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Abstract 
Based on noise intensity, in this paper, we propose a feature-preserving smoothing 

algorithm for point-sampled geometry (PSG). The noise intensity of each sample point on 
PSG is first measured by using a combined criterion. Based on mean shift clustering, the PSG 
is then clustered in terms of the local geometry-features similarity. According to the cluster to 
which a sample point belongs, a moving least squares surface is constructed, and in 
combination with noise intensity, the PSG. is finally denoised. Some experimental results 
demonstrate that the algorithm is robust, and can smooth out the noise efficiently while 
preserving the surface features. 
 
1. Introduction 

Point-sampled geometry (PSG) without topological connectivity is normally generated by 
sampling the boundary surface of physical 3D objects with 3D-scanning devices. Despite the 
steady improvement in scanning accuracy, undesirable noise is inevitably introduced from 
various sources such as local measurements and algorithmic errors. Thus, noisy models need 
to be smoothed or denoised before performing any subsequent geometry processing such as 
simplification, reconstruction and parameterization. It remains a challenging task to remove 
the inevitable noise while preserving the underlying surface features in computer graphics. 

Earlier methods such as Laplacian [1] for denoising PSG are isotropic, which result 
commonly in point drifting and oversmoothing. So the anisotropic methods were introduced. 
Clarenz et al. [2] presented a PDE-based surface fairing application within the framework of 
processing point-based surface via PDEs. Lange and Polthier [3] proposed a new method for 
anisotropic fairing of a point sampled surface based on the concept of anisotropic geometric 
mean curvature flow. Based on dynamic balanced flow, Xiao et al. [4] presented a novel 
approach for fairing PSG. Other methods have also been proposed for denoising the PSG. 
Algorithms that recently attracted the interest of many researchers are moving-least squares 
(MLS) approaches [5-7] to fit a point set with a local polynomial approximation; the point set 
surfaces can be smoothed by shifting point positions towards the corresponding MLS 
surfaces. The main problem of MLS-based methods is that prominent shape features are 
blurred while smoothing PSG.  

Concerning the above problem of MLS approaches, this paper puts forward a smoothing 
algorithm for PSG based on noise intensity. We adopt the combined criterion presented by 
Weyrich et al in [6] to measure the noise intensity of each sample point. In order to take into 
account the similarity of geometry features while smoothing PSG, we introduce mean shift 
clustering method. In combination with noise intensity and the constructed MLS surfaces 
based on these clusters, we achieve fairing of PSG with feature preservation. 
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2. Measuring the noise intensity 
Weyrich et al [6] proposed a combined criterion, which is calculated as a weighted 

combination of plane fit criterion, miniball criterion and nearest-neighbor reciprocity 
criterion, to estimate the likelihood for a sample point to be an outlier. We introduce 
this combined criterion and consider this likelihood as the noise intensity of sample 
point. We briefly review them as follows. 

The plane fit criterion considers a plane H that minimizes the squared distances to 
pi’s k nearest neighbors Nk(pi), i.e., 

                . 

The plane fit criterion is defined as pl ( )= ( )p /i d d dχ + , where d is the distance of pi to H, 
and d the mean distance of points from Nk(pi) to H. 

For each point pi consider the smallest enclosing sphere S around Nk(pi). S can be 
seen as an approximation of the k-nearest-neighbor cluster. Comparing pi’s distance d to 
the center of S with the sphere’s diameter (2r) yields a measure for pi’s likelihood to be 
an outlier. Consequently, the miniball criterion is defined as mb ( )= ( 2 )p / /i d d r kχ + . 

Observe a directed graph G of k-neighbor relationships: Outliers are assumed to have 
a high number of uni-directional exitant edges, i.e., asymmetric neighbor relationships. 
Consequently the nearest-neighbor reciprocity criterion considers the ratio between 
unidirectional and bi-directional exitant edges in G. The uni-directional neighbors are 
defined as  

, 

while the bi-directional neighbors build a set 

                              . 

So the criterion is defined as 

                . 

