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Objective: To estimate risk factors of urban malaria in Blantyre, Malawi, with the goal
of understanding the epidemiology and ecology of the disease, and informing malaria
elimination policies for African urban cities that have markedly low prevalence of
malaria.

Methods: We used a case-control study design, with cases being children under the age
of five years diagnosed with malaria, and matched controls obtained at hospital and
communities. The data were obtained from Ndirande health facility catchment area. We
then fitted a multivariate spatial logistic model of malaria risk. Covariate and risk factors
in the model included child-specific, household and environmental risk factor (nearness to
garden, standing water, river and swamps). The spatial component was assumed to follow
a Gaussian process and model fitted using Bayesian inference.

Results: Our findings showed that children who visited rural areas were 6 times more
likely to have malaria than those who did not [odds ratio (OR) = 6.66, 95% confidence
interval (CI): 4.79-9.61]. The risk of malaria increased with age of the child (OR = 1.01,
95% CI: 1.003-1.020), but reduced with high socio-economic status compared to lower
status (OR = 0.39, 95% CI: 0.25-0.54 for the highest level and OR = 0.67, 95% CI: 0.47—
0.94 for the medium level). Although nearness to a garden, river and standing water
showed increased risk, these effects were not significant. Furthermore, significant spatial
clusters of risk emerged, which does suggest other factors do explain malaria risk vari-
ability apart from those established above.

Conclusions: As malaria in urban areas is highly fuelled by rural-urban migration,
emphasis should be to optimize information, education and communication prevention
strategies, particularly targeting children from lower socio-economic position.

1. Introduction

Saharan Africa [1-3]. This has lead to renewed interest to
better understand the epidemiology and ecology of malaria for

Over the past decade, an increasing number of resources and  better informed intervention strategies (2. Particularly, malaria
efforts have been made to reduce malaria burden in the sub-  has often been seen as a rural phenomenon, however, because

of the rapid urbanization there has been considerable shift
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The study protocol was performed according to the Helsinki declaration and

towards urban malaria [4-7], more especially towards
understanding the epidemiology and transmission of the
disease [4.5]. Although there are malaria cases in urban areas,
lack of malaria transmitting mosquitoes have been reported [6],
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made through, for example, tyre tracts, urban farming [7-10],
but also back and forth human movement between rural and
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[11-13]. However, the complexity of the disease necessitates
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one to explore other risk factors sustaining malaria transmission.
We hypothesize that rural-urban migration and nearness to
putative sources of malaria transmission, for instance, nearness
to a dam, river, garden, swamp water or standing water should
be associated with increased malaria risk.

Moreover, malaria risk has shown spatial heterogeneity,
which in part may be explained by variability in environmental
or socioeconomic factors [10.13]. This association has not been
examined at a small-area level. It is evident that risk may de-
pict different spatial patterns when assessed at small scale than at
large scale. We approach this problem by developing a gener-
alized linear mixed model for spatial data introduced by Diggle
and Ribeiro [14], which is referred to as a spatial generalized
linear mixed model. The uses of such models in malaria
epidemiology are increasing [15-20].

In this study, our central objective is to fit a spatial model to
estimating risk factors associated with malaria, and map malaria
risk in Ndirande township, in Blantyre, Malawi.

2. Materials and methods
2.1. Setting

This study was conducted in 2010, in Ndirande (Figure 1),
a densely populated township, in Central Blantyre consisting
of three wards: Ndirande north, Ndirande south, and Ndirande
west. The population of Ndirande is 109164 which is
approximately 15% of total population in Blantyre City based
on the 2008 Malawi Population and Housing Census. The
population among paediatrics is structured into 3562 (for
those aged <1 year), 13917 (for the 1-4 years old), 14597 (for
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the 5-9 years old) and 12403 for those between 10 and 14
years old, respectively. Ndirande township is mainly serviced
by Ndirande Health Centre and its catchment area extends
beyond the three wards mentioned above. This government-
run clinic is the only health unit offering free paediatric ser-
vices and routine diagnostic procedures in the town. Malaria
cases occur year round at Ndirande clinic, peaking during the
rainy season, typically from November to May and approxi-
mately 30% of all children seen at the clinic are treated for
malaria.

2.2. Study design and dataset

The study was a prospective case-control design. Cases were
defined as children, aged below five years, who had an axillary
temperature of 37.5 °C or a history of fever within the last 48 h
and a positive blood smear (any parasitaemia) for Plasmodium
falciparum. Each case was matched to a control for age (6
months) and sex. Controls consisted of two groups: clinic and
community controls. Clinic controls were defined as children
who came to the same clinic with an illness that was not malaria
and had a negative blood smear. Community controls were
randomly selected by escorting malaria cases to their homes,
after which a random direction was chosen by spinning a marked
ball. The fifth household in the chosen direction was selected.
Subsequent households were approached if necessary, until a
matching control was found. Community controls were defined
as children with a negative blood smear and an axillary tem-
perature < 37.5 °C who had not been ill within the last two
weeks. Both clinic and community controls were recruited
within 14 days of identifying the case.

