

 
 

 

where iDx h is the total derivative of  h(x)  given by 
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The second order divided difference approximation of the function is formulated by using the 
vector form of Stirling’s interpolation formula, which is similar to the extension of the Taylor 
series approximation 
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where h is an interval of length, taken as h = 3  for a Gaussian distribution and p  and 

p denote the partial difference operator and the partial average operator respectively 
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and e  is the pth unit vector along the coordinate axis in the space spanned by x . The 
following linear transformation of x  is introduced to illustrate how others can be derived. 

-1
xz = S x  

where xS is the Cholesky factor of the covariance matrix xxP . A new function h is defined by 

( ) ( ) ( ) xh z h S z = h x  

The Taylor series approximation of h is identical to that of h , while the interpolation formula 

does not yield the same results for h  and h due to the following 

2 ( ) ( ) ( ) ( ) ( )p p p p p ph h h         h z h z e h z e h x s h x s    

where ps  denotes the pth column of xS . Thus, Dxh and 2
xD h will be different from Dzh   

and 2Dzh  . 
 
2.1 First-Order Divided Difference Filter (DDF1) 
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Consider the nonlinear equations 
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where kx  is the 1n state vector, ky is the 1m observation vector, kw is the state noise 

process vector and kv is the 1r measurement noise vector. It is assumed that the noise 

vectors are uncorrelated white Gaussian processes with expected means and covariances 
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Let the square Cholesky factorizations 
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where ,x js is the column of xS and ,w js is the column of wS .  

the square Cholesky factorizations are performed 

1
T

k

T


 



- -
x x

v v

P S S

R S S
 

The predicted observation vector 
1

ˆ
k

y and its predicted covariance are 

1 1 1

1

ˆ ˆ( , , 1)

( 1) ( 1)

k k k

vv T
k v v

k

k k



 
 



 

  

y h x v

P S S
 

 
where  

(1) (1)
ˆ( 1) ( 1) ( 1)v yx yvk k k     S S S  

 

 

(1)
ˆ 1 , 1 1 , 1

(1)
1 1 , 1 1 ,

1
ˆ ˆ( 1) ( , ) ( , )

2
1

ˆ ˆ( 1) ( , ) ( , )
2

yx i k x j k i k x j k

yv i k k v j i k k v j

k h h
h

k h h
h

  
   

 
   

    

    

S h x s v h x s v

S h x v s h x v s

 



International Journal of Advanced Science and Technology 

Volume 5, April, 2009 

 

 

39 

where ,x j
s is the column of -

xS  and ,v js is the column of vS . The innovation covariance 1
vv
kP  

is computed as  

1 1 1
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with 
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The DDF1 has been outlined in table.1 
 
2.2 Second-Order Divided Difference Filter (DDF2) 
     
    The second-order divided difference filter (DDF2) is obtained by using the calculation of 
the mean and covariance in the second-order polynomial approximation section. First, the 
following additional matrices containing divided difference are defined [6,7], 
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where ,x js is the jth column of xS , ,w js is the jth column of  wS  and 2h   is a constant 

parameter. The predicted state equation is 
 

 

 

1

, ,
1

, ,
1

( )
ˆ ˆ( , )

1
ˆ ˆ( , ) ( , )

2

1
ˆ ˆ( , ) ( , )

2

x

x

x w
k k k

n

k s p k i k s j k
p

n

k k w p i k k s p
p

n n

h h

h h















 


   

   





x f x w

f x s w f x s w

f x w s f x w s

 

 
In Table 1. xn denotes the dimension of the state vector, and wn is the dimension of process 

noise vector. The Cholesky factorization of the predicted covariance is computed as 
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The predicted covariance is computed using 
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Table 1. First Order Divided Difference Filter Algorithm 
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where vn is the dimension of the measurement noise, ,x p
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The cross correlation matrix is  
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The DDF2 algorithm has been outlined in table 2. 
 

