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Abstract 

Power consumption is becoming a primary concern as a result of tremendous increasing in 

computer power usage. Innumerable methods and techniques have been exploited to address 

this problem but few concentrate on collaborative approaches. This paper presents 

coordination mechanisms that integrate operating systems with compilers under power 

reduction techniques such as DPM and DVS. By remaining the information generated at 

compile stage about an application’s structure and performance characteristics as much as 

possible and committing it to system software at run stage, the system software, especially the 

operation system and compiler, are collaborating toward file-grain power optimizations. The 

proposed coordination mechanisms also make it possible to integrate the power optimization 

approaches in our prior work into a whole system. Thus, the optimizations working at distinct 

levels can be overlaid at run time, and the power reduction effect can be enhanced. 

 

1. Introduction 

Over the past several years, power savings and optimizations has become an area of very 

active research as a result of tremendous increasing trend in computer power usage. 

Innumerable methods and techniques have been exploited for battery-powered portable 

systems, desktop computers and even servers. These technologies are either hardware-level or 

software-level directed. The former mainly includes circuit and logic, low-power 

interconnections, low-power memories and processor architecture adaptive technologies [1], 

while the latter are typically combined with hardware-level techniques. 

Software directed approaches have more direct knowledge about the workload and 

accordingly have more control on large portions of the computer system due to their higher 

abstraction levels. Researches of software directed power optimizations focus on system 

software especially the operating system and compiler, which usually works together with two 

well studied power reduction techniques, dynamic power management (DPM) and dynamic 

voltage scaling (DVS). 

Though a lot of software directed methods have been exploited, few research focus on the 

collaborative methods. Furthermore, the prior combination methods of system software are 

very rough and coarse-grain. For instance, in a recent study [18], the compiler is just used to 

partition code regions or insert some DVS instructions. The characteristic of being conversant 

with the structure of applications, which is the most important feature of the compiler, is not 

well utilized by the systems. 

The motivation of this paper is to explore more opportunities for power optimization by 

coordinate components working at various levels to take full benefits provided by compiler and 

OS. To achieve this goal, this paper presents coordinate mechanisms that integrate operating 

systems with compilers under some power reduction techniques such as DPM and DVS. The 
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information concerning an application’s structure generated at compile stage is collected as 

much as possible and then committed to the OS or dynamic compiler at run stage for further 

analysis. 

By deploying proposed coordinate mechanisms, the system software, especially the 

operation system and compiler, are collaborating towards fine-grain power optimizations. The 

proposed coordinate mechanism makes it possible to integrate the power optimization 

approaches in our prior work into one system in which different methods cooperate efficiently 

to reduce computer power. 

The rest of the paper is organized as follows: Section 2 summarizes related work. Section 3 

gives an overview of our software directed power reduction system architecture and the 

coordinate mechanisms. Section 4 further develops in sequence more specific descriptions of 

power-aware system architecture which incorporates the scheduling related, device related and 

runtime coordinate mechanisms. This is followed by the experimental results in Section 5. 

Finally, Section 6 concludes the paper by summarizing our major contributions. 

 

2. Related Work 

From the perspective of the OS, power aware schedule policies are commonly used to satisfy 

the deadline or performance requirement of an application [2, 3] and resource hibernation 

policies have been adopted for hardware devices such as disk driver and cache [4].  

Compiler-level power optimizations originally appeared in traditional compiler, among 

which reordering instruction to reduce switching [5, 7] and reduction of memory operands 

through register pipelining [6] are two typical techniques. After that due to the proposal of 

DVS, a new analysis model, dynamic compiler techniques, emerged to adapt its very feature 

[8]. Both static compiler techniques and dynamic compiler driven DVS techniques have been 

well developed [8, 9]. 

There are also several practices concerning the collaborative methods. Azevedo et al. [18] 

proposed a novel intra-task DVS technique based on compiler control which makes use of 

program checkpoints that carry user-defined time constraints. Checkpoints are generated at 

compile time to indicate where in the code the processor speed and voltage should be re-

calculated. OS handles multiple intra-task performance deadlines and modulates power 

consumption according to a run-time power budget given by the user. In a recent study, 

AbouGhazaleh et al. [19] uses the compiler to annotate an application’s temporal behavior 

information. This path-dependent information is then passed on to the OS as guidelines on how 

to periodically change the frequency of the processor during runtime. 

It is obvious that the combination of compiler and OS is very rough in prior work where 

compilers are just used to partition code regions or insert some DVS instructions. The most 

important feature of compilers, being conversant with the structure of applications, is not well 

utilized by OS. So some potential opportunities for further power optimization are missed. 

 

3. Architecture 
 

3.1. An Overview 

System programs play a critical role in the entire life cycle of an application, 

especially the operating system and compiler. To run a program, the compiler at first 

transfers the source code to machine dependent binary. Then, the application is loaded 
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and waits to be selected by the OS scheduler. Once chosen to be an active running 

application, the application runs upon the operating system and interacts with it. At the 

same time, dynamic compilers collected the application’s runtime information based on 

which further modifications were applied to the application to improve its performance.  