By combining the three criteria and using weights w1, w2 and w3 (w1+w2+w3=1), in 
this paper, we compute the noise intensityof  sample point pi as 

                 (1) 

 
3. Mean shift clustering for PSG 

By using mean shift clustering method, in this paper, the PSG is clustered so as to 
consider the similarity of geometry features while smoothing it. The mean shift 
algorithm is a nonparametric clustering technique for the analysis of a complex 
multimodal feature space and the delineation of arbitrarily shaped clusters [8], and it 
has a wide variety of applications in the fields of computer vision and pattern 
recognition. Recently it has been extended to the field of digital geometry processing 
[9,10]. In the following we first present a short review of the adaptive mean-shift 
technique and then describe how to apply it to PSG. 

Assume that each data point d
i R∈x , 1, ..., i n=  is associated with a bandwidth value 

hi > 0. The sample point estimator [9,11] 
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                                                      (2) 

 

based on a spherically symmetric kernel K with bounded support satisfying 

 

is an adaptive nonparametric estimator of the density at location x in the feature space. 
The function ( ), 0 1k x x≤ ≤ , is called the profile of the kernel, and the normalization 
constant k dc ,  assures that K(x) integrates to one. The function ( ) ( )g x k x= − ' can always be 
defined when the derivative of the kernel profile ( )k x exists. Using ( )g x as the profile, the 
kernel ( )G x is defined as             . 

By taking the gradient of equation (2) the following property can be proven                                                 

 

where C is a positive constant and 

 

 

                                                                                                                  (3) 

 

 

is called the mean shift vector pointing toward the direction of maximum increase in the 
density. A gradient-ascent process with an adaptive step size 

                                        (4) 

constitutes the core of the mean shift clustering procedure. For 
clustering 1 2={ , ,..., }nS x x x with mean shift, the following two steps are performed on 
each i S∈x : (a) Initialize [0]

iy with ix ; (b) Compute [ ]j
iy according to equation (4) until 

convergence. It can be shown in the literature [8] that under some general assumptions 
the sequences [ ]{ }j

iy converge to the points where ( )Kf̂ x  defined by equation (2) attains 
its local maxima (mode). Accordingly, the points that converge to the same mode are 
associated with the same cluster. 

One simple extension of the above clustering procedure consists of dealing with a set 
S, each element of which has two components of a different nature, 

={ ( , ) : , }i i i i iS C Q= ∈ ∈x c q c q . In such a situation, it is convenient to use the mean shift 
clustering procedure with separable kernels 

 

. 

 

In this paper, we consider the sample points{ }ip equipped with the normals{ }in and 
the mean curvature { }iH as scattered data ={ ( , ) : , =( , )}i i i i i i i iS H= =x c q c p q n in 7R . For 
both ic  and iq , we use the normal kernel. For the bandwidth values hi, there are 
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numerous methods to define them, most of which use a pilot density estimate. The 
simplest way to obtain the pilot density estimate is by nearest neighbors. To accelerate 
the mean shift computation, we construct a k-D tree for the point set{ }ic . According to 
the k-nearest neighbors ( )k iN c of ic , we can adaptively take 

1 2|| ||i i i kh = − ,c c , where i k,c  is 
the k-nearest neighbor of ic , and 

2 1 2 2{|| || , ... , || || }i i i i i kh max= − −, ,q q q q . After clustering for 
PSG by using this mean shift technique, the geometry features of the points in the same 
cluster, which contain the point positions, normals and mean curvatures, are locally 
similar, respectively. Fig.1c demonstrates the mean shift clustering of the Face model, 
and its point set of local modes is illustrated in Fig.1d. 
 

   

(a) (b)  

  

 

(c) (d)  
Fig.1 (a) Noisy Face model; (b) Noisy model 
colored by mean curvature; (c) Our mean 
shift clustering; (d) The point set of local 

modes. 
 
4. Smoothing of PSG 

The main idea of smoothing algorithm is as follows: MLS surfaces are first 
constructed in terms of the above clusters, and in combination with the noise intensity, 
the offset distances of sample points are computed. According to offset distances, we 
shift sample point positions along their own normals to eliminate the noise from PSG. 