3. Channel and Signal Model 
  
    We consider a typical asynchronous CDMA system model where K users transmit over an 
M-path fading channel. The received baseband signal sampled at 
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Table 2. Second Order Divided Difference Filter Algorithm 
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In order to use a Kalman filtering approach, we adopt a state-space model representation 
where the unknown channel parameters (path delays and gains) to be estimated  are given by 
the following 2 1KM   vector, 

[ ]x c;τ                            (2) 

with     11 12 1 21 2 1[ , ,..., , ,..., ,..., ,..., ]T
M M K KMc c c c c c c c  

and      11 12 1 21 2 1[ , ,..., , ,..., ,..., ,..., ]T
M M K KM         

The complex-valued channel amplitudes and real-valued time delays of the K users are 
assumed to obey a Gauss- Markov dynamic channel model, i.e. 

( 1) ( ) ( )c cc l c l l  F v                                       

( 1) ( ) ( )l l l    F v  

where 
cF and F  are KM KM state transition matrices for the amplitudes and time delays 

respectively whereas ( )cv l  and ( )v l  are 1K  mutually independent Gaussian random vectors 

with zero mean and covariance given by E{ ( ) ( )}T
c c ij cv i v j  Q , E{ ( ) ( )}T

ijv i v j   Q , 

E{ ( ) ( )} 0 ,T
cv i v j i j    with 2

c cQ I and 2
 Q I  are the covariance matrices of the process 

noise 
cv and v respectively, and ij is the two-dimensional Kronecker delta function equal to 1 

for i j , and 0 otherwise. 
Using (2-4), the state model can be written as  

( 1) ( ) ( )l l l  x Fx v                            (3) 
where  

0 0
, ,

0 0
c cT T

c 
 

   
       

   

F Q
F v v v Q

F Q
are 2 2KM KM  state transition matrix, 

2 1KM   process noise vector with mean of zero and covariance matrix respectively. The 
scalar measurement model follows from the received signal of (1) by 

( ) ( ( )) ( )z l h l l x                                           (4)  

where the measurement ( ) ( )z l r l , and 

 
, , ,

1 1

( ( )) ( ) ( ( ))
l

K M

k i k m k l b k i
k i

h l c l d a l m T l
 

  x . 

The scalar measurement z(l) is a nonlinear function of the state ( )lx . Given the state-space 

and measurement models, we may find the optimal estimate of ˆ( )lx denoted as 

ˆ ( | ) { ( ) | }ll l E l zx x , with the estimation error covariance  

   ˆ ˆP E ( ) ( | ) ( ) ( | ) |
T ll l l l l l z  x x x x  

where lz denotes the set of received samples up to time l. 
 
3. Parameter Estimation using the Divided Difference Filter 

For the nonlinear dynamic system model such as above, the conventional Kalman 
algorithm can be invoked to obtain the parameter estimates [17, 18]. The most well known 
application of the Kalman filter framework to nonlinear systems is the Extended Kalman 
filter (EKF). Even though the EKF is one of the most widely used approximate solutions for 
nonlinear estimation and filtering, it has some limitations [17]. Firstly, the EKF only uses the 
first order terms of the Taylor series expansion of the nonlinear functions which often 
introduces large errors in the estimated statistics of the posterior distributions especially when 



International Journal of Advanced Science and Technology 

Volume 5, April, 2009 

 

 

44 

the effects of the higher order terms of the Taylor series expansion becomes significant. 
Secondly, linearized transformations are only reliable if the error propagation can be well 
approximated by a linear function. If this condition does not hold, the linearized 
approximation can be extremely poor. At best, this undermines the performance of the filter. 
At worst, it causes its estimates to diverge altogether. And also linearization can be applied 
only if the Jacobian matrix exists. However, this is not always the case. Some systems contain 
discontinuities, others have singularities. Calculating Jacobian matrices can be very difficult. 

