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ABSTRACT

Objective: To investigate the effects of Agave sisalana (A. sisalana) extract on Aedes
aegypti (Ae. aegypti) primary cell culture.
Methods: Cells of Ae. aegypti were exposed to different concentrations of A. sisalana
crude extract (0.18–6.00 mg/mL) for 24 h. Then, the cells were labeled with propidium
iodide and subjected to fluorescence microscopy to verify cell viability. In addition, nitric
oxide production was measured.
Results: Results showed that cells exposed to 6 mg/mL of the crude extract presented a
greater percentage of death when compared to control (73.8% ± 9.6% vs. 34.6% ± 9.6%).
Furthermore, there was an increase in the nitric oxide production in cells exposed to 6 mg/
mL of A. sisalana crude extract [(0.81 ± 0.08) mmol/L] compared to control group
[(0.41 ± 0.18) mmol/L].
Conclusions: The results show that A. sisalana is cytotoxic to Ae. aegypti and may be
used as raw material for new eco-friendly and inexpensive insecticides, since sisal in-
dustry discards the liquid waste for the extraction of plant fiber.
1. Introduction

Aedes aegypti (Ae. aegypti) is a mosquito that is responsible
for transmitting many diseases such as dengue fever, Chi-
kungunya fever, yellow fever and Zika fever [1–3]. These diseases
cause significant morbidity and mortality in developing countries
[3]. Recently, dengue transmission has increased in urban and
semi-urban areas of tropical countries around the world,
becoming a major global public health problem. The World
Health Organization estimates that there may be 50–100 million
dengue infections worldwide every year [4,5].

Considering that there is no specific treatment or vaccine for
dengue fever, its control is performed by combating with the
mosquito vector [6–9].
Usually, mosquito control is done with chemical insecticides
[9]. Mosquito larvae are usually targeted using organophosphates,
insect growth regulators, and microbial control agents. Indoor
residual spraying and insecticide-treated bed nets are also
employed to reduce transmission of mosquito-borne disease in
tropical countries [10,11]. However, studies have shown the
development of resistance to the most common insecticides in
many countries [9,12]. Therefore, the seek for new insecticides
is needed, and natural products can be a reliable and eco-
friendly source of raw materials for that purpose [13].

Agave sisalana (A. sisalana) is a monocotyledonous plant
from the Agavaceae family, originally from Mexico. The plant,
commonly known as sisal, is cultivated mainly in tropical
and semi-arid areas around the world [14–16]. Several studies
have been conducted to explore the possible biological
activities of A. sisalana. Researchers have described anti-
inflammatory, analgesic, anthelmintic and bactericidal activ-
ities of A. sisalana [17–19]. In addition, a recent study from our
laboratory reported that A. sisalana possessed larvicidal
activity against Ae. aegypti [20].

Therefore, the aim of this study was to investigate the effects
of A. sisalana crude extract on Ae. aegypti hemocytes death,
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exploring the possible mechanisms involved, especially as
regards the nitric oxide production, which is an important sub-
stance involved in the insects immune system.

2. Materials and methods

2.1. Plant material

A. sisalana was cultivated in the city of Pocinhos (7�2405400 S,
39�2403600 W, 624m above sea level) in Paraiba State, Brazil. The
crude extract was obtained by grinding the leaves in a manual
grinder until complete extraction of the crude extract. Then, the
crude extract was strained and placed in a plastic container, pro-
tected from light, in a freezer at −10 �Cuntil use. The crude extract
was characterized regarding its physical and chemical composi-
tion, for determination of soluble solids (�Brix), total solids, sa-
ponins, reducing sugars and pH. Soluble solids (�Brix) were
determined by manual refractometer. Total solids were deter-
mined according to the method described by Carle and Reinhardt
[21], and saponins were determined by gas chromatography.
Reducing sugars were determined by the dinitrosalicylic acid
method [22], and pH was measured using a digital pH meter.