We have proposed a few power saving methodologies for almost all the phases of an 

application’s life cycle [11, 12, 14, 15, 16]. In this paper, we integrate them into one 

system whose architecture is illustrated in Figure 1.  

 

Figure 1. The architecture of software-directed power optimization system 

According to the locations of the power optimizations in the system, they can be 

classified into three categories: compiler level, operating system level and collaborative 

level.  

In compiler level, both traditional static compilation and recent dynamic compilation 

techniques that modify the binary code of a running application are introduced. The static 

compiler gives the information that can present an application’s internal structure. At the 

later phases, other components also have a good knowledge of an application’s structure 

via importing this generated information. The dynamic compiler works with applications 

simultaneously, so compared to the static compiler, it has further knowledge about real 

running environment and performance of the application, which makes it very useful to 

help conduct dynamic adjustment.  

At OS level, the power estimation module [10] gives the basic power information of 

the entire application or specific code regions. What characterizes it from normal 

processor scheduler is that this optimized module puts the energy efficiency as the first 

consideration on determining how to execute a given application. Meanwhile, the power -

aware file system and I/O manager can give further power optimizations. 

We have also exploited a collaborative OS and compiler power management approach 

for embedded system by partitioning the program into different regions. 

We have elaborated an overall schema of this collaborative power saving architecture, 

now the primary issue lies on how to let these components which locate at different levels 
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work coordinately and take full benefits from compiler and OS. We give details about the 

coordinate architecture mechanisms in the next section. 

 

3.2. Coordinate Mechanisms 

The compiler and OS interact with an application at different stages, thus they have 

different knowledge about the application. Taking the whole application as input, the 

classic compilers are highly informed with the structure of applications. It can partition 

the application into different regions and estimate the static properties of these regions. It 

also gives well considerations to the I/O and storage demands. But it lacks the capability 

of predicting future execution behaviors due to lack of running environment information. 

In contrary, OS can estimate and predict the power/performance behavior, device visit ing 

profile and file system operations since it controls the entire running environment. 

To fully utilize the features of compiler and OS, our proposed coordinate mechanisms 

consist of follow aspects. 

 The OS estimates the power consumption of regions partitioned by compiler 

according to CPU workload [10]. It then evaluates the power consumption of 

applications and use power saving schedule algorithms for task scheduling. At the 

same time, the application’s real-time requirement is strictly guaranteed. (Refer 

section 4.1 for details) 

 Based on the I/O demands gathered at compile stage, the OS schedules the device 

operations under specific policies such as flow model assisted DPM.(Section 4.2) 

 External storage devices have high power consumption. Upon the power aware 

storage architecture included in our system [11], the OS optimizes the file system 

operations by employing the compiler’s predication of the file visits.(Section 4.2) 

 With the run-time performance provided by OS, dynamic compiler applies further 

power optimizations such as code rearrangements to running applications.(Section 

4.3) 

 At the run-time stage, the compiler-based regions structure and performance 

information are used collaboratively. Thus, the regions that have similar 

power/performance behavior can be merged together, while the large region can be 

split into small regions for fine-groan optimizations.(Section 4.3) 

Overall, the primary goal of the coordinate mechanisms is integrating operating 

systems with compilers under two of the most efficient power reduction techniques, DPM 

and DVS. The information concerning an application’s structure generated at compile 

stage is collected as much as possible and then passed to the OS or dynamic compiler at 

running stage for power optimizations. 

 

4. Implementation 
4.1. Scheduling Related Coordination 

A real time DVS schedule algorithm developed in our prior work [12] is introduced into the 

system for random task schedule model. The appropriate frequency is obtained through the 

event-counters. Firstly, we get the relationship between the rates at which countable events 

happen at a certain time and the behavior of a system concerning performance and energy. An 

appropriate frequency that minimizes the energy consumption and arrives a given performance 
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requirement is determined by a periodic evaluation of the event rates in the latest history of the 

system. Then, the OS scheduler finds the frequency domain that matches all the event rates of 

the system. At last, it calls DVS instructions to adjust the CPU frequency. 

 

4.2. Device Related Coordination 

Dynamic Power Management via Compiler Assisted I/O Predication: I/O 

operations (i.e. file accesses) make up the major part of interactions between applications 

and external devices. By increasing the burstiness of device accesses and idle periods 

[13], this arrangement of I/O operations can lead to significant power reduction. Thus, 

the device can be turned into low power state during idle periods.  

Figure 2 Multi-server and multi-requester system 

Our system for energy efficient I/O is illustrated in Figure 2. It is a typical complex 

power-managed system that contains multiple running applications (appA, appB and so 

on) and multiple service providers (SP, in the system, they are specialized as I/O service 

providers).  