DDF, unlike EKF, is a sigma point filter (SPF) where the filter linearizes the nonlinear 
dynamic and measurement functions by using an interpolation formula through systematically 
chosen sigma points. The linearization is based on polynomial approximations of the 
nonlinear transformations that are obtained by Stirling’s interpolation formula, rather than the 
derivative-based Taylor series approximation [18]. Conceptually, the implementation 
principle resembles that of the EKF. However, it is significantly simpler because uses a finite 
number of functional evaluations instead of analytical derivatives. It is not necessary to 
formulate the Jacobian and/or Hessian matrices of partial derivatives of the nonlinear 
dynamic and measurement equations. Thus, the new nonlinear state filter, Divided Difference 
Filter (DDF), can also replace the Extended Kalman Filter (EKF) and its higher-order 
estimators in practical real-time applications that require accurate estimation, but less 
computational cost. The derivative free, deterministic sampling based DDF outperform the 
EKF in terms of estimation accuracy, filter robustness and ease of implementation. 
 
3.1. Application to Channel Estimation with Multipath/ Multiuser model 

We have simulated a CDMA system with varying number of users and with multipaths 
using DDF. The delays are assumed to be constant during one measurement.  For the state 
space model we assumed 0.999F I  and 0.001Q I  where I  is the identity matrix. We will be 
considering  fading multipaths and multiuser environment with 2, 5 and 10 user scenario. The 
SNR at the receiver of the weaker user is taken to be of 10 dB. The near far ratio of 20 dB has 
been assumed with the power of the strong user is 

1 1P  and that of the weak user is 
1/10P .  We 

note that the data bits, ,k md , are not included in the estimation process, but are assumed 
unknown a priori. In the simulations, we assume that the data bits are available from decision-
directed adaptation, where the symbols ,k md  are replaced by the ,

ˆ
k md decisions shown in 

Figure 1.We also considered the special case of closely spaced multipaths. 

 

 

 

 

 

 

 

 

Figure 1. Multiuser parameter estimation receiver 
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Figures 2, 3 and 4 show the timing epoch in a multiuser scenario with three multipaths with 
the path separation of 1/2 chip. We have considered the case of the weaker user and have 
compared it with the stronger user. Proposed estimator converges to the close to the true value 
approximately in 6-8 symbols even in the presence of MAI and is able to track desired user 
delay even when the paths are closely spaced. Figures (5) show the mean square error for 
channel coefficients for first arriving path with a ten-user/ two-path channel model. The 
estimator/tracker is able to accurately track the time-varying channel coefficients of each 
user, even for fast fading rates. It is seen that a user is capable to accurately converge to the 
correct delays and channel coefficient for both estimator. The strong as well as the weker user 
is successfully tracked thus demonstrating the near far resistant nature of the proposed 
estimator. 

 Now if we compare the UKF algorithm [10] with the DDF algorithm, we see that the 
performance of the two is nearly same. This has been demonstrated in Figure (6). It is due to 
the fact that DDF is based on the derivative approximation on Stirling formula whereas UKF 
is based on Taylor series approximation for the nonlinear function. It is interesting to compare 
the DDF with EKF for the closely spaced multipaths. Figure (7) shows the timing epoch 
estimation of the first arriving path in a five user three path model whereas Figure  (8) shows 
the tracking of the timing epoch of the first arriving path of the weaker user in a fifteen user 
two path model.. It clearly demonstrates that DDF outperforms the linearized EKF when the 
paths are closely spaced in a near far environment. 
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Figure 2. Timing epoch estimation for first arriving path with a five-user/ three-
path channel model (with 1/2-chip path separation) 
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Figure 3. Timing epoch estimation for second arriving path with a five-user/ 
three-path channel model (with 1/2-chip path separation) 
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Figure 4. Timing epoch estimation for third arriving path with a five-user/ 
three-path channel model (with 1/2-chip path separation) 
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Figure  5. MSE of the channel coefficients for first arriving path with a ten-user/ 

two-path channel model 
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Figure  6. Comparison of the DDF with UKF in terms of MSE of the first arriving 

path in a ten user/two path 
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Figure 7. Comparison of the DDF with EKF in terms of timing epoch estimation for 
first arriving path with a five-user/ three-path channel model (with 1/2-chip path 

separation) 
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Figure  8. MSE of the timing epoch for first arriving path with a fifteen-user/ two-

path channel model 
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