Map of Malawi

BLANT YRE

Figure 1. Map of Ndirande Township in Blantyre City, Malawi.
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For each case and control, we obtained geographical co-
ordinates of homes from which they come from. We also
captured geo-coordinates of any potential putative malaria vec-
tor breeding sites including dam, river, standing/swamp water,
or a garden nearby selected homes. In addition, using a struc-
tured questionnaire, we collected information on household as-
sets, availability and use of insecticide treated nets, whether the
child visited a rural area, and for how long, and whether a net
was used when away.

The study protocol was performed according to the Helsinki
declaration and approved by the Malawi College of Medicine
Research Ethics Committee. Informed written consent was ob-
tained from the guardians/care-givers/mothers of the children
who participated in the study.

2.3. Spatial modelling

A spatial generalized linear mixed model for binary outcomes
(1 = if case, 0 = for control) was developed [14.21.22].
Specifically, let y=(y(s1),y(s2), K, y(s,)) be a set of point-
referenced data observed at location s; = (latitude;, longitude;)
in an area. The observed data are assumed independent
conditional on a Gaussian process M(s) such that p(ylM) is a
Bernoulli variable. That is to say,

yilM; ~ Bern(m;) (1)

mi=p(y=1ing) =2

~ L+exp(1;) @

where T; is the probability of observing a case, and 7; is a
predictor. The predictor can be expanded to take into account all
possible explanatory variables,

n(si)=x; B+ P(M(s:)) ©)

such that § is the vector of fixed effects corresponding to vari-
ables xT,- =(xi1,"-Xjp). These covariates include child and
household-specific factors. The parameters @(M(s;)), which
follow a Gaussian process, are random effects that capture the
unobserved spatial heterogeneity at location s;.

Model (3) can be extended to a semi-parametric geoadditive
regression model to analyse the data. The spatial effects can be
written as an interaction term f{lat, long) and modelled by two-
dimensional surface estimators, specified as two-dimensional
first order random walks, to have a semi-parametric model,

n(s;) =x! B +f(lat, long) )

Inference on the spatial model uses the Bayesian approach,
by drawing samples from the posterior distribution, which
combines the likelihood and the prior assumptions. Particularly,
it is based on the empirical Bayesian (EB) approach, also called
the mixed model methodology [21-23]. The EB approach is
achieved by recasting the predictor model [21.22] as generalized
linear mixed model after appropriate reparametrization. Details
of the EB estimation approach can be found in Brezger et al.
[21] and Fahrmeir et al. [22].

In summary, for the fixed regression effects, B, we assumed
diffuse priors, i.e., p()«const. For the spatial random effects
we assume a stationary Gaussian random field prior and two-
dimensional first order random walks are specified. We adopt the
most commonly used prior specification based on the four
nearest neighbours that is defined by

K K>
fllat,long) =" " " BB i (lat)Bs s (long) G)
k=1 s=1
where By, --Bjg; are basis functions in latitude (lat) direction

and By1, -Byky in the longitude (long) direction. The terms
are defined as first difference random walk coefficients.

2.4. Analysis of case-control malaria data

The proposed models were applied to analyse malaria case-
control data. Our response variable is a binary (y; = 1 if case
or O if control). Exploratory data analyses using Chi-square test
of association were conducted to assess the association of the
response variable with a set of explanatory variables and cova-
riates. These included child-specific variables, maternal and
household covariates, and environmental risk factors. Variables
significant at P < 0.2 were included in a multiple logistic spatial
model. Implementation of these models were carried out in
R2BayesX [23]. In R2BayesX, regression coefficients were
estimated iteratively, and convergence was achieved when the
change in regression parameters was 0.001 and terminated at
400 iterations if convergence was not achieved. However, our
fitted model converged at less than 25 iterations.

3. Results

The study was conducted for a period of 1 year, and a total of
258 cases (33.6%) and 509 controls (66.6%) were identified.
Figure 2 shows the locations of households of cases and controls
in the area.

Table 1 presents Chi-square summaries. Travel to rural areas
and socio-economic status (SES) were significantly associated
with risk of malaria, but none of the other variables showed any
significant association at P < 0.05. However those with P-value
less than 0.20 were included in the subsequent analysis. These
included travel, SES, household nearness to garden, standing
water and nearness to river, marital status, and woman
employment status.
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Figure 2. Locations for the malaria cases and controls in Ndirande,
Blantyre.
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Table 2 gives summaries of multivariate model. Malaria risk
was associated with travel, with those who travelled out to rural
areas six times more likely to have malaria than those who did not
travel [odds ratio (OR) = 6.66, 95% confidence interval (CI):
4.79-9.61]. Age of the child also had a positive relationship of
malaria risk, although the CI is very narrow (OR = 1.01, 95% CI:
1.00-1.02). The effect of SES showed a decreasing trend in risk
with increasing SES class. Those at the highest and high classes
showed OR = 0.39 (95% CI: 0.25-0.54) and OR = 0.67 (95% CI:
0.47-0.94) respectively. Malaria risk in children also displayed a
positive association with unemployed women compared to
employed women (Table 1). Nearness to either a swamp, river,
standing water or garden did not show any significant relationship
with malaria risk, although a house within 500 m of a swamp,
river or garden displayed a positive association.