The Brazilian Agricultural Research Corporation (Embrapa),
located in Campina Grande, Paraiba, was responsible for har-
vesting the plant and extracting the crude extract.
Figure 1. Percentage of cell necrosis of Ae. aegypti hemocytes exposed to
different concentrations of crude extract of A. sisalana.
Bars with the same letter are not significantly different by Tukey test, 5%.
2.2. Primary cell culture

Ae. aegypti third instar larvae were sanitized with 70%
alcohol and rinsed in phosphate buffer solution, and then they
had their hemolymph collected and placed in tube containing
phosphate buffer solution. The pool of hemolymph was centri-
fuged at 1500 r/min for 7 min in a refrigerated centrifuge at 4 �C
and the supernatant was discarded. The hemocytes were placed
in cell culture vials containing Leibovitz medium (Himedia),
supplemented with 10% of fetal bovine serum, penicillin-
streptomycin (300 IU/mL), gentamicin (100 mg/mL), and fun-
gizone (2.5 mg/mL). The culture was incubated at 28 �C for 5
days.

2.3. Evaluation of cell viability by fluorescence
microscopy

For the assay, 1 × 105 cells from the primary cell culture were
plated in 12-well plates and exposed to different concentrations
of A. sisalana crude extract (0.18–6.00 mg/mL) for 24 h. Cells
were centrifuged at 1500 r/min for 7 min in a refrigerated
centrifuge at 4 �C and the supernatant was discarded. The final
volume was supplemented with 2 mL of Leibovitz medium
(Himedia) and transferred to 15 mL tubes containing 15 mL of
propidium iodide to differentiate intact hemocyte from those
necrosis. After 15 min of incubation in the dark, the cells were
counted using a fluorescence microscope (Motic, Xiamen). In
the control groups cells were exposed only to PBS. Assay was
performed in triplicate.

2.4. Measurement of NO

For this assay, 1 × 105 cells were plated in 12-well plates
and exposed to A. sisalana crude extract (0.18–6.00 mg/mL)
for 24 h. The NO production was evaluated in the cultures
exposed to different concentrations of the A. sisalana crude
extract (0.18–6.00 mg/mL), according to method of Green et al.
[23]. For this purpose, 50 mL of the cell supernatant was collected
and placed in 96-well plates containing 50 mL of Griess reagent
and incubated for 15 min. In the control groups cells were
exposed only to PBS. The assay was performed in triplicate. The
absorbance was measured using a microplate reader under
562 nm and the NO was quantified using a standard curve of
NaNO2 as a reference.

2.5. Statistical analysis

Statistical analysis was performed using GraphPad Prism
version 5.0 for Windows (GraphPad Software, San Diego, CA).
Significant differences between groups were analyzed by
ANOVA followed by Tukey's HSD test (P < 0.05).

3. Results

The composition of the crude extract included: soluble solids
(7.70 ± 0.09) �Brix, pH 4.82, phenolics (1.93 ± 0.02) mg/L,
nitrogen 980 mg/L, protein 6.13 mg/L, glucose 12.4 g/L, fruc-
tose 1.2 g/L and saponins 2.4 mg/mL.

In order to evaluate the cytotoxicity of the A. sisalana crude
extract, hemocytes were exposed to different concentrations of
the plant extract (0.18–6.00 mg/mL) for 24 h. Fluorescence
microscopy showed that the cells exposed to concentrations
below 6 mg/mL had no significant difference in cell death
compared to the control group. The cells exposed to 6 mg/mL of
the crude extract of A. sisalana showed (73.8 ± 9.6)% of
necrotic cells vs. (34.6 ± 9.6)% in the control group, after 24 h of
exposure (Figure 1). It is worth mentioning that it presented
more 39.2% necrotic cells than that in the control group.

The NO is involved in immunological reactions from the
insect's metabolism, and for this reason it was measured in this
study. The results showed that the cells exposed to concentra-
tions below 6 mg/mL had no significant difference in the NO
production compared to the control group. After 24 h of expo-
sure to the 6 mg/mL of A. sisalana crude extract, the NO con-
centration in the cell supernatant was (0.81 ± 0.08) mmol/L,
which was twice as much as that in the control group
[(0.41 ± 0.18) mmol/L] (Figure 2).



Figure 2. NO production in Ae. aegypti hemocytes exposed to different
concentrations of the A. sisalana crude extract.
Bars with the same letter are not significantly different by Tukey test, 5%.
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4. Discussion

Our research highlighted that the crude extract of A. sisalana
has cytotoxic activity, killing 73.8% of the Ae. aegypti cells after
24 h of exposure to the extract at concentration of 6 mg/mL. The
experimental group showed more 39.2% hemocytes necrosis,
when compared to the control group. In addition, the results also
showed that the A. sisalana crude extract led to increased pro-
duction of NO by Ae. aegypti.