In each application, the code regions are partitioned statically by the compiler 

according to different I/O behaviors at compile stage. At the same time, the compiler also 

analyzes the power/performance characteristics of each I/O request and associates its 

power/performance property with the code region. For instance, in Figure 2, there are 

three code regions (CR) in appA where CR1 have two I/O requirements (r0 and r1). In 

appB, r0 and r1 exist in CR0 and CR2 correspondingly. All of these I/O requests are 

predicted by OS according to the current PC in the active process. The requests -to-taken 

are then sent to a request queue (RQ) which communicates with request dispatcher (RD) 

implemented as a kernel model. 

The RD decides which SP should service which I/O request according to the 

power/performance parameters associated with the request. Once decided, the request is 

pushed into the local service queue (LSQ) that buffers the I/O requests for the SP. 

Power-aware File System: The static complex information about file I/O can be applied to 

a lower level such as file system. While the hybrid large storage architecture [11], which uses 

the low power cost memory such as Compact Flash as the cache of a large capacity Microdrive 

in order to take advantage of lower cost large capacity and energy consumption simultaneously, 

is servicing as storage device, the file system utilizes the I/O information provided by compiler 

to place most frequently accessed files onto Compact Flash of low energy consumption and to 

place the others onto Microdrive. As a result of efficient schedule of file operations, most file 

reads take place on the compact flash, so that the Microdrive is in the standby mode in most of 
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the time. It spins up only when a file resident in the Microdrive is accessed. Meanwhile, all the 

writing operations are sent to the compact flash to keep the data in consistent. 

 

4.3. Runtime Related Coordination 

Dynamic Compiler Driven DVS: Our dynamic compiler driven DVS framework 

consists of the First-time Compile module (FC), the Monitor and Judger module (MJ), the 

Run-time Optimizer and Compiler module (ROC). As we have presented before, the basic 

unit of the DVS control is a region or a block of instructions [14]. In our previous work 

of static DVS control, we select loop and function unit as the candidates and insert the 

DVS instruction before and after these two types of regions. Now we evaluate these 

regions in the MJ module instead. 

At the start, the FC module compiles the original codes for the first time and delivers it 

to the operating system and hardware. At the same time, this module selects the loop and 

function blocks or regions as DVS candidates, passes the basic information of the 

candidates to the MJ module. Meanwhile the OS and hardware run the code at the first 

time and collect the information of OS and hardware for the MJ module. Given all the 

necessary information, the MJ module works to determine the detailed method of the 

optimization which the ROC module conducts to optimize and recompile the codes. 

Then the MJ module delivers these information and methods to ROC module, which 

performs the detail optimization including instruction rescheduling and DVS instruction 

inserting.  

Dynamic Split and Combination of Code Regions: More opportunities for power 

optimization are available via partitioning the application into small code regions at 

compile time than treating the entire application as the target of optimization, to achieve 

a finer grain optimization. We import the methodology in [15, 16] that splits and 

combines the code regions dynamically to our system. 

We use a modified compiler to scan the source code and find the desired regions. A 

program region is a function or a loop. Once a region has been found, the “Regions 

partition” model in the modified compiler will call the “Insert Region API Call” module 

to insert the Enter/Exit region API which communicates with the OS kernel when 

entering or exiting a region at run-time. 

When the program is running, these regions are partitioned or merged dynamically according 

to the performance statistic which is gained by a kernel module. Then, different regions are 

assigned different CPU settings and executed on different CPU frequencies according to their 

characteristics. 

 

5. Experimental Results 

We have separately evaluated for the specific parts of this system from low level to 

high level on the Intel Xscale PAX255 platform. The power-aware file system, in contrast 

to the original develop board with only flash memory, caches more than 90 percents of 

file accesses in low power flash in most cases. It provides 32 times storage capacity with 

only 10-15% battery runtime loss. The power-aware scheduler achieves energy savings 

about 10% with little performance loss for some situations, while the compiler assisted 
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DPM policy with I/O predication can save more than 12% power compared to traditional 

DPM policies. 

At the level above the OS, the CPU energy savings of dynamic compiler framework 

are in the range of 13%-15% with a permission of performance penalty of 0.5%-5.5%. 

And splitting or combining the code regions at run time leads to more power savings than 

using static method solely [15]. 

To fairly evaluate the power saving effect and to eliminate the interference from other parts, 

we have to evaluate each methodology solely. But it is notable that some power optimizations 

in the coordinate system can be overlaid at run time and the power saving effect will be 

enhanced. It is expectable that the gained benefits of our system would be much more 

significant in a real environment. 

 

6. Conclusion 

To explore more opportunities for power optimization, this paper integrates the power 

saving methodologies that work at almost all the phases of an application’s life cycle 

together into one system. By deploying the coordinate mechanisms presented here, the 

system software, especially the operation system and the compiler, are collaborating 

towards fine-grained power optimizations. 

The experimental results show that the collaborative approaches achieve significant 

power savings. We feel the proposed soft architecture and coordinate mechanisms have a 

great potential in addressing the power control and energy reduction problem. 
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