The spatial heterogeneity in malaria risk is captured in
Figure 3. The risk considerably varied over this small area,
with hotspots and cold spots of risk identified in the
township. The cold spots at the corner can be explained by
presence of Ndirande mountain, which do not provide
suitable conditions for mosquito breeding. The hotspots
located in the centre and bottom-right corner might be
explained by presence of Nasolo river or maybe nearness to
Ndirande health facility.

Table 1
Chi-square test of association between malaria and covariates.

Variable/Category N Case (% with malaria) P-value
Travel

Yes 101 29.1 <0.001
No 666 28.1

Any net

Yes 492 34.2 0.26
No 275 32.0

Child used net previous night

Yes 480 34.4 0.32
No 287 324

Garden within 500 m

No 430 323 0.18
Yes 337 353

Standing water within 500 m

No 344 34.9 0.14
Yes 423 32.6

River within 500 m

No 408 33.1 0.17
Yes 359 34.1

Swamp within 500 m

No 436 31.9 0.39
Yes 331 36.0

Marital status

Married 727 33.8 0.12
Not married 40 30.0

SES*

Lowest 155 37.4 0.003
Low 149 35.2

Medium 159 42.1

High 150 30.0

Highest 152 22.4

Woman employment

Not employed 701 34.5 0.09
Employed 66 24.2

Head of house employment

Not employed 54 29.6 0.25
Employed 713 33.9

4. SES generated through principal component analysis of household
assets using the demographic and health surveys approach.

Table 2
Estimates from the multivariate spatial logistic regression of risk factors
of urban malaria, Ndirande, Blantyre.

Variable/Category Multivariate model

OR 95% CI
Intercept 0.23 0.09-0.64
Travel
Yes 6.66 4.79-9.61
No 1.00
Age of child 1.01 1.00-1.02
Age of household head 0.99 0.97-1.03
Marital status
Married 391 0.35-43.34
Not married
SES
Lowest 1.00
Low 0.94 0.67-1.30
Medium 0.88 0.64-1.21
High 0.67 0.47-0.94
Highest 0.38 0.25-0.54
‘Woman employment
Not employed 1.78 1.15-2.61
Employed 1.00
Near river
<500 m 1.05 0.78-1.42
>500 m 1.00
Near standing water
<500 m 0.90 0.67-1.22
>500 m 1.00
Near garden
<500 m 1.14 0.85-2.50
>500 m 1.00

Interpolated mean of posterior rate
(observed rate)
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Figure 3. Residual spatial effects of urban malaria, presented on log odds
scale.

4. Discussion

It is well established that urban areas have a markedly low
prevalence [4-81, however, coupled with varied urban ecology,
little is known about the risk factors associated with urban
malaria in Blantyre, Malawi. Knowledge of these risk factors
will help in the creation of malaria free urban areas and
eventual elimination of malaria in African cities [4.5].
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This article explored the epidemiological factors that explain
malaria risk in Ndirande township, Blantyre, Malawi. Of interest
in Blantyre City is that previous entomological studies have
failed to establish presence of Anopheles vectors [6]l. Our
analysis, in principal explored the effect of travel to rural areas
as a risk factor. There was overwhelming evidence that a visit
to rural areas is the major source of malaria infection in urban
areas, confirming recent reviews [4.8.9].

The significance of SES seems to suggest that malaria risk is
highest among low status households, which in part can be
explained by lack of adequate resources to prevent from malaria.
It is therefore evident that children from low social status who
have travelled are at a greater risk than those from high social
status [7.10-13],

In our analysis, we explicitly controlled for spatial hetero-
geneity to capture any unobserved or unmeasured covariates that
influence disease risk. The ecology of diseases particularly that
of malaria, which is driven by both abiotic and biotic factors,
may be best described by such a model [11.24]. This model tries
to capture both observed and unobserved because as in any
model misspecification of possible risk factors may arise [13-
15,18,201. It is evident that the pattern that emerged in Figure 3,
demonstrate that malaria risk is driven by other factors beyond
what we measured. What actually these are is a matter of
conjecture, most probably defined towards knowledge, attitude,
behaviour and practices on malaria [25-29]. We outline a few
here. First, these disparities may be due to use of preventative
measures such as insecticide treated nets [26.27]. Second, they
may be to differential utilization of health care, in such a way
that those that have easy accessed to health facility may report
more often for treatment than those afar [28.29]. Be as it may,
it should be observed that this study was carried out in an
urban area with easy access and most households within 3 km
of Ndirande health facility. Third, it can be due to gaps in
knowledge, leading to delayed wuptake of care [28].
Nevertheless, the spatial effects may also assist in generating
hypothesis for further research, for instance of knowledge,
attitude, behaviour and practices, and other ecological studies
on malaria transmission [24].

In conclusion, malaria in urban areas is highly fuelled by
travel, and the need for information, education and communi-
cation prevention strategies should be emphasized, particularly
targeting children from lower socio-economic position. Message
campaigns on malaria prevention that are targeted at travellers
would help in raising awareness of what is required to prevent
malaria transmission [29].
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