In order to evaluate the cytotoxicity of A. sisalana to the
hemocytes, the cells were labeled with the fluorochrome propi-
dium iodide and observed in a fluorescence microscope. The
propidium iodide binds to DNA of cells that have damaged
cellular membrane. External stimuli can trigger cell death by
necrosis or apoptosis [24]. In our study, the A. sisalana crude
extract was responsible for causing this deleterious effect on
hemocytes of Ae. aegypti, killing more than 70% of the cells
in 24 h.

In a previous study, Nunes et al. tested the larvicidal activity
of A. sisalana against Ae. aegypti [20]. They tested the
concentration of (4.50 ± 0.07) mg/mL for 3, 6, 12 and 24 h.
The flow cytometry of the hemolymph from larvae showed
that the experimental group presented more 16.5% necrotic
cells than the control group. In the present study, the cells
exposed to 6 mg/mL of extract presented more 39.2% necrotic
cells than the control groups, which represents more than
twice of cellular necrosis as that of the study performed by
Nunes et al. [20]. The difference in the results may be
explained by the fact that our study was done in vitro while
Nunes et al. conducted the experiments in vivo [20]. In
addition, the concentration of A. sisalana crude extract used in
our study was higher than that used in the previous study (6.0
vs. 4.5 mg/mL). Pizarro et al. tested the effect of the liquid
waste from A. sisalana on Ae. aegypti and Culex
quinquefasciatus [25]. The researchers reported that the LC50

for Ae. aegypti was 322 ppm and the LC50 for Culex
quinquefasciatus was 183 ppm. Dharmshaktu et al. reported
the larvicidal properties of leaf and seed extract of Agave
americana against Anopheles, Aedes and Culex larvae [26].
After 24 h, dilution of the seed extract of 1:200 produced a
larval mortality of 100% for Anopheles and Aedes, and 56%
for Culex spp.

Aguiar et al. tested the cytotoxicity of essential oils isolated
from Siparuna guianensis to cells (C6/36) from Aedes albo-
pictus [27]. They found that the cells from the experimental
groups, which were exposed to 0.86 mg/mL of Siparuna
guianensis essential oil lowered cell viability to less than 20%,
compared with 90% in the control group.

Our study also aimed to verify the production of NO by the
cells exposed to the A. sisalana crude extract. NO is an
important cellular mediator capable of destroying pathogens and
tumor cells. It also has a role as a modulator in several biological
essential processes. On the other hand, NO is potentially toxic,
particularly in oxidative stress [28,29]. The increase in the NO
production in insects is related to the immune response against
foreign agents [30]. In 1998, Luckhart et al. reported the
involvement of reactive nitrogen species in the mosquito
immune system [31]. They found that Anopheles stephensi fed
with NO synthesis inhibitors facilitated infection by
Plasmodium berghei. Gupta et al. observed that the NO
production was also able to combat infection by Plasmodium
sp. after the passage of the parasite from the intestine, possibly
acting directly on the oocysts [32].

Guimarães et al. evaluated the NO production in Diatraea
flavipennella exposed to sublethal concentrations of Metarhizium
anisopliae (Metsch.) Sorok [33]. They reported that NO production
was higher in the experimental group than that in the control group.
Chavez et al. shown that intoxication ofManduca sexta larvaewith
Bacillus thuringiensis Cry1Ab activates expression of NO
synthase with a corresponding increase in NO production [34].
These findings indicate that the NO has been implicated in
immune response against microbial pathogens.

Overall, in our study, we observed that the concentration of
NO in the cell supernatant of hemocytes exposed to crude
extract of A. sisalana was higher than that in the cells from the
control group. These findings indicate that the cells that were
exposed to A. sisalana crude extract responsed to the aggression,
increasing the NO production in an attempt to combat the suf-
fered injury.

The results of this study show that the A. sisalana crude
extract has cytotoxic effect on hemocytes of Ae. aegypti. In
addition, A. sisalana crude extract increased the NO production
in the cell supernatant. In conclusion, A. sisalana may serve as
raw material for the production of a new insecticide against Ae.
aegypti. Furthermore, only the fiber of this plant is used by in-
dustry, and the liquid part is completely wasted. Thus, the liquid
plant extract becomes a low cost raw material.
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