Alexa et al.[12] proposed a PSG representation by fitting a local polynomial 
approximation to the point set using a MLS method. The result of the MLS-fitting is a 
smooth, 2-manifold surface for any point set. Given a point set { }iP = p , the continuous 
MLS surface S is defined implicitly as the stationary set of a projection 
operator ( )ψ r that projects a point onto the MLS surface. To evaluate ψ , a local 
reference plane { | =0}x n x3H D= ∈ ⋅ − is first computed by minimizing the weighted sum 
of squared distances, i.e., 
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where q is the projection of r onto H andθ is the MLS kernel function 2 2( ) exp(- )d d /hθ = , 
where h is a global scale factor. Then a bivariate polynomial ( , )g u v is fitted to the points 
projected onto the reference plane H using a similar weighted least squares 
optimization. The projection of r onto S is given as ( ) (0,0)r q ngψ = + ⋅ . More details on 
the MLS method can be found in [12]. 

Let qi be the projection of pi onto the corresponding MLS surface approximating the 
cluster of Nk(pi). Although the noise from PSG is eliminated by shifting pi to qi, the 
underlying surface features are blurred and the cluster of Nk(pi) takes only into account 
the position relationship among sample points, not the similarity of geometry features. 

We employ MLS surfaces to approximate the clusters of PSG obtained by using 
mean shift clustering method, and based on the noise intensity, the offset distance id of 
each sample point pi is determined. Accordingly, the smoothed position i

*p  is given by 
i i i idλ= +*p p n , where (0 1)λ λ≤ ≤ is a user-adjustable smoothing parameter; id is 

expressed as (-1( ) )i i i id w τδ= ⋅ ⋅ || p q || , where the term ( )=exp(-exp(-x))w x denotes that the 
influence on the offset distance id  increases with an increase in the noise intensity so 
that the regions with high noise intensity can be efficiently smoothed, andτ is set to 0 
when 0i i i⋅ >n p q , which indicates that pi is move along ni; otherwiseτ is set to 1 and pi is 
move along -ni. 

 
5. Experimental results and discussion 

In our experiments, we use Microsoft Visual C++ programming language on a 
personal computer with a Pentium IV 2.8 GHz CPU and 1 GB main memory. We have 
implemented our noise intensity-based smoothing (NIB) and another two denoising 
techniques: the Bilateral denoising (BIL) and the MLS-based denoising to compare 
their denoising results. We demonstrate two models in our comparison: a noisy Face 
model with 34 308 sample points (Fig.1a) and a noisy Armadillo-leg model with 93397 
sample points (Fig.3a).We use the visualization scheme of mean curvature to compare 
this two techniques with our method; all the models are rendered by using a point-based 
rendering technique..  

In Fig.2, we demonstrate a comparison of the denoised Face models by MLS, BIL 
and NIB. The denoised models are illustrated in the top row of Fig.2, and their 
corresponding mean curvature visualizations in the bottom row. As seen in Fig.2, our 
NIB removes the high-frequency noise properly and achieves a more accurate result 
than MLS or BIL does. Fig.3 shows a comparison of MLS, BIL and NIB concerning 
feature preservation. Note that our NIB preserves sharp features more accurately than 
MLS or BIL does while producing a smooth result. 

Due to take not only into account the noise intensities of sample points but also the 
similarity of geometry features while smoothing PSG, our algorithm can remove the 
high-frequency noise properly and achieve a more accurate denoising result than BIL or 
MLS. 
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6. Conclusion 
Based on noise intensity, in this paper, we presented a smoothing algorithm for PSG. 

By using mean shift clustering method, the PSG is clustered into clusters according to 
the similarity of geometry features. According to these clusters, the corresponding MLS 
surfaces are constructed and in terms of the noise intensity, the offset distance of each 
sample point is determined. In combination with the MLS surfaces and offset distances, 
the PSG is smoothed. 

Our experimental results demonstrate that the proposed algorithm is robust, and can 
smooth out the noise efficiently while preserving the surface features. 
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(a) MLS (b) BIL (c) NIB  
 

Figure 2: Denoising noisy Face model (Fig.1a). Top: the denoised models. 
Bottom: the corresponding denoised model colored by mean curvature. Mean 

curvature coloring helps us to compare their corresponding fine details. 
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(a) Noise model (b) MLS (c) BIL (d) NIB  

 
Fig.3 Denoising the noisy Armadillo-leg model. Top: the denoised models. 
Bottom: the corresponding denoised model colored by mean curvature. 
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